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Abstract

Motivation: Given the complexity of genome regions, prioritize the functional effects of non-

coding variants remains a challenge. Although several frameworks have been proposed for the

evaluation of the functionality of non-coding variants, most of them used ‘black boxes’ methods

that simplify the task as the pathogenicity/benign classification problem, which ignores the distinct

regulatory mechanisms of variants and leads to less desirable performance. In this study, we devel-

oped DVAR, an unsupervised framework that leverage various biochemical and evolutionary evi-

dence to distinguish the gene regulatory categories of variants and assess their comprehensive

functional impact simultaneously.

Results: DVAR performed de novo pattern discovery in high-dimensional data and identified five

regulatory clusters of non-coding variants. Leveraging the new insights into the multiple functional

patterns, it measures both the between-class and the within-class functional implication of the variants

to achieve accurate prioritization. Compared to other two-class learning methods, it showed improved

performance in identification of clinically significant variants, fine-mapped GWAS variants, eQTLs and

expression-modulating variants. Moreover, it has superior performance on disease causal variants

verified by genome-editing (like CRISPR-Cas9), which could provide a pre-selection strategy for

genome-editing technologies across the whole genome. Finally, evaluated in BioVU and UK Biobank,

two large-scale DNA biobanks linked to complete electronic health records, DVAR demonstrated its ef-

fectiveness in prioritizing non-coding variants associated with medical phenotypes.

Availability and implementation: The Cþþ and Python source codes, the pre-computed DVAR-

cluster labels and DVAR-scores across the whole genome are available at https://www.vumc.org/

cgg/dvar.

Contact: hai.yang@vanderbilt.edu or bingshan.li@vanderbilt.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Whole-genome sequencing (WGS) is becoming the standard strategy

to uncover the full spectrum of the variants across the genome.

Analysis of WGS data poses great challenges given the sheer amount

of variants, in particular, the rare ones, as well as our poor

understanding of the functionality of non-coding genome (Drubay

et al., 2018; Khurana et al., 2016; Li et al., 2017). Many of the func-

tional variants (predominantly located in the non-coding genome) are

associated with the disease or complex traits (Shihab et al., 2015;

Zhang and Lupski, 2015). However, discoveries from genome-wide
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association studies (GWAS) revealed that a large number of disease-

causing variants remain to be discovered, the vast majority of which

is believed to play regulatory roles in modulating the activity of target

disease genes (Ritchie et al., 2014; Zhou and Troyanskaya, 2015).

Various large-scale studies, such as ENCODE (Skipper et al.,

2012), Roadmap Epigenomics (Bernstein et al., 2010) and

FANTOM5 (FANTOM Consortium and the RIKEN PMI and

CLST et al., 2014), have been utilized to facilitate the understanding

of the regulatory roles of the non-coding genome across multiple

human tissues and cell types. The activities of regulatory elements

(REs) left footprints in various functional genomics data, making it

possible to infer the function of the non-coding genome from the

massive-scale resources. Diverse experimental assays used in these

projects can help dissect the function of REs, including histone mod-

ifications, ChIP-seq for transcription factors (TFs) (Consortium,

2011), chromatin accessibility (DNase-seq) (Thurman et al., 2012)

in ENCODE and Roadmap Epigenomics and Cap analysis of gene

expression (CAGE) in FANTOM5. In parallel, footprints in genome

evolutions assayed by various computation approaches, e.g.

GERPþþ (Davydov et al., 2010), phastCons (Siepel et al., 2005),

phyloP (Cooper et al., 2005), SiPhy (Garber et al., 2009),

LINSIGHT (Huang et al., 2017), provide complementary evidence

in inferring the functional importance of regulatory variants. Given

the complexity of the regulatory mechanisms, however, it is seldom

the case that any individual data are adequate for the inference

of the underlying function. Instead, integrating multiple and comple-

mentary data is necessary to achieve a better understanding of the

regulatory mechanisms.

Recently, with the integration of much more annotation data

over multiple tissues and cell types, numerous approaches have

been developed to evaluate the potential functional effects of non-

coding variants. Most of these approaches are based on machine

learning or statistical methods [e.g. CADD (Kircher et al., 2014),

GWAVA (Ritchie et al., 2014), DANN (Quang et al., 2015),

Eigen (Ionita-Laza et al., 2016)]. The models underlying these

methods (support vector machine, random forest, deep neural net-

work and non-parametric statistics model) are all designed to

handle the complex and high-dimensional data to prioritize var-

iants and have notable advantages. A potential limitation of these

methods is that they were built upon a two-class assumption that

non-coding variants fall into two categories [CADD, GWAVA

and DANN are supervised methods which learned from the

pathogenic or benign labeled variants catalog; Eigen is an un-

supervised method which does not need the labels of the data but

also follows the two-class assumption (Ionita-Laza et al., 2016)].

However, the regulatory mechanisms of non-coding variants are

so complex that it is difficult to sharply divided variants into be-

nign or pathogenic categories (Ionita-Laza et al., 2016), which

may cause these methods to ignore the small functional effects of

variants in the complex traits.

It is shown that non-coding variants play distinct regulatory

roles in various REs, including well-established REs such as pro-

moters, enhancers, silencers, insulators, as well as other REs that are

unknown (Narlikar and Ovcharenko, 2009). The chromatin states

analysis studies (Hoffman et al., 2013; Roadmap Epigenomics

Consortium et al., 2015) suggested that there are multiple chromatin

states across the genome, likely corresponding to distinct REs. This

evidence suggested that we can more fully evaluate the functional

effects of non-coding variants with the hypothesis that they can be

divided into multiple regulatory categories according to the genomic

evidence. However, due to our lack of understanding of the regula-

tory mechanism of non-coding variants, exploring the functional

patterns among non-coding variants remains a challenge since we

even do not know how many different patterns exits in these var-

iants. Furthermore, even we have already identified distinct func-

tional patterns, we lack a method to evaluate the functional effects

of the variants across different patterns with continuous annotation

scores.

In order to address these challenges, in this study, we developed

a novel non-coding variant annotation framework, DVAR (de novo

pattern discovery and prioritization of functional VARIANTS), to

overcome the two-class limitation of existing state-of-the-art mod-

els. In essence, the DVAR framework consists of two major compo-

nents: DVAR-cluster and DVAR-score. DVAR-cluster automatically

identifies the number of functional clusters discovers inherent pat-

terns from high-dimension genomics data, and then predicts the

regulatory potential of non-coding variants. Specifically, we use

Dirichlet Process Mixture (DPM) model (Ferguson, 1973) to explore

the patterns of complex and correlated feature space, without the

need for any prior knowledge of functional elements. In this step

DVAR essentially builds multi-class labels across all of the non-cod-

ing variants. We also developed DVAR-score to evaluate the func-

tional importance of each variant based on the clustering labels. To

reveal finer scales of patterns, we included a large set of genomics

data spanning a variety of categories to incorporate complementary

information. We constructed a variety of test sets (Clinvar, fine-

mapped GWAS hits, GTEX eQTLs and MPRA verified variants) to

demonstrate that DVAR outperforms state-of-the-art scoring meth-

ods in various scenarios. Furthermore, we collected a set of causal

variants which have been verified by genome-editing technologies to

prove that DVAR is able to detect disease causal variants. Finally,

we applied DVAR to BioVU (Denny et al., 2013) and UK Biobank

(Petersen et al., 2013), two large-scale DNA biobanks linked to

complete electronic health records (EHRs) to explore the effective-

ness of DVAR in prioritizing non-coding variants with EHR derived

phenotypes.

2 Materials and methods

2.1 Feature extraction
Within the DVAR framework, each variant is annotated with an

887-dimensional feature vector. The annotation features were

extracted from biochemical marks and conservation scores. We used

six ChIP-seq Histone modifications marks (H3K4me1, H3K4me3,

H3K9ac, H3K27ac, H3K27me3, H3K36me3) and DNase-seq data

from 127 epigenomes of Roadmap (Bernstein et al., 2010) as well as

18 ChIP-seq Histone modifications from ENCODE (Consortium,

2011). We also collected four types of conservation scores include

PhastCons (Siepel et al., 2005) (primates, mammals, vertebrates),

PhyloP (Cooper et al., 2005) (primates, mammals, vertebrates),

GERPþþ (Davydov et al., 2010) (NR score and RS score) and SiPhy

(Garber et al., 2009). CpG island state makers were downloaded

from the UCSC genome browser (Kent et al., 2002). In addition,

CAGE peaks, permissive enhancers, robust enhancers predicted by

CAGE in FANTOM5 project (Lizio et al., 2015) and super-

enhancers predicted across a broad range of human cell types (Hnisz

et al., 2013) were also included. TF binding sites peaks across

ENCODE and Roadmap data were downloaded from Ensembl

Regulation database (Zerbino et al., 2015), the distance of the vari-

ant to the nearest annotated transcription start site (TSS) is also a

feature in our framework. Finally, we collected all the regions

involved in chromatin interactions detected by 3C, 4C, 5C, Hi-C

and Capture-C from 4DGenome dataset (Teng et al., 2015). In total,

1454 H.Yang et al.



we used 887 annotation features in this study, including histone

modifications (685 values), TF binding (133 values), DNase (53 val-

ues), CAGE peaks (3 values), super-enhancers (1 value), TSS dis-

tance (1 value), CpG island markers (1 values), chromatin

interactions (1 value) and conservation scores (9 values).

2.2 Feature pre-processing
Not all annotation marks we collected are available in each dimen-

sion of the feature (e.g. some histone modifications are only

defined for several specific cell types), so we first need to deal with

the missing data problem. We removed an annotation mark from

the feature space if it is totally not defined for one dimension of all

the variants. In other cases, we used the mean value imputation for

the missing annotations (e.g. for each type of conservation score, the

mean value of scores across the whole genome is used for the imput-

ation). To avoid potential overfitting using un-normalized features

as input, we employed two strategies: feature dimensionality reduc-

tion and normalization. With principal component analysis (PCA),

we reduced 877 binary features into 96 dimensions for the informa-

tion compression and combined these 96 compressed features with

the other 10 continuous features for data normalization. Finally, we

transformed the 106 continuous features by scaling each vector to

the range of 0–1:

x ¼ x� xmin

xmax � xmin
: (1)

Where xmin and xmax are the min and max value of the feature

vector over the training dataset. We used the transformed x of each

variant as the input to the DPM model.

2.3 DVAR-cluster
DVAR-cluster is based on a multivariate DPMs (Ferguson, 1973) that

models the observed combination of functional evidence using infinite

Gaussian random variables (Yang et al., 2017). It enables the auto-

matic de novo detection of the number of functional patterns and

robust to distinguish between them. As input, it receives a list of non-

coding variants, which are automatically converted into a matrix

based on the feature extraction and pre-processing. Let X ¼ fxngN
n¼1

be this N�D matrix, where N is the number of variants and D is the

number of features. For the variant with index n, all the biochemical

marks and conservation scores were pre-processed and combined as

the vector xn. We started by assuming that each xn follows an infinite

mixture of multivariate Gaussian distribution. The variables and

model parameters are summarized in Supplementary Table S1 for

ease of reference. Let G be a random sample distribution drawn from

a Dirichlet process (DP), and G0 be the joint prior distribution, the as-

sumption of the general mathematical model can be written as:

Gjfa;G0g � DPða;G0Þ

H�njG � G

xnjH�n � pðxnjH�nÞ
(2)

Where a is a positive scaling parameter used by the original DPM to

control the final number of functional patterns. To avoid biased de-

tection of this number, we placed a Gamma prior to it so that the ex-

pectation of a can be updated with the other model parameters

during the model fitting. To take into consideration the inter-

dependency among the high-dimensional annotation data, we used

normal-inverse-Wishart distribution as G0 to provide the priors for

the mean and full covariance of Gaussian distributions. G is defined

by the DP, and parameters H�n for different mixture components

were drawn from G. We represented DP with a stick-breaking

process and the particular model used for the pattern discovery of

functional variants can be written as:

ajx1;x2 � Gammaðx1;x2Þ

Vkja � Betað1; aÞ

znjV1;V2; . . . ;Vk �MultðpðV1Þ; pðV2Þ; . . . ;pðVkÞÞ

lk;Kkjmk;Wk; bk; tk � NIWðmk;Wk;bk; tkÞ

xnjfðzn ¼ kÞ;lk;Kkg � Nðlk;KkÞ:

(3)

Where Vk is the kth piece of breaking a unit length ‘stick’ in the DP

process, pðVkÞ denotes the weight of the kth mixture of the model,

lk and Kk denote the mean and covariance of the functional pattern

k. We introduced latent variable zn with a multinomial distribution

to label the cluster membership of the variant xn. The dependencies

of the variables in DPM are so complex that it is difficult to compute

posterior distributions of the variables and design the model training

algorithm. In this study, we solved this problem by using variational

Bayesian inference (Blei and Jordan, 2006; Yang et al., 2017) for the

model fitting to make the training of millions of variants across

whole-genome computationally feasible. We also developed an early

stopping procedure to diagnose the model convergence and make

the stop of the iterations as early as possible, which can help prevent

model overfitting (Supplementary Note S1). Once the DPM parame-

ters were well-trained with 2 million variants randomly sampled

from the 1000 Genomes, the total number of functional patterns

was determined and the class labels of the variants across the whole

genome can be predicted based on this model.

2.4 DVAR-score
Although the DVAR-cluster procedure automatically assigns each

variant a class label, the functional implication of a specific variant

cannot be identified only with it. Not only we cannot prioritize the

variants in the same category, but also we cannot even be able to dis-

tinguish the functional effects of the variants between different cate-

gories. DVAR-score algorithm is developed to address this issue by

estimating the functional score (denote as Fs) of a variant � (D�1

vector) with the balance of two sub-scores: the between-class score

(denote as Fb) and the within-class score (denote as Fw):

Fs ¼ k1Fb þ k2Fw: (4)

Where Fs is composed of Fb and Fw, k1 and k2 are the weight factors

for the two sub-scores. We denote the total cluster number as K. In

this study, we used the same weights (k1¼1, k2¼K�1) for all the test

scenarios to make sure that each variant contributes equally to the

DVAR-score. Once x is assigned to the cluster k of the DP model,

Fw distinguishes the functional effects of x from the other variants

that also belong to the cluster k, and Fb evaluates the functional

effects of x by comparing it with all the other variants that are not in

cluster k. For each cluster, since the vast majority of non-coding

variants tend to be near the cluster center and should not have large

functional impacts, we suppose that the more x is far away from the

cluster center mk, the more likely it has a within-class functional im-

plication. To evaluate Fw, we calculate the distance between x and

the cluster center mk:

Fw ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx�mkÞTðx�mkÞ

q
: (5)

Similarly, we can also evaluate the functional implication of x

with the other variants that not in cluster k by calculating the aver-

age distance between x and all the other cluster centers (m1, m2,. . .,

m(k-1), m(kþ1),. . ., mK) as follows:
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Fb ¼
1

K� 1

X
1� i�K;i6¼k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x�mið ÞT x�mið Þ

q
: (6)

For the DPM, mk is the mean parameter of the kth Gaussian mixture

component. Finally, each variant’s functional score F can be normal-

ized as:

Fn ¼ ECDFðFsÞ: (7)

Fn can be interpreted as the probability of a variant being functional,

which was based on the estimation of the empirical cumulative dis-

tribution function of two million variants. Although the algorithm is

designed based on the DPM model, it can easily be extended to sup-

port any clustering methods since it only based on the multi-class

labels and the calculation of cluster centers.

2.5 Benchmark datasets
We collected four test datasets that consist of distinct functional var-

iants supported by different sources of evidence: (i) a set of 2713 dis-

ease variants from ClinVar (Landrum et al., 2016) catalog (version

20170130, pathogenic non-coding variants extracted); (ii) a set of fine-

mapped causal non-coding variants from GWAS Loci [1867 candidate

causal variants with PICS probability >10% from 39 immune and

non-immune phenotypes from a previous study (Farh et al., 2015)];

(iii) a set of 1184 variants involving high-confidence single nucleotide

polymorphism (SNP)-gene associations from GTEx V6p dataset

(GTEx Consortium et al., 2013) and (iv) a set of 250 functional var-

iants investigated by massively parallel reporter assays (MPRS)

(Tewhey et al., 2016). We used the area under the curve (AUC) statis-

tic of receiver operating characteristic (ROC) curves and precision-re-

call (PR) curves to indicate the performance. For controls, by default,

we constructed negative datasets by randomly selecting variants from

the 1000 Genomes (filtered with MAF >0.05). In order to prove that

the advantage of DVAR-Score is stable, we also construct the region-

matched dataset and the imbalanced dataset from the 1000 Genomes

Data with more stringent criteria: (i) the negative samples are region-

matched with positive samples (Ionita-Laza et al., 2016) that any of

the non-functional variants are located within 100 kb of a functional

variant; (ii) the dataset is to be imbalanced that the number of negative

samples is 10 times that of positive samples (Ritchie et al., 2014). We

primarily focused on using the PR curves with the AUC value

(AUCPR) to evaluate the performances in the following comparisons

since we have imbalanced datasets. We compared our framework with

four state-of-art methods which were based on the two-class assump-

tion: CADD (Kircher et al., 2014), GWAVA (Ritchie et al., 2014),

DANN (Quang et al., 2015) and Eigen (Ionita-Laza et al., 2016).

3 Results

3.1 Interpretation of the clustering of the non-coding

variants
The unsupervised training process of DVAR (Section 2) was carried

out on �2 million variants randomly sampled from the 1000

Genomes Phase 3 data. After the training, we found that the input

variants automatically grouped into five clusters (see Supplementary

Note S1). We arbitrarily labeled the five clusters as C1–C5, and

assigned each variant to one of the clusters by selecting the cluster

with the highest posterior probability. The sizes of the clusters (i.e.

proportions of variants occupied) are �47.61, 19.87, 17.85, 9.05

and 5.59%, respectively, for C1–C5 (Supplementary Fig. S1a).

Note that the results are derived from our training variants, and to

see the robustness of the discovered patterns we resampled another

2 million variants as the testing data. Due to the different settings of

random seeds, the variants in the training set and the testing set are

completely different. Inspiring, we still observed that the testing

data can be automatically divided into five categories by DVAR.

Furthermore, we used the model built in the training set to predict

the variant in the testing data and assigned each variant to C1–C5

according to the predicted maximum posterior probability of the

cluster membership. The proportions of the clusters assigned for var-

iants in the testing data are remarkably close to the corresponding

sizes in the training set, with the sizes of clusters C1–C5 being

47.92, 19.55, 18.18, 8.97 and 5.35% (Fig. 1a), demonstrate that

these five patterns are ubiquitous in the sea of non-coding variants.

We reported the other analysis results based on the testing dataset in

the main text to avoid overfitting and the results on the training

data can be seen in Supplementary Note S3 (The analysis results on

these two datasets are consistent).

Leveraging the discovered clusters, we obtained DVAR-scores

for all variants and observed distinct distributions of the scores in

different clusters (Fig. 1b and Supplementary Table S2). With the

DVAR-score method, the functionality of each cluster is comparable

and it is gradually enhanced from C1 to C5, with the corresponding

median functional scores of 0.242, 0.590, 0.670, 0.876 and 0.933

for C1–C5. The striking differences among clusters imply that var-

iants in different clusters are very likely to have distinct functions.

Fig. 1. Different genomics patterns of DVAR-clusters C1�C5 in 2 000 000 non-

coding variants randomly sampled from the 1000 Genomes Project. (a) The

percentage of each cluster of the non-coding variants. (b) The distributions of

DVAR-scores of non-coding variants in different clusters. (c) Enrichment of

DVAR-clusters with gene-based regions: Splice, 30 UTR, 50 UTR, Enhancer,

Promoter Intron and Intergenic region, extracted from UCSC database. The

darkness of the blue color indicates the relative enrichment with darker blue

representing higher significance [�10log10 (Fisher exact P-value)] and vice

versa. (d) Enrichment with chromatin states of GM12878 cell line identified by

ChromHMM. (e) The boxplot of the numbers of active epigenomes in DVAR-

clusters C1-C5 across 127 Roadmap epigenomes. (f) The boxplot of the num-

bers of active tissue-groups in DVAR-clusters C1�C5 across 15 Roadmap

tissue-groups (Color version of this figure is available at Bioinformatics online.)
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We next investigated the correspondence of C1–C5 with the

well-established gene-based annotations, i.e. ‘Intergenic’, ‘Intron’,

‘Enhancer’, ‘Promoter’,‘UTR3’, ‘UTR5’ and ‘Splice’ (Fig. 1c and

Supplementary Table S3). We found that variants in the Intergenic

regions are strongly enriched in C1 and C3 while the Intron variants

are significantly associated with C2 and C4. Most of the functional

elements like 3’ and 5‘ UTRs, enhancers and promoters are consist-

ently ordered into clusters C4 and C5, indicating that these two clus-

ters are more likely to be functional. We also found that variants in

the splicing-associated regions are mainly enriched in cluster C5

(Fisher’s exact test, P-value¼1.42e�15) and variants in Intron

regions are mainly enriched in cluster C4 (Fisher’s exact test, P-value

<2.22e�308). All of the evidence suggests that clusters C1–C5

show different patterns, corresponding to distinct REs with varying

functionality potentials.

We then evaluated how segmentation annotations derived from

integrated functional genomics data correspond to cluster C1–C5.

Specifically, we applied a 15-state ChromHMM (Roadmap

Epigenomics Consortium et al., 2015) across GM12878 cell line and

used the segmentation results for the enrichment analysis (Fig. 1d

and Supplementary Table S4). The largest cluster C1 showed enrich-

ment only for the quiescent state (E15) (Fig. 1d). The cluster C2 is

enriched for E4, E5, E6, E8 and E9, most of which are active REs

(strong/weak transcription, genic enhancers, ZNF genes, etc.). The

repressed state E9, which consists of constitutive heterochromatin,

is mainly enriched in cluster C2. The cluster C3 is enriched for E7,

E9, E13, E14, most of which are repressed states (heterochromatin,

repressed/weak repressed polycomb proteins). We found that three

important functional active states: E1 (Active TSS), E2 (Flanking

active TSS) and E3 (TF at 5’ or 3’ UTR) are only enriched in clusters

C4 and C5, indicating that these two clusters are likely to be

functional. Furthermore, C4 is enriched in all of the active states

(E1–E8), while C5 is not enriched in E4–E6 (Tx, TxWk, enhG) that

located in genic regions. All of the repressed states except quies are

enriched in C5.

We next examined the relationship between tissue/cell-type

specificity of epigenomics data and the clusters C1–C5. We first

focused on cell-type specificity and extracted 738 cell-type specific

annotations for the 127 Roadmap epigenomes. We denoted a vari-

ant as ‘active’ for the target epigenome if more than 50% biochem-

ical assays of the variant in that epigenome are marked active.

We found that C1–C5 show different numbers of active epigenomes

(Fig. 1e, Supplementary Table S5): Clusters C4 and C5 harbor

variants that are active in multiple epigenomes (median¼7 and 10,

respectively), while the majority of variants in C1–C3 do not have

epigenomes activity (median¼0). We were further wondering

whether the multiple active epigenomics in C4 and C5 are in related

tissues. To test that, we grouped the cell types into 17 tissues accord-

ing to the grouping by the Roadmap Epigenomics (‘IMR90’, ‘ES

cell’, ‘iPSC’, ‘ES-deriv’, ‘Blood &T cell’, ‘HSC &B cell’, ‘Mesench’,

‘Myosat’, ‘Epithelial’, ‘Neurosph’, ‘Brain’, ‘Adipose’, ‘Muscle’,

‘Heart’, ‘Smooth muscle’ and ‘Digestive’). We denoted a variant as

active in the target tissue if it has no <50% active epigenomes in

that tissue. We found that the majority of non-coding variants classi-

fied into cluster C4 and C5 are active in one particular tissue

(median¼1), while the majority of variants in other clusters are not

active in any tissue (median¼0), demonstrating DVAR’s capability

to group variants with related tissue-specificity.

Based on the analysis on the sufficiently large set of variants,

DVAR identified five distinct but stable patterns. In general, clusters

C1 denote the background data that should be non-functional while

C2 denote the likely non-functional variants in the Intron regions;

C4 enriched for chromatin active states and C5 enriched for conser-

vative chromatin repressed states. Of particular interest is C3 since

it is uncertain and enriched for the intergenic regions which are

always mysterious and almost unexplored.

3.2 DVAR automated scoring of functional non-coding

variants
Another important feature of DVAR is its ability to calculate

functional effect scores of non-coding variants based on the learned

functional patterns. We aimed to evaluate how well DVAR can pre-

dict non-coding variants that are associated with human diseases or

gene expression across a range of testing scenarios (see Section 2).

On the ClinVar dataset, DVAR achieved the best performance

(AUCPR¼0.981), compared to DANN, Eigen, CADD and GWAVA

(Fig. 2a). The AUCs of most other methods like DANN and

GWAVA were stable over 0.9 on ClinVar dataset, suggesting that

the vast majority of ClinVar non-coding variants are strong signals

which have highly distinctive biochemical activities or evolutionary

conservation scores. DVAR also achieved the most accurate per-

formance (AUCPR¼0.683) at Fine-mapped-GWAS dataset, fol-

lowed by GWAVA (AUCPR¼0.659), Eigen (AUCPR¼0.613),

CADD (AUCPR¼0.574) and DANN (AUCPR ¼0.522), demon-

strating DVAR’s performance on functionally annotating disease-

causing variants for complex traits (Fig. 2b). The prediction scores

of DVAR were the most informative for GTEx eQTLs

(AUCPR¼0.725), with 8.8�19.5% absolute performance improve-

ment over GWAVA (AUCPR¼0.637), Eigen (AUCPR¼0.620),

CADD (AUCPR¼0.567) and DANN (AUCPR¼0.530), showing the

improved accuracy of DVAR in prioritizing variants that regulate

gene expression (Fig. 2c). We next evaluated the power of DVAR to

correctly detect expression-modulating variants assessed by MPRA

experiments. We found that DVAR accurately predicted regulatory

variants in MPRA dataset (AUCPR¼0.804) and performed substan-

tially better than the other methods (Eigen with AUCPR¼0.715,

GWAVA with AUCPR¼0.690, CADD with AUCPR¼0.635 and

DANN with AUCPR¼0.626) on this dataset (from 8.9 to 17.8% ab-

solute improvement, Fig. 2d).

Fig. 2. Performances of DVAR and other computational methods including

CADD, GWAVA, Eigen and DANN for (a) prioritizing clinically significant var-

iants (Clinvar database), (b) fine-mapped trait related variants (fine-mapped

GWAS CatLog), (c) eQTL variants (GTEx-eQTL) and (d) MPRA validated func-

tional variants
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To have a more comprehensive view of the performance of all

methods, we first calculated the AUCs of ROC (AUCROC) on the

four testing datasets examined. The performance improvement of

DVAR over other methods was still maintained on all of the scen-

arios (Supplementary Fig. S2). We next conducted the performance

comparison of the region-matched dataset and imbalanced dataset.

We found that although the AUC values are shown to be decreased

(Supplementary Figs S3 and S4), DVAR-Score still maintains a lead-

ing position among all the competitors.

We next compared DVAR with more recent methods:

LINSIGHT, DeepSea and Eigen-PC on the default dataset.

(Supplementary Fig. S5). DVAR achieves the highest AUCPR in three

out of four datasets and is close to the best in the ClinVar dataset.

Since we have verified the accuracy of DVAR-score, we next ex-

plore the genome regions and segmentation states again with

DVAR-score. It is clear that the regulatory regions/segmentation

states can be clearly distinguished by our scoring method (Fig. 3a

and b). The regulatory regions with top DVAR-scores are Splice,

Enhancer and Promoter, which showed somewhat more functionally

important than intron and intergenic regions. The chromatin states

with top DVAR-scores are TssBiv, BivFlnk and EnhBiv (E10-E12),

which are all repressed states with even higher scores than active

states like TssA, TssAFlnk and TxFlnk (E1–E3), suggesting that var-

iants in repressed states of ChromHMM have potential to signifi-

cantly modify gene expressions.

3.3 Cases study of functional variants revealed by

genome-editing methodologies
We further assessed DVAR’s performance on the identification of

causal variants of complex traits that were functionally validated by

genome-editing techniques like Clustered Regularly Interspaced

Short Palindromic Repeats (CRISPR). We searched the literature and

identified nine functional variants validated by genome-editing sys-

tems: rs1421085 (Claussnitzer et al., 2015), rs737092 (Ulirsch et al.,

2016), rs1175550 (Ulirsch et al., 2016), rs1546723 (Ulirsch et al.,

2016), rs339331 (Spisak et al., 2015), rs56069439 (Lawrenson et al.,

2016), rs1800734 (Liu et al., 2017), rs2595104 (Ye et al., 2016),

rs200996365 (Pattison et al., 2016). We evaluated how well DVAR

and other methods are able to identify the functional effects of these

non-coding variants. DVAR successfully prioritize all of them with

scores over 0.95 (Table 1). We observed that six out of the nine var-

iants achieved the peak value around their nearby regions

(Supplementary Fig. S6). The predicted scores of DVAR, CADD,

DANN, Eigen and GWAVA are also shown in Supplementary Table

S6. For all of the validated variants, we used PCA to facilitate the

visualization of the high-dimensional genomics data (Fig. 4).

For the well-known obesity and T2D associated FTO variant,

CRISPR-Cas9 editing identified rs1421085 as a causal variant,

which leads to gain of function and doubles the expression of genes

IRX3 and IRX5 through disrupting the conserved ARID5B repres-

sor motif (Claussnitzer et al., 2015). Indeed, the functional effect of

rs1421085 is elusive since it plays regulatory roles mainly in adipose

progenitor cells, which occupy only a small proportion of the adi-

pose tissue. As a result, it does not have active marks on any of the

five core histone modifications (H3K4me3, H3K4me1, H3K36me3,

H3K27me3, H3K9me3) in the assayed adipose tissue in ENCODE

or Roadmap data. Even with these challenges, DVAR assigned

rs1421085 with a functionality score of 0.9976. In 2D space, this

variant is far away from the center of the background (Fig. 4), high-

lighting DVAR’s capability of capturing integrative evidence to iden-

tify genuine functional variants.

For red blood cell traits, a recent study utilized MPRA and pin-

pointed 32 functional variants (Ulirsch et al., 2016), and among

them three variants (rs737092, rs1175550 and rs1546723) were

demonstrated as the causal variants, which dominantly affect the

transcription of SMIM1, RBM38 and CD164, by CRISPR-Cas9

genome-editing. For rs737092, it was confirmed as a causal variant

that regulates target genes RBM38 and RAE1, and the reported

Fig. 3. The distribution of DVAR-scores across different regulatory elements

(REs). (a) DVAR-scores grouped by gene-based regions. (b) DVAR-scores

grouped by 15-chromatin states of ChromHMM on GM12878 cell

Fig. 4. Visualization of DVAR feature aberrations for genome-editing validated

causal non-coding variants and the mean of background variants. PCA is

used to project the high-dimensional annotation data to the 2D space

Table 1. Summary of variants validated by genome-editing

technologies

ID Target genes Traits Class* Score*

rs737092 RBM38, RAE1 Red blood cell C4 0.9536

rs1175550 SMIM1, LRRC47,

CEP104

Red blood cell C4 0.9509

rs1546723 CD164, FOXO3,

FIG4

Red blood cell C4 0.9517

rs1421085 IRX3, IRX5 Obesity C4 0.9976

rs339331 RFX6 Prostate cancer C1 0.9820

rs56069439 ANKLE1 Breast cancer C5 0.9702

rs1800734 DCLK3 Colorectal cancer C5 0.9512

rs2595104 PITX2c Atrial fibrillation C5 0.9711

rs200996365 CCNE1 Bladder cancer C5 0.9856

*The class labels and scores are calculated with DVAR-cluster and DVAR-

score.
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DVAR-score for this variant is 0.9536. Similarly, rs1175550 is a

causal variant regulating the expression of three nearest genes

(SMIM1, LRRC47 and CEP104), and the reported DVAR-score is

0.9509. For causal variant rs1546723, which regulates the expres-

sion of CD164, FOXO3 and FIG4, the reported DVAR-score is

0.9517. Although these three variants are relatively close to the

center of the background (Fig. 4), DVAR is able to successfully

prioritize them while other methods performed poorly in assessing

their functionality (Supplementary Table S6).

For Atrial Fibrillation, it has been evaluated that the variant

rs2595104 reduced the PITX2c expression by reducing the enhancer

activity (Ye et al., 2016). In our approach, the functional score of

rs2595104 is 0.9711. This variant is located in regions with epige-

nomic alterations across both ‘Muscle’ and ‘Heart’ tissue-groups,

and in 2D space, it is considerably far away from the center of the

background (Fig. 4).

For prostate cancer, the CAUSEL pipeline with the transcription

activator-like effector nuclease mediated genome-editing identified

rs339331 as potentially the functional regulatory variant for RFX6

expression (Spisak et al., 2015). Although DVAR does not use the

H3K4me2 histone mark, which was mainly used in CAUSEL, other

genomic features along with the evolutionary evidence boosted

DVAR to classify it as a highly promising variant with a score of

0.9820. For breast cancer and ovarian cancer, rs56069439 was iden-

tified as the causal variant that acts through inducing the downregu-

lation of ANKLE1 (Lawrenson et al., 2016). In colorectal cancer,

rs1800734 was determined to promote cancer progression by

enhancing the expression of DCLK3. All these three cancer variants

were assigned with predicted functionality scores all being >0.95.

A particularly interesting variant is rs200996365, which is a 1-bp

deletion variant that increases the risk of bladder cancer by regulat-

ing the expression of CCNE1(Pattison et al., 2016). It was assigned

with DVAR-score of 0.9856, demonstrating DVAR’s capability of

predicting complex variants beyond SNPs, such as Indels.

3.4 DVAR-scores across EHR-based medical

phenotypes
Although DVAR has been shown to be effective in distinguishing

disease causal variants, the total number of the variants verified by

genome-editing is too scarce. Recently, large-scale biobanks, e.g

BioVU (Denny et al., 2013) and UK Biobank (Petersen et al., 2013),

which focus on the phenome-wide association study (PheWAS) of

EHRs, provide an unbiased interrogation of disease variants across

EHR-based phenotypes (Denny et al., 2013). We investigated

whether DVAR is able to prioritize non-coding variants across a di-

verse spectrum of EHR-based medical phenome. The BioVU dataset

was obtained from Vanderbilt University Medical Centers while the

PheWAS results of UK Biobank are obtained from https://docs.goo

gle.com/spreadsheets/d/1b3oGI2lUt57BcuHttWaZotQcI0-mBRPyZ

ihz87Ms_No/edit#gid¼1209628142. For each variant, we consid-

ered the relationships of DVAR-scores with the number of PheWAS

associations. For both datasets, we used the same thresholds for the

significance of the associations (P-values ¼1e-3, 1e-4, 1e-5 and

1e-6) to count the phenotype associations. For each significant asso-

ciation level, the variants were divided into two groups: the ‘high-

score group’ includes all of the variants with DVAR-scores larger

than the median level of all the analyzed variants while the ‘low-

score group’ include the other half variants. We found that in all

cases, the variants in the high-score group have significantly more

phenotype associations than that in the low-score group (one-sided

Wilcoxon signed rank test) (Supplementary Table S7). Results for

the comparison of CADD, Eigen, GWAVA and DANN in the two

EHR datasets are also reported in Supplementary Tables S8–S11.

DVAR performed better than the other methods, especially for the

UK Biobank dataset. Notably, P-value results of UK Biobank are

lower than that of BioVU, due to its much larger sample size of UK

Biobank compared to BioVU.

4 Discussion

Recently, with the growth of large-scale projects with EHRs (e.g.

BioVU and UK biobank) and the development of targeted genome-

editing technology (like CRISPR-Cas9), genetics has been driven by

the hope that the disease casual variants can be identified correctly

(Vera Alvarez et al., 2017). In this study, we demonstrated how our

framework can help prioritize the functionality of non-coding var-

iants, through de novo discovery of inherent patterns and the subse-

quent multi-class modeling of high-dimensional genomics data.

To the best of our knowledge, DVAR is the first approach that sim-

ultaneously performs de novo discovery of regulatory patterns of

non-coding variants and predicts their functional scores. The scoring

method is developed with the use the multi-class label, and therefore

can be used for any clustering algorithms, which may provide new

insights for the separation of non-coding variants with other princi-

ples in future work (in principle, we can utilize the considerable

knowledge we have learned about various REs such as enhancers

and promoters). Although DVAR is based on the multi-class as-

sumption, it should be viewed as complementary to the two-class

learning methods (like GWAVA and CADD). Compared with these

methods, DVAR is superior at prioritizing weak functional variants,

e.g. eQTLs or MPRA variants, which are likely to play dominant

roles in complex diseases, further supported by its ability to priori-

tize non-coding variants associated with EHR-based medical phe-

nome, in which significantly associated phenotypes are vastly

complex diseases. For the strong signals like clinically significant

variants, two-class learning methods are adequately powerful.

The DP model identified five de novo functional patterns, which

provide a new perspective on the landscape of non-coding variants.

Of particular interest is C3 since it is enriched for intergenic regions

but significantly different than C1, and DVAR is able to separate

those from non-functional ones. The regulatory mechanisms of

Intron and intergenic functional variants are likely different since

they are always enriched for different clusters.

The total number of functional patterns identified by DVAR is

completely different from the multi-class learning methods:

ChromHMM used 15-state model (Ernst and Kellis, 2012; Roadmap

Epigenomics Consortium et al., 2015); Segway set the number of

group labels to 25 (Hoffman et al., 2013); FUN-LDA (Backenroth

et al., 2018) used nine classes to describe the functional classes across

different tissues. The numbers of classes in these methods are pre-

specified for different purposes: tissue-specific segmentation or anno-

tation. Actually, it is hardly known the accurate number of function-

al patterns, which is likely to vary depending on the in-depth studies

on regulatory mechanisms of non-coding variants. DVAR is totally

automatic to decide this number based on the genomic data. The

smaller number of clusters revealed in DVAR is a result of multifacet-

ed factors, and due in part to the prior imposed in the DP, and in

part to the explicit modeling of the correlation among all genomic

features by the use of a full covariance matrix. With increasing

amounts of genomics data being constantly cumulated, DVAR can

take further advantages of more evidence to refine the clustering pat-

terns and get a more accurate number of the functional clusters.

Multiple imputation for the missing data, feature normalization (to
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avoid the mismatch of real distribution of data with the model as-

sumption) and probability weighted scores are also expected to fur-

ther boost the prediction accuracy. In principle, for this particular

purpose, the framework can be extended to focus on specific diseases

[e.g. DIVAN(Chen et al., 2016) and ReMM(Smedley et al., 2016)] or

specific tissues (Backenroth et al., 2018). Such pattern discovery in

tumor-derived genomics data may hold promise as well in prioritiz-

ing cancer driver non-coding mutations.
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