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Abstract

Motivation: Precision medicine is an emerging field with hopes to improve patient treatment and

reduce morbidity and mortality. To these ends, computational approaches have predicted associa-

tions among genes, chemicals and diseases. Such efforts, however, were often limited to using

just some available association types. This lowers prediction coverage and, since prior evidence

shows that integrating heterogeneous data is likely beneficial, it may limit accuracy. Therefore, we

systematically tested whether using more association types improves prediction.

Results: We study multimodal networks linking diseases, genes and chemicals (drugs) by applying

three diffusion algorithms and varying information content. Ten-fold cross-validation shows that

these networks are internally consistent, both within and across association types. Also, diffusion

methods recovered missing edges, even if all the edges from an entire mode of association were

removed. This suggests that information is transferable between these association types. As a real-

istic validation, time-stamped experiments simulated the predictions of future associations based

solely on information known prior to a given date. The results show that many future published

results are predictable from current associations. Moreover, in most cases, using more association

types increases prediction coverage without significantly decreasing sensitivity and specificity. In

case studies, literature-supported validation shows that these predictions mimic human-

formulated hypotheses. Overall, this study suggests that diffusion over a more comprehensive

multimodal network will generate more useful hypotheses of associations among diseases, genes

and chemicals, which may guide the development of precision therapies.

Availability and implementation: Code and data are available at https://github.com/LichtargeLab/

multimodal-network-diffusion.

Contact: lichtarge@bcm.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Precision medicine is a growing area of research to improve human

health and quality of life. To achieve these goals, it seeks to

understand which genes drive diseases, and which drugs may target

these genes and hence treat these diseases. To support this effort,

known associations between diverse types of biological entities have
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been curated and stored in databases, including, gene–gene (GG;

protein–protein) associations in the Search Tool for the Retrieval of

Interacting Genes/Proteins (STRING; Szklarczyk et al., 2015), as

well as disease–gene (DG), disease–chemical (DC) and gene–chem-

ical (GC) associations in the Comparative Toxicogenomics

Database (CTD; Davis et al., 2015). In turn, these databases support

algorithms that predict new associations which, if true, may expand

the knowledge and speed drug discovery.

Several computational studies predicted pairwise associations

among genes, chemicals and diseases (Chen et al., 2016; Li et al.,

2016; Piro and Di Cunto, 2012; Shahreza et al., 2017a). A popular

approach is network modeling (Shahreza et al., 2017a). Thus, DG

associations were predicted by Random walk (RW) (Köhler et al.,

2008; Li and Patra, 2010), CIPHER (Wu et al., 2008), Prince

(Vanunu et al., 2010), clustering and neighborhood methods

(Navlakha and Kingsford, 2010) and a metapath-based approach

(Himmelstein and Baranzini, 2015). For GC associations, bipartite

graph learning method (Yamanishi et al., 2008), side-effect similar-

ity (Campillos et al., 2008), drugCIPHER (Zhao and Li, 2010),

NRWRH (Chen et al., 2012b), DBSI, TBSI, NBI (Cheng et al.,

2012), HGBI (Wang et al., 2013) and the within scores and between

scores (Shi et al., 2015) were used. As for predicting DC associa-

tions, MRS (Suthram et al., 2010), a bipartite graph-based method

(Li and Lu, 2012), SNS (Lee et al., 2012), heterogeneous network

clustering (Wu et al., 2013) and TTMD (Yu et al., 2017) have been

successful.

Interestingly, most such studies focused on just one of three

tasks, i.e. either predicting DG, DC or GC associations; they also

did not use all of the six possible types of edges (DG, DC, GC, GG,

DD and CC; Table 1); and they did not study the impact of sequen-

tially adding information. A few studies (Shahreza et al., 2017b;

Wang et al., 2014) investigated more than one tasks. Doing three

tasks in one study enables fair comparison among prediction tasks

and provides a more complete understanding of precision medicine.

On the other hand, it has been suggested that incorporating infor-

mation into a multimodal network (i.e. a network of more than one

mode, also known as type of edges) improves prediction of associa-

tions (Chen et al., 2016; Li et al., 2016; Piro and Di Cunto, 2012;

Shahreza et al., 2017a). Integrating multiple edge types also helps to

model biological systems more completely (Shahreza et al., 2017b).

Shahreza et al. (2017b) and Himmelstein et al. (2017) used networks

including 6 and 24 edge types, respectively. However, the effect of

sequentially adding edge types has not been fully investigated.

Therefore, using all six types of information to improve prediction

of DG, DC, GC associations is promising, and requires further

examination. In addition to potentially improving performance,

integrating data provides better prediction coverage of genes, chemi-

cals and diseases allowing for a wider range of predictions for pos-

sible associations.

A common experiment to evaluate predicting DG, DC and GC

associations is k-fold cross-validation (e.g. Shahreza et al., 2017b).

Since those experiments remove edges randomly, they do not reflect

the real-world scenario where edges may be added at different rates

depending on network characteristics or the trend of research fund-

ing. Researchers usually use the current information to predict the

future associations. Therefore, we believe that the time-stamped ex-

periment better resembles the problem, i.e. how to use data from an

earlier time to predict data at a later time. Similar experiments have

been applied in other link prediction problems (Dunlavy et al.,

2011).

In this work, we build a multimodal network of all six types of

edges between genes, chemicals (including drugs) and diseases. We

then apply three diffusion-based methods to predict the DG, DC

and GC associations when varying network information amount.

We choose two more modern methods, graph-based information

diffusion (GID; Lisewski et al., 2014; Venner et al., 2010) and

AptRank (AR; Jiang et al., 2017) and the classical RW (Can et al.,

2005; Köhler et al., 2008) for comparison. We test the data consist-

ency through 10-fold cross-validation both within single edge types

and across edge types, and examine how the DG, DC and GC edges

help in each other’s prediction. In addition, we demonstrate that AR

is the best tested method to predict future information.

More importantly, we found that adding information expands

network prediction coverage (i.e. possibly predicted edges) up to 3.5

times. Yet, it does so without decreasing performance in most cases.

Finally, we show that literature-based validation supports many of

our top predictions based on data up to 2016. We conclude that a

more comprehensive multimodal network would allow diffusion-

based methods to effectively prioritize more associations between

genes, chemicals and diseases, to generate testable hypotheses that

may accelerate the development of precision medicine.

2 Materials and methods

2.1 Network construction
The network contains three types of nodes (diseases, chemicals and

genes), and six types of edges (DG, DC, GC, DD, GG and CC).

Chemicals include drugs. Supplementary Table S1 shows the node

and edge contributions from each source. We constructed three 1-

mode networks for DG, DC and GC, respectively, one 3-mode (DG,

DC and GC) network and one 6-mode (DG, DC, GC, DD, GG and

CC) network for earlier (up to April 2014) and later (after April

2014) versions (Supplementary Tables S2 and S3), respectively. All

networks are symmetric and binary-weighted (zeros and ones).

Download links to all networks and the mapping file can be found

at https://github.com/LichtargeLab/multimodal-network-diffusion.

2.1.1 Mapping between heterogeneous data sources

All gene IDs in this work were mapped using the HGNC (Yates

et al., 2017) custom download tool (September 2017) and Ensembl

identifiers from STRING (Szklarczyk et al., 2015). For DG, DC and

GC associations, the CTD (Davis et al., 2015) disease and chemical

terms were mapped through MeSH term names. If direct mappings

could not be obtained, synonyms for genes, chemicals or diseases

were used as a secondary method, with the least promiscuous syno-

nyms taking precedence.

2.1.2 DG, DC and GC associations

Curated DG, DC and GC associations were retrieved from the CTD

(Davis et al., 2015) (http://ctdbase.org) in April 2014 and April

2016. We chose CTD because it is one of the largest databases with

literature-curated associations. We excluded inferred associations,

and only included ‘protein form’ and non-nested interactions as per-

formed previously (Regenbogen et al., 2016). The edge weights were

set to 1.

2.1.3 DD and CC associations

DD and CC associations were determined and added based on the

MeSH hierarchy (Rogers, 1963) tree files (mtrees.bin) from 2013
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and 2016 (ftp://nlmpubs.nlm.nih.gov/online/mesh). We chose MeSH

because it is one of the largest databases of DD and CC associations,

and CTD also provides MeSH identifiers, which alleviates the map-

ping issue when integrating data. For each pair of diseases or chemi-

cals, an edge confidence of 1 was assigned if both entities were in a

parent and child pair. For example, ‘Breast Neoplasms’ (tree number

C04.588.180) is a parent of ‘Carcinoma, Ductal, Breast’ (tree num-

ber C04.588.180.390). Therefore, an edge with confidence of 1 is

assigned between them.

2.1.4 GG associations

We used the experimentally validated human protein–protein inter-

action data downloaded from STRING (Szklarczyk et al., 2015)

(https://string-db.org) versions 9.05 (December 27, 2013) and 10.0a

(April 16, 2016). We chose STRING because it has unified the data

from six experimental databases, including IntAct (https://www.ebi.

ac.uk/intact), DIP (http://dip.mbi.ucla.edu), BioGRID (https://the

biogrid.org), HPRD (https://hprd.org), MINT (https://mint.bio.uni

roma2.it) and PDB (https://www.rcsb.org). We only used high-

confidence edges (i.e. �900) in STRING experimental data, and

changed their weights to 1. This binarized the weight of the GG

edges to match the other edge types.

2.1.5 Network trimming

We pruned the 1-core graph from the 2-core graph to reduce noise

in the experiments, improving predictions. The 1-core of the graph

is a tree-like region, which is entirely predictable and uninformative

for diffusion-based methods. We removed all nodes whose degrees

are 1s in the 6-mode network from all networks used in each experi-

ment. We performed this iteratively such that any node with degree

one, because of node removal, was deleted from the graph as well.

The removed subgraphs consist mostly of paths or stars. The final

network does not contain any degree one nodes.

2.2 Random walk with restart (RW)
We adapted the RW equation (Page et al., 1999; Smedley et al.,

2014):

f ¼ r
�

I � ð1� rÞW
��1

y: (1)

Here, W is the column-normalized adjacency matrix, I is the

identity matrix, y is the vector of initial probability, f is the vector

of steady-state probability and r is the restart probability.

We constructed y by setting the source node to 1 and 0 other-

wise. We set r as 0.75 (Köhler et al., 2008) because it previously out-

performed other clustering and neighborhood approaches

(Navlakha and Kingsford, 2010).

2.3 Graph-based information diffusion (GID)
GID was previously applied to predict protein function (Lisewski

et al., 2014; Venner et al., 2010) using the formula:

f ¼ ðI þ aLÞ�1y: (2)

Here, L is the normalized graph Laplacian, I is the identity ma-

trix, y is a vector of prior labels, f is the label vector after diffusion

and a is a factor which balances the tradeoff between loss and

smoothness in the diffusion process. We set a as 1=k L k1, which is a

sufficient condition to ensure convexity of the cost function

(Lisewski and Lichtarge, 2010).

We consider each entity as a label and diffuse signal from each

one to every other entity to predict potential associations. We set the

source node to 1 and all other nodes to 0 in y.

2.4 AptRank (AR)
AR was used to predict protein functions (Jiang et al., 2017), and

we repurposed the method to perform link prediction in this paper.

We generated the solution using the formula:

f ¼
Xk

i¼0

cðiÞ� Fiy: (3)

Here, F is a user-defined diffusion matrix. We chose F to be the

adjacency matrix, representing the training graph divided by its

spectral radius (i.e. the largest absolute eigenvalue among all eigen-

values of the adjacency matrix), y is the vector of source nodes, f is

the result vector after diffusion and cðiÞ� is the scalar of the adaptive

diffusion parameter. The essence of AR is to compute the diffusion

parameters from the fitting-validating process instead of directly

using a geometric series like the original PageRank (Page et al.,

1999), RW or Katz score (Katz, 1953). AR splits non-zero values in

F into two subsets for fitting and validating cðiÞs . Since the process

relies on splitting the data into fitting and validation sets, we per-

form the same experiment S times, each time taking a new random

split of the data. We then take cðiÞ� to be the mean of all the diffusion

parameters at step i from S trials.

We set k as 8 because terms with large k decay rapidly to 0, we

set S as 5 to avoid unnecessarily lengthy evaluations. We choose to

use an even split for the fitting and validating process. We set the

source node to 1 and all other nodes to 0 in y.

3 Results and discussion

3.1 Experimental setup
We test prediction performance with four experiments: (i) 10-fold

cross-validation, (ii) leave-one-mode-out (LOMO) (Regenbogen

et al., 2016), (iii) time-stamped and (iv) prospective experiments.

3.1.1 Performance metric

To evaluate the prediction performance of each method in 10-fold

cross-validation, LOMO and time-stamped experiments, we com-

puted the mean of the bootstrapped area under the receiver operat-

ing characteristic curve (AUROC), and the mean of the

bootstrapped area under the precision recall curve (AUPRC). Care

was taken to balance the classes when bootstrapping since anno-

tated known associations (positive gold standards) are far fewer

than non-annotated associations (negative gold standards), which

could otherwise impact performance evaluation because of class im-

balance (Shahreza et al., 2017a). Each averaged bootstrapped

AUROC or AUPRC was computed from 100 samplings. Each sam-

pling randomly took 20% of the positive gold standards and equal

amount of negative gold standards for computing AUROC and

AUPRC. Prediction ranking is from high to low score in f for all

methods. Furthermore, the same set of edge predictions was eval-

uated across different networks and algorithms in LOMO and time-

stamped experiments in order to facilitate the comparisons of per-

formance among different networks.

As is natural of biological database data, it should be noted that

the gold standard negatives are actually unknown and some, and

perhaps even many, might be eventually be discovered and turn

positive in the future. Therefore, the false positives could either
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become true positives or remain false positives, and the current per-

formance is a lower bound of estimate.

3.2 10-fold cross-validation
To evaluate whether the multimodal networks improve perform-

ance, we performed 10-fold cross-validation for three 1-mode, one

3-mode and one 6-mode networks (Supplementary Table S3) using

RW, GID and AR. We added the information sequentially to deter-

mine which types of associations were most successfully predicted,

and to evaluate whether integrating data improves predictive power.

Edges were randomly split into 10 sets of approximately the same

size within each type of edge. For the 3-mode and 6-mode networks,

edges from different modes were then combined to generate 10 sets

of 3-mode or 6-mode subgraphs. Each set of edges was left out and

predicted based on the other nine sets, which led to a total of 10

rounds of predictions. All methods used the same 10 sets of data to

make them comparable. The final prediction matrix composed of

the 10 runs was compared against the initial matrix.

Figure 1 shows that for 3-mode and 6-mode networks, all algo-

rithms converge to mutually consistently high performances, where-

as GID outperformed RW and AR in single-mode networks (DG,

DC or GC). The performance difference across three single-mode

networks suggests that the structure and noise content of those net-

works are not similar, and, specifically, DG is the least consistent

network as compared to DC and GC. Also, RW and AR always

benefit from adding other modes, whereas that GID is more sensitive

to the noise from multiple modes.

3.3 Leave-one-mode-out (LOMO) experiment
Next, we asked whether some of the associations could predict or-

thogonal ones through LOMO experiments (Regenbogen et al.,

2016). These are more stringent tests than simple 10-fold cross-

validation or leave-one(-edge)-out experiments (e.g. Wang et al.,

2014) because erasing all the edges from one entire mode precludes

the possibility that edge recovery arises trivially from obvious simi-

larities with ones that remained in the network. We therefore

removed all DG, DC or GC edges in three separate experiments and

tested each time whether they could be recovered by predictions on

the remaining network through ‘intermodal transitivity’. We also

used 3-mode and 6-mode networks as input to compare the effect of

added information.

The results show each of the DG, DC and GC modes can be pre-

dicted based on the two or five other modes in the network using

RW, GID or AR (Fig. 2). Overall, there is little difference in per-

formance between using 3-mode and 6-mode networks. Prediction

performance is better for GC, suggesting that associations may be

predicted more successfully via disease bridges [i.e. together GD and

DC associations (GD ^ DC) predict GC associations] than other

cases, e.g. DG predictions from DC ^ CG, or DC predictions from

DG ^ GC. This could be because diseases are more specific condi-

tions, while genes and chemicals have protean functions leading to

more promiscuous associations and a strong context dependence.

Nevertheless, these data show that the AUROC and AUPRC are al-

ways above 0.8 (Fig. 2), which suggests gene, chemical and disease

network information is transitive across modes; such transfer per-

forms best via diseases.

3.4 Time-stamped experiment
To test performance in the most realistic context, we ran time-

stamped experiments. We used data from 2014 or before gathered

from CTD (2014), STRING (version 9.05) and MeSH (2013) to pre-

dict the new edges that were added in the 2016 version of the CTD

network (Supplementary Table S2). Three experiments tested the

prediction of one edge type, DG, DC or GC, and this was repeated

in single-mode, 3-mode and 6-mode networks to compare the effect

of adding multimodal information.

Strikingly, Figure 3 shows that DG, DC and GC associations

that were added to CTD in the near future could be predicted readily

A B

Fig. 1. Multimodal networks can be recovered better than single-mode net-

works in 10-fold cross-validation. Network information consistency of single-

mode (DG, DC or GC) and multiple modes (3 modes, DGþDCþGC; 6 modes,

DGþDCþGCþDDþGGþCC) were tested by three methods. (A) AUROC and

(B) AUPRC showed higher performance in multimodal networks for RW and

AR but not for GID

A B

Fig. 2. Gene-chemical-disease associations can be retrieved by orthogonal

types of information in LOMO experiment. The associations of the prediction

type in the input network were left out, and then each method used the

remaining information to predict them back. (A) AUROC and (B) AUPRC

showed similar performance in 3-mode and 6-mode networks. Each dot and

its error bar are the mean and the standard deviation of the results from RW,

GID and AR. The error bars were not shown if the error bars are shorter than

the height of the symbol. The 3 modes, DGþDCþGC network; 6 modes,

DGþDCþGCþDDþGGþCC network

A B C

Fig. 3. Network expansion increases prediction coverage without decreasing

performance. Network prediction coverage (i.e. the number of possibly pre-

dicted edges) was normalized to the 1-mode network of each mode. The 1-

mode DG has 9 325 157, 1-mode DC has 12 618 659 and 1-mode GC has 26

910 700 possible edges to predict for the given mode in 2014 networks. The 1

mode, (A) DG, (B) DC, (C) GC; 3 modes, DGþDCþGC network; 6 modes,

DGþDCþGCþDDþGGþCC network
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based on the past information using diffusion-based methods. Much

as before, DG is the most difficult mode to predict and GC is easiest.

While these differences appear small, the prediction coverage (i.e.

the number of edges possible to predict) for DG, DC or GC

increased up to 3.5-fold with more modes added (Fig. 3A–C). As an

example, the coverage of single-mode DG is computed by multiply-

ing the number of diseases and the number of genes and then sub-

tracting the number of DG pairs which are in different components

(i.e. there is no path between the disease and the gene). To distin-

guish how the performance difference between network inputs

compares to a random setting, we ran random simulations

(Supplementary Methods; Supplementary Fig. S1; Supplementary

Table S4). We found that after adding information into networks,

AR often does not change performance significantly, and increases

performance significantly in DC; RW sometimes increases perform-

ance in DG and DC, and only decreases AUPRC in GC. In contrast,

GID does not change performance significantly in DG, but decreases

performance significantly in GC and DC when networks changed

from 1- to 3-mode or 1- to 6-mode, which can likely be explained

by the a parameter computed based on the whole network. In total,

there are two metrics, three algorithms, three prediction modes and

three network changes. This leads to a total of (2*3*3*3¼) 54

experiments. Out of the 54 cases, 10 cases have significantly

decreasing performance, 11 cases have significantly increasing per-

formance and 33 cases have no significant changes after adding in-

formation into networks (Supplementary Table S4). These data

show that the addition of information helps to increase the coverage

of the prediction space without significantly decreasing performance

in most cases, and AR is the most robust method to accommodate

the added information.

Comparing algorithms, AR and GID outperform RW (Fig. 3),

likely because both have diffusion parameters adapted to the net-

work, whereas RW is agnostic to the network structure. AR tends to

do better than GID in most cases (Fig. 3). Perhaps because the GID

diffusion parameter, a, relies on an empirical function computed

over the entire network, whereas AR, which is closely related to an

adaptive RW method, uses a more sophisticated approach that

learns its parameters from a fitting-validation process. Overall, AR

is the best method for predicting future DG, DC and GC

associations.

3.5 Case studies of prospective experiment
To assess performance in practice, we examined the genes and

chemicals predicted to be associated with five cancers and five dis-

eases that were leading causes of mortality (American Cancer

Society, 2017; World Health Organization, 2017), by literature-

based associations. The cancers include lung, colon, pancreatic,

breast and liver disease. The other five diseases are coronary artery

disease (CAD), stroke, pneumonia, chronic obstructive pulmonary

disease and diabetes mellitus. These 10 diseases served as queries in

DG and DC predictions.

Because we also would like to examine GC predictions, we chose

genes from genes related to those 10 diseases (Supplementary

Methods) as queries. The nine unique genes selected were CYP1A2,

SLC22A1, CYP2B1, CYP3A4, NR1I3, ESR2, ALB, PARP1 and

NR1I2 (Supplementary Table S5). We restricted our validation of

chemical predictions to the 1685 FDA-approved drugs from

DrugBank (Wishart et al., 2006) version 5.0.3.

Since network-based predictions might have biases in degree,

and most of the leading causes of mortality and their related genes

have degree more than 100 (Supplementary Table S6), we further

randomly chose 10 diseases and 10 genes (Supplementary Table S6),

which have <100 edges in the 6-mode network, for comparison.

For each method and query term, we computed precision at 20

by literature-based associations using PubMed. This was based on

the top 20 predictions over the 2016 network, a number of putative

associations which can eventually be reasonably tested in low-

throughput biological experimental assays (e.g. cell line or animal

assays) to further validate molecular functions and mechanisms.

Adapting a prior method (Ade et al., 2007), we took a predicted as-

sociation to be true if its Fisher’s exact test (Supplementary Table

S7) one-sided P-value was below 0.001, a threshold ensuring that

the adjusted P-values corrected for 20 predictions are <0.05. For

each query term, we also computed the averaged precision at 20

from 50 times of random predictions. We computed chi-square test

of independence to see whether the precision at 20 is significantly

higher than random.

First, all algorithms did better than random (Fig. 4A–C;

Supplementary Fig. S2A–C; Supplementary Table S8) at predicting

DG, DC and GC. Second, the performance of predicting DG associ-

ations is the best (Fig. 4A; Supplementary Fig. S2A). This might be

because (i) there are relatively fewer studies of those examined dis-

eases/genes in DC and GC and they are not enough to support the

predictions. This could be supported by the fact that examined dis-

eases have more articles on PubMed than genes despite their similar

degree (Supplementary Fig. S3). (ii) One chemical may be described

in the paper by different names, leading to difficulty in searching for

literature support. Third, using 3-mode and 6-mode networks often

improve the significance for RW and AR but not for GID (Fig. 4D–

F; Supplementary Fig. S2D–F; Supplementary Table S8). Fourth,

interestingly, the predictions of GID using only DC or GC 1-mode

networks still showed overall higher significance than RW and AR

using multimodal networks (Supplementary Table S8). Fifth, the

A B C

D E F

Fig. 4. Top predicted entities co-occur with query terms in literature. We vali-

dated the top 20 predictions based on 2016 networks for each chosen query

term using literature-based associations. We chose 10 diseases of leading

cause of mortality as query terms to predict (A, D) associated genes and (B,

E) FDA-approved drugs. (C, F) We also chose 10 genes associated with those

10 diseases as query terms and predicted associated FDA-approved drugs.

Random control was 50 average experiments of 20 random terms for

each query term. We computed (A–C) the precision at 20 and (D–F) chi-square

test to determine how different the predictions from random controls. N.s.,

not significant (i.e. chi-square test P-value >0.05). The 1 mode, (A) DG,

(B) DC, (C) GC network; 3 modes, DGþDCþGC network; 6 modes,

DGþDCþGCþDDþGGþCC network
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entity degree is significantly correlated with precision at 20 for all

three modes (rho¼0.63 in DG, 0.42 in DC and 0.48 in GC;

Supplementary Fig. S4), and the predictions of most entities are non-

random for both low and high degree (i.e. chi-square test P-values

<0.05; Supplementary Fig. S4). Sixth, we could not find one com-

bination of method and network that outperforms others in every

tested query term, nor one that performs better than random con-

trols in a few cases, e.g. predicting chemicals for ESR2 and NR1I2

(Fig. 4F). These results imply that (i) how to choose the method and

the network depends on the specific problem of interest; (ii) ensem-

ble methods based on multiple different algorithms and more com-

prehensive network information are necessary for improving

performance further. Overall, these data show that diffusion-based

methods on multimodal networks can generate hypotheses sup-

ported by the literature.

We analyzed three queries in greater detail, i.e. CAD for DG,

colon cancer for DC and SLC22A1 for GC. For these predictions,

we consider each pair of the network and algorithm as a pipeline.

Therefore, each task (predicting DG, GC and DC) has nine support-

ing pipelines. These predictions (Table 2) are in the top 20 predic-

tions from nearly half to all of nine pipeline combinations, and they

are also supported by the literature (Fisher’s exact test P-value

<0.001). For CAD-related genes, sequence variations of P2RY12

and ADRB2 and DNA methylation levels of MMP9 have been

reported to be associated with CAD (Cavallari et al., 2007; Guay

et al., 2015; Piscione et al., 2008). For colon cancer-related drugs,

tamoxifen was reported to promote a senescence phenotype and re-

active oxygen species generation in a colon cancer cell line (Lee

et al., 2014). Treating colorectal cancer with tretinoin (all-trans-ret-

inoic acid) reduced tumorigenesis in mice (Bhattacharya et al.,

2016). And arsenic trioxide was tested in a clinical trial

(NCT00449137) to make colon cancer cells more sensitive to other

drugs. For predictions of SLC22A1-related drugs, the administration

of cisplatin decreases SLC22A1 (OCT1) protein level in rats (Erman

et al., 2014) and nicotine-treated rats have significantly lower

SLC22A1 mRNA expressions than control (Syam Das et al., 2018).

It has also been reported that SLC22A1 may not be the transporter

of cocaine at the blood–brain barrier in mice (Chapy et al., 2014).

Although one prediction for SLC22A1 was reported to be non-

association, all nine predictions have been hypothesized by scien-

tists, and tested by various assays at different levels. These data

show that diffusion-based methods on multimodal networks formu-

late hypotheses on DG, DC and GC associations that closely mimic

those of scientists.

4 Conclusion

We have shown that in most cases, adding information into multi-

modal networks increases the number of edges that can be pre-

dicted, without significantly decreasing sensitivity and specificity.

Multimodal networks are also more self-consistent than single-

mode networks in cases of RW and AR. When stringently removing

associations of an entire mode, we demonstrated the effective re-

covery from the remaining ones, showing information transitivity

between diseases, chemicals and genes. In the most realistic test,

time-stamped experiments showed GID and AR successfully predict

future knowledge, which suggests that both are robust methods for

hypothesis generation. This was further confirmed by the

literature-supported novel predictions, showing that diffusion

methods on multimodal networks could simulate human-

formulated hypotheses.

There are several ways this work could be expanded. First, other

network-based methods (Himmelstein and Baranzini, 2015;

Navlakha and Kingsford, 2010; Shi et al., 2015; Wang et al., 2014),

matrix factorization (Hao et al., 2017; Liu et al., 2016; Regenbogen

et al., 2016; �Zitnik and Zupan, 2015) and supervised learning (Cao

et al., 2014; Mei et al., 2013; Napolitano et al., 2013; Wang and

Zeng, 2013) could be eventually combined with the diffusion

approaches we used here to better prioritize hypotheses through en-

semble techniques (e.g. Zhou et al., 2018).

Second, we could also add more data of demonstrated value for

the prediction of biological associations, such as, protein domain co-

occurrence and gene ontology similarity (Peng et al., 2015), patient

exomes (Smedley et al., 2014), drug side effects (Campillos et al.,

2008; Yang and Agarwal, 2011), gene pathways (Li and Lu, 2013),

diseases phenotypes (Li and Patra, 2010), gene expression data

(Jahchan et al., 2013; Piro et al., 2010) and semantic linked data

(Chen et al., 2012a). As this work demonstrates, adding high-

quality information from multiple sources should improve predictive

power and space (i.e. extends predictions to additional entities).

A concern remains that adding network information of poor-quality

will increase noise and decrease performance. So, care is needed to

Table 2. Frequent top predictions for CAD-related genes, colon cancer-related drugs and SLC22A1-related drugs

Query term Predicted term # of supporting

prediction pipelinesa

Fisher’s exact

test P-value

PMID/clinical

trialsb id

Coronary artery disease P2RY12 4 8.3E-127 17803810

MMP9 4 1.9E-10 25687463

ADRB2 4 2.9E-04 18940527

Colon cancer Tamoxifen 9 4.8E-09 24361399

Tretinoin 9 6.5E-09 27590114

Arsenic trioxide 8 1.4E-08 NCT00449137

SLC22A1 Cisplatin 7 2.1E-07 24531880

Nicotine 5 4.0E-05 29740849

Cocaine 4 4.9E-04 25539501c

aIn the top 20 predictions of the pipeline.
bhttps://clinicaltrials.gov/.
cNon-association.

Table 1. Acronyms used in this paper

D Disease DG Disease–gene DD Disease–disease

G Gene DC Disease–chemical GG Gene–gene

C Chemical GC Gene–chemical CC Chemical–chemical
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select an algorithm, such as AR, that is robust enough to tolerate

additional noise, and also add only the most reliable data.

Third, an important issue for the future is how to handle the dir-

ection and sign of edges. For example, p53 upregulates p21 and not

the other way around, so the edge from p53 to p21 is directional.

For signed edges, Epinephrine causes tachycardia while metoprolol

treats it. In this paper, both directional and signed associations were

treated as bidirectional and unsigned associations, clearly a loss of

information. How to best represent these attributes of edges in a

computable form is an important question and could reduce the

noise during data integration.

Ultimately, predictions of entity associations need to be experi-

mentally validated by cell line assays, animal models and even clinic-

al trials. More importantly, those top predictions would assist

experimentalists to design their assays to increase the successful

rate. The feedback from these validations would guide and improve

the computational models. This stresses the need for multidisciplin-

ary collaborations to form a positive feedback loop between algo-

rithms and experiments and spur the rise of precision medicine.
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