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Abstract
The human genome is now investigated through high-throughput functional assays, and through the generation of popula-
tion genomic data. These advances support the identification of functional genetic variants and the prediction of traits
(e.g. deleterious variants and disease). This review summarizes lessons learned from the large-scale analyses of genome and
exome data sets, modeling of population data and machine-learning strategies to solve complex genomic sequence regions.
The review also portrays the rapid adoption of artificial intelligence/deep neural networks in genomics; in particular, deep
learning approaches are well suited to model the complex dependencies in the regulatory landscape of the genome, and to
provide predictors for genetic variant calling and interpretation.

Introduction
The rapidly falling cost and ease of collecting genomics data
has increasingly highlighted our relatively limited abilities to in-
terpret what this data says about traits, particularly in a medical
context. In the classic words of Eric Lander, ‘Genomics: bought
the book; hard to read’. Despite significant progress in under-
standing coding variation (changes in gene sequences, which
nevertheless remain deeply challenging), making strong state-
ments about the consequences of variation in non-coding re-
gions, which constitute 98% of the human genome remains a
key challenge in the field. These regions contribute to the regu-
latory networks that for example, direct development, tissue
specificity, gene expression and disease perturbation.
Challenges in the interpretation of the non-coding genome in-
clude a relative lack of strong landmarks (as opposed to, say the
exon-intron boundaries, codon alphabet), the reliance on bioin-
formatic prediction of elements and functions, the dynamic na-
ture of the regulatory apparatus and the long-range regulatory
relationships.

Novel technologies to study functional elements, regulatory
organization of the genome and genetic variation are poised to

help overcome some of the barriers limiting the study of non-
coding variation and their impact on human traits and diseases
(Fig. 1). Machine-learning methods allow us to learn functional
relationships from data in the form of predictive models, largely
free of strong assumptions about the underlying biological
mechanisms (see reviews by Angermueller et al. (1) and Ching
et al. (2).

The canonical machine-learning workflow involves four
steps: data cleaning and pre-processing, feature engineering,
model fitting and evaluation. Deriving the most informative fea-
tures is essential for performance, but effective feature engi-
neering (the process of using domain knowledge of the data to
create features) is labor intensive (1). Deep learning, one of the
most active fields of machine learning, is so exciting in large
part because it reduces, and in many cases, eliminates the need
for feature engineering.

This review highlights successive steps that exploit increas-
ingly large and high-dimensional genomic data sets.
Importantly, the steps aim at decreasing the expert input in fa-
vor of an increasingly automated process. The text reports on
progress in descriptive analyses, modeling, classic pipelines

Received: January 9, 2018. Revised: March 26, 2018. Accepted: March 27, 2018

VC The Author(s) 2018. Published by Oxford University Press. All rights reserved.
For permissions, please email: journals.permissions@oup.com

R63

Human Molecular Genetics, 2018, Vol. 27, No. R1 R63–R71

doi: 10.1093/hmg/ddy115
Advance Access Publication Date: 10 April 2018
Invited Review

Deleted Text: ``
Deleted Text: ''
Deleted Text: ,
Deleted Text: ,
Deleted Text: Figure 
Deleted Text:  
Deleted Text: at 
Deleted Text: (
Deleted Text: )
Deleted Text: (
Deleted Text: )
Deleted Text:  
Deleted Text: -
https://academic.oup.com/


involving machine learning and deep learning approaches to
large-scale genomics data. This review will not discuss other
important areas of development such as the use of deep learn-
ing for the prediction of protein structure from sequence data
(3,4). Specific studies are showcased in each section.

Descriptive Approaches
The estimated size of the human genome is 3.2 � 109 bp. As of
2017, large community and corporate efforts had identified sin-
gle-nucleotide variants (SNV) across the genome: 150 million
SNVs in the public database dbSNP (http://www.ncbi.nlm.nih.
gov/projects/SNP/snp_summary.cgi; date last accessed April 4,
2018), 10 million coding variants in ExAC (http://exac.broadinsti
tute.org; date last accessed April 4, 2018) (5) and 150 million SNVs
in 10 545 deeply sequenced whole genomes (http://hli-open
search.com; date last accessed April 4, 2018) (6). The union of
these resources was 242 million unique SNVs, suggesting that by
the time of this assessment, at least 1 out of every 13 nucleotides
in the genome has an observed variant in the population.

Telenti et al. (6) report on 10 545 whole genomes sequenced
at a depth of 30� coverage to show that 84% of the genome
could be sequenced reliably. The mean single nucleotide den-
sity was 57 per 1 kb of sequence. However, there were differ-
ences across chromosomes, and importantly, different rates of
variation depending on the sequence context. Two papers ‘de-
constructed’ the genome into k-mers [specifically, heptamers)
to characterize the genome-wide rates of variation accounting
their genomic context (7,8)].

There are 16 384 unique heptamers present in the human
genome. Heptamers vary greatly in abundance, ranging be-
tween 1941 (TACGCGA) and 6 332 326 (AAAAAAA) counts per ge-
nome, and are not evenly distributed genomewide (8). The
various genomic elements differ in the heptamer composition
and each heptamer is characterized by unique rates of varia-
tion. The k-mer context was shown to explain more than 81% of
variability in substitution probabilities in the human genome
(7). To capture this property, di Iulio et al. (8) computed the rate
and frequency of variation at the central (fourth) nucleotide of
each heptamer. The metric varies 95-fold across heptamers (be-
tween 0.0046 and 0.438). It defines the expectation of variation
for each nucleotide in the genome.

There are two aspects of these works that make them mean-
ingful in the current review. First, large data sets of deep se-
quenced human genomes are providing increasingly precise
estimates of genetic variation and accurate models of nucleo-
tide substitution (7). Second, the conserved or hypervariable

nature of any sequence in the genome can be based on observed
versus expectation in a sequence-specific (k-mer) context.
Conserved non-coding genomic elements regulate the most es-
sential genes (8).

In summary, we can now describe the saturation of the hu-
man genome with variation. This basic exercise is highly infor-
mative of the constraints imposed on the genome, and thus of
the underlying functional requirements. These new perspec-
tives on genetic diversity can be explored in the frame of cur-
rent knowledge on functional elements accumulated through
ENCODE work (9), conservation of elements across species, and
other descriptive approaches. The data sets are increasingly
rich, and optimally suited for modeling and for machine
learning.

Modeling and Scoring Algorithms
Analysis of protein coding regions

Predicting the functional, evolutionary or medical implications
of a given genetic variant is a long-studied problem (10). The
most widely used tool today is combined annotation-dependent
depletion (CADD), a method (support vector machine) for inte-
grating many diverse annotations into a single measure
(C score) for each variant (11). This review highlights novel ini-
tiatives (12) that leverage three-dimensional protein structure
information to impute functionality of protein domains and the
deleteriousness of variants in conserved domains.

Recently, Hicks et al. (13) used data on over 140 000 human ge-
nome and exomes to understand variation in the three-dimen-
sional structural proteome. This work first identified 26 593
structures associated with 4390 representative uniprot entries.
Then, 139 535 uniprot features were mapped to the structures, to
extract a three-dimensional context by defining a 5 Å radius
space for each feature. The population data provided 481 708
missense variants for these proteins from the analysis of 146 426
individuals’ exomes. These data were modeled to describe func-
tional constraints in three-dimensional protein structures.
Structural intolerance data correlated with experimental func-
tional read-outs in vitro and revealed characteristic features of li-
gand-binding pockets, orthosteric and allosteric sites.

Non-coding genome pathogenicity scores

While there are multiple functional predictive scores that are
used to prioritize variants in the protein coding, less is known
about the functional consequences of genetic variation in the

Figure 1. Convergence of data-rich technologies fueling the field of machine learning for genomics.
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non-protein coding genome. In this section, we highlight seven
recently reported tools: Eigen (14), CADD (11), FunSeq2 (15),
LINSIGHT (16), FATHMM (17), ReMM (18) and Orion (19) (Table 1).
These scores share to certain extent a common source of la-
beled data (limited number of well-studied pathogenic variants
in the non-coding genome), but apply a great diversity of model-
ing approaches. In addition, the context-dependent tolerance
score (CDTS) (8) is based on the analysis of genome heptamer
properties (see previous section), can also be used for the rank-
ing of pathogenic variants (Table 1); however, it differs from
other scores by being independent of existing labeled data.
DeepSEA (20) will be presented below in the section on deep
learning.

Prediction of polygenic scores

The various scores described above generally serve to predict
the functionality and deleteriousness of single variants.
However, many complex traits and disorders (e.g. metabolic
syndrome) are also defined by the contributions of many vari-
ants that can be represented in a single score. Typically, those
variants, identified through genome-wide association studies,
are included in polygenic risk scores. These scores are usually
constructed as a weighted sum of allele counts, the weights be-
ing given by log odds ratios or linear regression coefficients
from univariate regression tests from the originating population
genotyping studies (21). We chose here to showcase progress in
the field by discussing recent work by Pare et al. (22). This paper
leverages the large number of SNVs and the available

summary-level statistics from genome-wide association studies
to calibrate the weights of SNPs contributing to the polygenic
risk score, adjusting for linkage disequilibrium (instead of prun-
ing). A limitation of the method (like in other publications) is
that it is based on the premise that SNVs contribute additively
to genetic variance. As indicated by Pare et al. (22), incremental
improvements are to be expected with increased sample size,
the inclusion of additional predictors and the availability of
more precise summary association statistics.

In summary, many features are used to train models that
predict the consequences of genetic variation in coding and
non-coding regions of the genome. The output is expressed in
scores that are used to rank and prioritize candidate variants
for further investigation, or polygenic scores that summarize ef-
fects. Although continuously evolving, most approaches tend to
train on limited sets of known pathogenic variants, and to use
the same data resources.

Determining Sequence Variation
Traditionally, calling genetic variants from sequencing instru-
ment data are done using complex and expert-engineered pipe-
lines that involve multiple steps, such as alignment, generation
of relevant features and parameter tuning using statistics and
machine learning. Generalizing these pipelines to new sequenc-
ing technologies have proven difficult because the individual
processes require manual parameter re-tuning or, with more ef-
fort, extensions to their statistical models. This constitutes a
major problem in an area with such rapid technological

Table 1. Non-coding genome pathogenicity scores

Score Data sources Approach Reference

Eigen • Uses data from the ENCODE and Roadmap
Epigenomics projects

• Weighted linear combination of individual
annotations

• Unsupervised learning method

(14)

FunSeq2 • Inter- and Intra-species conservation
• Loss- and gain-of-function events for transcription

factor binding
• Enhancer–gene linkage

• Weighted scoring system (15)

LINSIGHT • Conservation scores (phastCons, phylopP),
predicted binding sites (TFBS, RNA), regional
annotations (ChIP-seq, RNA-seq)

• Graphical model
• Selection parameter fitting using general-

ized linear model based on 48 genomic
features

(16)

CADD • Ensembl variant effect predictor
• Protein-level scores: Grantham, SIFT, PolyPhen
• DNase hypersensitivity, TFBS, transcript

information
• GC content, CpG content, histone methylation

• Support vector machine (11)

FATHMM • 46-way sequence conservation
• ChIP-seq, TFBS, DNase-seq
• FAIRE, footprints, GC content

• Hidden Markov models (17)

ReMM • Predict potential of non-coding variant to cause a
Mendelian disease if mutated

• 26 features: PhastCons, PhyloP, CpG, GC, regula-
tion annotations

• Random forest classifier (18)

Orion • Predict potential of non-coding variant to cause a
Mendelian disease if mutated

• Independent from annotation and features

• Expected and observed site-frequency
spectrum of a given stretch of sequence

(19)

CDTS • Identify constrained non-coding regions in the
human genome and deleteriousness of variants

• Independent from annotation and features. Uses
k-mers

• Expected and observed site-frequency
spectrum of a given heptamer

(8)
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progress (23). To illustrate the complexity of these pipelines, we
present a number of case studies from our own and others’
work.

The most routinely called type of variations are SNVs and
minor structural variation which are reliably returned by stan-
dard calling pipelines with error rates< 1% for germline sam-
ples. For example, the widely used GATK uses logistic
regression to model base errors, Hidden Markov models to com-
pute read likelihoods, and naive Bayes classification to identify
variants, which are then filtered to remove likely false positives
using a Gaussian mixture model with hand-crafted features
capturing common error modes (24). These techniques allow
the GATK to achieve high but still imperfect accuracy on the
Illumina sequencing platform (25,26).

While SNV can largely be called, several complex and hard-
to-call regions such as the major histocompatibility complex
(MHC) cannot be accurately called with standard pipelines. The
MHC is located on chromosome 6 of the genome and codes for
genes that are involved in the adaptive immune system. The
MHC region is highly variable, meaning that there are many dif-
ferent but also many similar alleles, making allele calling from
short-read sequencing data an extremely hard problem. As
DNA sequences in these genes are so variable on the DNA level,
Xie et al. (27) determine the type of MHC by aligning sequencing
reads to the database of known MHC alleles based on amino
acid identity to retrieve a set of candidate alleles. Out of these
candidates, an optimal allele set is determined based on solving
a discrete optimization problem using integer linear program-
ming, achieving close to perfect accuracy in four-digit typing,
which is equivalent to amino-acid identity.

Short-tandem repeats (STRs) are repeats of hyper-mutable
sequences in the human genome. While STR typing using PCR
amplification is routinely used in forensics, their repetitive na-
ture makes STRs hard to call from next-generation sequencing
(NGS) data. STRs have been associated with several diseases,
such as Huntington’s, and complex traits, making them impor-
tant for clinical applications. As strand slippage leads to errors
in DNA replication of STRs, they are also highly polymorphic.
Tang et al. (28) extract four distinct sources of information from
an alignment around an STR locus to estimate the length from
sequencing data. Reads that completely span an STR allow ac-
curate calling of alleles that are shorter than the read length
(29). Partial reads, repeat only reads and mate pairs (a set of two
reads from the same sequence fragment) spanning an STR pro-
vide individually uncertain information that Tang et al. (28)
combine into a posterior distribution to infer STR lengths.

The telomeres are long stretches of highly repetitive and
thus hard to align sequences that make up the tips of our chro-
mosomes. Not only do they show variation between different
individuals, but they also undergo somatic changes during our
lifetime. Especially, shortening of telomeres has been associ-
ated with several aging-related disorders, including cancer.
While aligning and calling of telomeric sequence variation is
still an unsolved problem, methods have been developed to get
a statistical estimate of the length of the telomeres. For exam-
ple, Lippert et al. (30) derive an estimate of telomere length by
determining the fraction of sequencing reads that are likely
telomeric. Telomeres are associated with long stretches of re-
peats made up of a number of six-nucleotide patterns, most
prominently of CCCTAA, making repeated occurrence of this
pattern a distinctive feature for classification. Lippert et al. (30)
tune a classification threshold based on DNA reference samples
that have been repeatedly sequenced using identical
technology.

Another type of important somatic variation that is not in-
cluded in standard calling pipelines is sex chromosome mosai-
cism. During our lifetime, a fraction of our cells loses one copy
of the sex chromosomes, keeping only a single X chromosome.
That is, females lose one X chromosome copy and males lose
their Y chromosome. Loss of Y chromosomes has been associ-
ated to an increased risk for Alzheimer’s disease. As the multi-
plicity of a given sequence influences that amount of
sequencing reads proportionally, Lippert et al. (30) estimate the
sex chromosome copy number (proportional to the degree of
mosaicism) from the read depth obtained in the sex chromo-
somes in contrast to the read depth of the autosomes, as ob-
served in a sequence alignment. The algorithm also requires
careful modeling of confounding factors that affect the esti-
mate. For example, sequencing depth is strongly influenced by
the GC content, which is treated using non-parametric esti-
mates of read depth of each region given its GC content.

The reliable identification of structural variation through
short-read sequencing remains a challenge (31). Many algo-
rithms detecting small and large deletion and insertions have
recently been developed (https://omictools.com/structural-vari
ant-detection-category; date last accessed April 4, 2018). Such
callers mainly exploit split-read mapping or paired-end read
mapping; however, there is still no single caller that can be con-
sidered a community standard, and increasingly the various
callers are combined in integrated pipelines (32). Here, we dis-
cuss SV2 (33) to showcase recent work in this field. SV2 is a
machine-learning algorithm for genotyping deletions and tan-
dem duplications from paired-end whole genome sequencing
data. It serves to integrate variant calls from multiple structural
variant discovery algorithms into a unified callset with low rates
of false discoveries and Mendelian errors with accurate de novo
detection. One advantage of SV2 to comparable structural vari-
ant detection solutions is the ability to genotype breakpoints
overlapping repetitive elements using read depth.

Overall, this section underscores the multiplicity of solutions
that are currently available to solve complex regions of the ge-
nome using various modeling and machine-learning
approaches. It shows, however, that the complexity of the data
may need more advanced analytical solutions that are less reli-
ant on expert knowledge.

Deep Learning
Deep learning is evolving from machine-learning systems, in
particular from artificial neural network algorithms. Its interest
for high-throughput biology is clear: it allows to better exploit
the availability of increasingly large and high-dimensional data
sets by training complex networks with multiple layers that
capture their internal structure (1).

One main application of deep learning in genomics has been
in functional genomics: predicting the sequence specificity of
DNA and RNA-binding proteins and of enhancer and cis-regula-
tory regions, methylation status and control of splicing. More
recently, there have been applications for applied genomics in
particular for base calling, and for population genetics. An over-
view of the exploding field of applications and resources in pre-
sented in Box 1. The box highlights approaches to studying
germline DNA. There are also important developments in prote-
omics, RNA and single-cell analytics that are not covered in this
review.

In contrast to the methods discussed so far, where heteroge-
neous pipelines are built from several models that are each en-
gineered and optimized on its own, the aim of deep learning is
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to build a single model by hierarchically connecting multiple
building blocks together. This way, any involved model parame-
ters can be ‘learned’ from data in an end-to-end fashion. Here
we review some of the standard building blocks used in deep
learning tools and some of the applications of deep learning in
regulatory genomics, variant calling and prediction of pathoge-
nicity of sequence variants. Box 2 includes a glossary of terms
proper to this field.

Deep learning for DNA sequences

Instead of manually specifying sequence features prior to learn-
ing, convolutional neural networks (CNNs) extract informative
sequence patterns known as position-weight matrices (PWMs)
that summarize nucleotide frequencies at each position during
model training. Repeatedly occurring sequence patterns boost

the weight of any PWM that increases prediction accuracy.
These are applied to every position on the sequence in a sliding
window. By hierarchically stacking multiple convolutional
layers, using the PWM scores as input to the next layer, CNNs
learn dependencies between neighboring PWMs and combine
them into higher-level sequence patterns to improve predictive
power. A common alternative to the use of convolutional filters
is to apply sequential models, in particular recurrent neural net-
works (RNNs), which originally had been developed for time se-
ries. Here, each position in the sequence corresponds to a single
time step. While PWMs only capture short sequence patterns,
recurrent layers can also capture dependencies between se-
quence elements that are further apart using a mechanism
called memory and implemented by gating functions, such as
in the long short-term memory (LSTM) unit (34). As there is no
temporal direction in DNA sequences, recurrence typically is

Box 1. Deep-learning applications in genomics (DNA)

Adapted and expanded from https://github.com/hussius/deeplearning-biology; date last accessed April 4, 2018 and Jones et al.

(43)

CNNs for DNA-binding prediction from sequence
DanQ: a hybrid convolutional and recurrent deep neural network for quantifying the function of DNA sequences. Uses convolu-
tion layers to capture regulatory motifs, and a recurrent layer to discover a ‘grammar’ for how these single motifs work together.
Based on Keras/Theano.
Basset—learning the regulatory code of the accessible genome with deep convolutional neural networks. CNN to discover regula-
tory sequence motifs to predict the accessibility of chromatin. Accounts for cell-type specificity using multi-task learning.
DeepBind and DeeperBind—predicting the sequence specificities of DNA- and RNA-binding proteins by deep learning. Based on
ChIP-seq, ChIP-chip, RIP-seq, protein-binding microarrays and others. Deeperbind adds a recurrent sequence learning module
(LSTM) after the convolutional layer(s).
DeepMotif—visualizing genomic sequence classifications. Predicting binding specificities of proteins to DNA motifs. Makes use of

a convolutional layers with more layers than the DeepBind network.
Convolutional neural network architectures for predicting DNA–protein binding. Systematic exploration of CNN architectures for
predicting DNA sequence binding using a large compendium of transcription factor data sets.

Predicting enhancers, 3d interactions and cis-regulatory regions
PEDLA: predicting enhancers with a deep-learning-based algorithmic framework. Predicting enhancers based on heterogeneous
features from (e.g.) the ENCODE project using a deep learning, HMM hybrid model.
DEEP: a general computational framework for predicting enhancers. Predicting enhancers based on data from the ENCODE
project.
Genome-wide prediction of cis-regulatory regions using supervised deep-learning methods. toolkit based on the Theano) for ap-
plying different deep-learning architectures to cis-regulatory elements.
FIDDLE: an integrative deep-learning framework for functional genomic data inference. Prediction of transcription start site and
regulatory regions. FIDDLE stands for Flexible Integration of Data with Deep Learning that models several genomic signals using
convolutional networks (DNase-seq, ATAC-seq, ChIP-seq, TSS-seq, RNA-seq signals).

DNA methylation
DeepCpG—predicting DNA methylation in single cells. Neural network for predicting DNA methylation in multiple cells.
Predicting DNA methylation state of CpG dinucleotide using genome topological features and deep networks. Uses a stacked
autoencoder with a supervised layer on top of it to predict whether CpG islands are methylated.

Variant callers, pathogenicity scores and identification of genomic elements
DeepVariant—a variant caller in germline genomes. Uses a deep neural network architecture (Inception-v3) to identify SNP and
small indel variants from next-generation DNA sequencing data.
DeepLNC, a long non-coding RNA prediction tool using deep neural network. Identification of lncRNA-based on k-mer profiles.
evoNet—deep learning for population genetic inference [code][paper]. Jointly inferring natural selection and demographic history
DANN. Uses the same feature set and training data as CADD to train a deep neural network
DeepSEA—predicting effects of non-coding variants with deep-learning-based sequence model. Models chromatin accessibility
as well as the binding of transcription factors, and histone marks associated with changes in accessibility.
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applied in both directions. It is possible to combine CNNs and
RNNs. For example, it is possible to apply a recurrent layer to
the output of a convolutional layer to capture higher-order se-
quential dependencies between PWM patterns.

Accounting for context using vector representations

In deep learning, everything is a vector. First developed to encode
topics related to words in classification of text, vector

representations encode the properties (topics) of a set of relevant
contexts (words) that provide important context information for
each learning instance (text). For example, in a model that pre-
dicts transcription factor binding to a DNA sequence (instance) in
different tissues (words), we may want to account for tissue spe-
cificity of binding using vector representations. To predict the
probability that a transcription factor binds in the context of a
given tissue, we would condition the model on the tissue by us-
ing the corresponding word vector as an additional input to the

Box 2. Glossary

Artificial intelligence (AI) is a subfield of computer science that aims at enabling computers to solve tasks commonly associated
with intelligence, such as reasoning, planning, learning, natural language processing or perception. While AI has been imple-
mented in the form of expert-defined rules, recent successes have been achieved by automatically inferring such rules from
training data using machine learning.

Backpropagation is an algorithm to learn the parameters in a DNN from training data. Backpropagation consists of a forward
pass, where predictions for the training data are computed based on the current parameter estimates and a backward pass,
where the prediction errors are propagated back through the network to compute an update to the parameters that improves
the predictions and reduce the error.

Convolutional neural networks (CNNs) are a class of DNNs that are most suitable for the analysis of spatial data such as images
(2D) and sequences (1D) and aim at extracting local patterns such as edges or short sequence patters in the input by sliding a
set of filters over the input sample. Instead of requiring the user to design task-specific filters, the filters in CNNs can be learned
from training data using backpropagation. As the output of any convolutional layer, representing the occurrence of a feature at
any location in the input, can again be interpreted as an image or sequence, CNNs can hierarchically utilize convolutions to ex-
tract complex patterns from the input. When applied to DNA sequences, a convolutional filter can be interpreted as position-
specific weight matrix, a commonly used representation of motifs in functionally related sequences.

Deep learning or deep neural networks (DNNs) refer to ML methods based on connected layers of artificial neurons, inspired by
neurons in the brain, that process an input signal using parameterized functions that are transmited from one neuron to an-
other. By connecting multiple layers, DNNs can compute complex non-linear functions of the input.

Hidden Markov models (HMM) are probabilistic models for sequences, where the sequence elements are modeled in mixture
models with hidden states that are dependent between neighboring positions.

An integer linear program is a mathematical optimization problem in which some of the variables are restricted to be integers,
which makes determining the solution NP complete.

The posterior distribution is the probability distribution that models an uncertain quantity, conditioned on any relevant empiri-
cal data.

Long short-term memory (LSTM) units are building blocks in RNNs too. A common LSTM unit is composed of a cell, an input
gate, an output gate and a forget gate. The cell is responsible for ‘memorizing’ values over arbitrary sequence intervals.

Machine learning (ML) refers to a set of methods that give omputers the ability to ‘learn’” the solutions to a task by progressively
improving performance on training data.

Logistic regression is an ML model for classification that is for a sample to predict the most likely out of a finite number of clas-
ses given its input features. Based on a linear function of the input features, which is learned from the training data, the logistic
model estimates the probabilities of each output class.

(Multinomial) Mixture models are hierarchical probabilistic models to infer sub-groups in a data set, without a training data set
with sub-group identity information.

Multi-task learning refers to ML models in which multiple related learning tasks are solved simultaneously, while exploiting
commonalities between tasks, for example by sharing convolutional filters. Doing so can improve accuracy, especially for tasks
where training data are limited for individual tasks, but where large data sets exist for closely related tasks.

Naive Bayes refers to a simple probabilistic classifier based on applying Bayes’ theorem while making independent assumptions
between the features.

Recurrent neural networks (RNNs) are a class of DNNs where neighboring neurons are connected to form a directed graph that
processes a signal along a sequence. To enable relevant signals to be transmitted over longer distances in the graph, gating
mechanisms such as LSTM have been developed to regulate the flow of information.

Support vector machines (SVMs) are ML models for classification. SVMs can perform a non-linear classification by implicitly
mapping the input features into higher-dimensional feature spaces where they may be separated using a linear function.
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prediction. Thus, word vectors enable us to train a single model
using observations from different contexts, thus re-using the
same sequence patterns for multiple prediction tasks.

Combining multiple related learning tasks

Genomic sequences often exert different behavior under differ-
ent contexts. For example, the same sequence pattern may at-
tract transcription factors differently in different tissues.
Consequently, it is desirable to account for tissue-specific behav-
ior by treating different tissues as separate learning tasks. Yet, it
is desirable to re-use learned sequence patterns between the dif-
ferent tasks. These can be multi-task architectures that share
parts of the network, including sequence features extracted from
convolutional filters, between tasks, feeding these into separate,
task specific, layers. During training, examples from all tasks are
shown to the model, which updates any shared parameters and
the corresponding task-specific parameters.

Visualizing and understanding deep models

As deep models use features that have been detected in large
data sets instead of expert-derived ones and apply the features
in a highly non-linear way, they are often seen as black boxes.
Therefore, it is an interesting question to interpret the features
that are being detected. For example, given a sequence pattern,
we can ask the question: ‘how the prediction derived from the
network is influenced by each individual letter in the se-
quence?’ For example, to compute how much the prediction
would change if we replaced a particular letter in the input se-
quence, we may compute the gradient of the network with re-
spect to the corresponding letter. If we performed this with
each letter, we get a so-called saliency map (35). The general
problem of identifying the key input data used to make a predic-
tion, known as the attribution problem, is a very active area of
machine-learning research (e.g. see http://www.unofficialgoogle
datascience.com/2017/03/attributing-deep-networks-predic
tion-to.html; date last accessed April 4, 2018 and (36)). DeepLIFT
(Deep Learning Important FeaTures) (37), is a method for
decomposing the output prediction of a neural network on a
specific input by backpropagating the contributions of all neu-
rons in the network to every feature of the input. DeepLIFT has
been applied to simulated genomic data, and show significant
advantages over gradient-based methods.

Selected Deep-Learning Algorithms
Deepbind

Deepbind predicts transcription factor binding affinity based on
sequence motifs learned in the form of convolutional filters.
The input to the convolutional layer is the sequence and the
output is a prediction of whether the prediction factor binds or
not. Training this model thus jointly determines suitable se-
quence motifs as well as a classifier for transcription factor
binding. Alipanahi et al. (38) used publically available sequence
data, spanning thousands of public protein-binding microarray
(PBM) data, RNAcompete, ChIP-seq and HT-SELEX experiments
to train a separate model for each of 538 distinct transcription
factors and 194 distinct RNA binding proteins. At the time,
Alipanahi et al. outcompeted all competitive models in several
comparisons, including the DREAM5 challenge. Hassanzadeh
and Wang (39) further improved performance by feeding convo-
lutional filters into a recurrent layer. Qin and Feng (40) jointly
modeled binding for different transcription factors specific to

different cell lines by learning dictionaries for each of transcrip-
tion factors and cell lines, respectively.

DeepVariant

Variant calling is a process to identify differences between an in-
dividual’s genome from a reference genome based on NGS data.
Variant calling is challenging because there are many signals
from the NGS data that are involved in making the decision,
which makes the process of writing rules difficult for humans.
Worse, many exogenous factors, such as the variety of sequenc-
ing technologies and library preparation protocols, affect the un-
derlying distribution of signals obtained. DeepVariant (23)
approaches this decision-making problem by providing these sig-
nals to a deep-learning architecture (Inception-v3) and using
standard deep-learning training regimes to let it learn directly
from data. This bypasses the need to manually inject knowledge
or craft rules, and makes it easier to generalize to much more
data with much more variety. DeepVariant encodes information
from the sequencing instrument data in the form of multi-
channel tensors. In the first version that won the performance
award in the 2016 PrecisionFDA Truth challenge, the data repre-
sentation used only three channels, and so could be encoded in a
standard (RGB) image. In the latest release on GitHub [link],
DeepVariant extends the representation to many more channels,
encoding the information about the bases, the quality of the ba-
ses and the mapping, whether a read supports alt (alternate
base) or whether it matches ref (reference base), among others in
each channel. This newer representation, along with a more ro-
bust training scheme, allows DeepVariant to be even more accu-
rate. We observe a lower number of FN (False Negative) and FP
(False Positive) calls by comparing DeepVariant 2016 version and
the latest release version: FN for Indel: 4175 to 2384; FP for Indel:
2839 to 1811; FN for SNV: 1689 to 735; FP for SNV: 832 to 363. It
also brings the latest DeepVariant model to the highest SNV and
Indel performance compared with all submissions in the 2016
PrecisionFDA Truth challenge. DeepVariant is a powerful testi-
monial for deep learning: variant calling is one of the most well-
studied areas in bioinformatics. Despite substantial efforts, in re-
cent years the improvement on accuracy has only been incre-
mental. Many researchers believe that we might have reached
the best accuracy we can do on this problem, but DeepVariant
has demonstrated that it is still possible to achieve even higher
accuracy with deep-learning techniques.

Base calling for other technologies, such as those based on
nanopore sequencing, also make use of deep RNNs. DeepNano
is an open-source base caller for the MinION nanopore sequenc-
ing platform (41). The program Chiron couples a CNN with an
RNN and a Connectionist Temporal Classification (CTC) decoder
to directly translate raw nanopore signal to DNA sequence (42).

DeepSEA

Accurate sequence-based prediction of chromatin features re-
quires a flexible quantitative model capable of modeling com-
plex dependencies. The development of DeepSEA (20) is based
on three convolution layers. DeepSEA differentiates from previ-
ous approaches to functional effects of non-coding variants
(presented in Table 1), by predicting, with single-nucleotide sen-
sitivity, the effects of non-coding variants on transcription fac-
tor binding, DNA accessibility and histone marks of sequences.
Among the key features of the approach are the use of a wider
sequence context, as sequences surrounding the variant
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position may determine the regulatory properties of the vari-
ant—whereas previous studies for transcription factor binding
prediction have focused on small sequence windows directly
associated with the binding sites, DeepSEA uses a context se-
quence size of up to 1 kb to improve the performance of the
model. A second feature is the deployment of an ‘in silico satu-
rated mutagenesis’ approach that analyzes the effects of each
base substitution on chromatin feature predictions, thereby
identifying which sequence features are most informative for a
specific chromatin effect prediction. Finally, the authors trained
boosted logistic regression classifiers for predicting Human
Gene Mutation Database-annotated non-coding regulatory mu-
tations, non-coding eQTLs and non-coding trait-associated
SNVs identified in GWAS studies on the basis of predicted chro-
matin effects and evolutionary features.

Conclusions
Genomics, like many fields in biomedical and computational bi-
ology, is enjoying exponential growth of data generation. Its
analysis is transitioning from descriptive statistics and data
modeling through machine learning, and increasingly, through
deep learning. This evolution is all about automating pipeline
generation: the underlying principle is the switch from expert-
based processes toward more and more automated data-driven
and learned approaches.

There are many settings in which studies of DNA sequence
variation will benefit from deep learning and related
approaches beyond the inherited germline DNA that we empha-
sized in this review. For example, mtDNA analysis, mosaicism
beyond the sex chromosomes, phasing genomes and de novo
assembly, heterogeneous single-cell settings, and especially tu-
mor genomes and somatically acquired DNA sequence muta-
tions/variations—all of which pose unique challenges.

However, there are limits to deep learning that should be
taken into consideration given the broad excitement for these
new approaches: it requires large amounts of data that may not
be available when working with experimental biological sys-
tems, it is limited in the capacity to discern mechanistic compo-
nents, and can reflect biases and inaccuracies inherent in the
data fed to them.
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