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Abstract

Motivation: Many high-throughput methods produce sets of genomic regions as one of their main

outputs. Scientists often use genomic colocalization analysis to interpret such region sets, for example

to identify interesting enrichments and to understand the interplay between the underlying biological

processes. Although widely used, there is little standardization in how these analyses are performed.

Different practices can substantially affect the conclusions of colocalization analyses.

Results: Here, we describe the different approaches and provide recommendations for performing

genomic colocalization analysis, while also discussing common methodological challenges that

may influence the conclusions. As illustrated by concrete example cases, careful attention to ana-

lysis details is needed in order to meet these challenges and to obtain a robust and biologically

meaningful interpretation of genomic region set data.

Contact: geirksa@ifi.uio.no

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The advent of high-throughput sequencing technologies has dramat-

ically increased our understanding of the functional elements that

are embedded in the genome and of the biological functions they en-

code (Goodwin et al., 2016). The human genome is no longer an

unannotated string of letters with little metadata, as it was in 2001

(Lander et al., 2001), but highly annotated sequences with thou-

sands of annotation layers that help us understand which parts of

the genome may have which biological functions and cell type spe-

cific activity. Over the past decade, maps of genomic features such

as protein-coding genes, conserved non-coding elements, transpo-

sons, small non-coding ribonucleic acid (RNA), large intergenic

non-coding RNAs and epigenomic marks (e.g. chromatin structure,

and methylation patterns) have been established (Lander, 2011). An

important research direction in biomedical research after the initial

characterization, has been the study of the interplay of various func-

tional elements in many biological processes (Heinz et al., 2015;

Luco et al., 2011; Makova and Hardison, 2015; Portela and

Esteller, 2010). The search for connections and associations between

different types of regulatory regions can provide a deeper under-

standing of the cellular processes (Birney et al., 2007), but it requires

suitable tools and tailored analytical strategies.

Functionally related genomic features—be it two transcription

factors that jointly regulate their target gene, or different epigenomic

marks indicative of enhancer elements—often co-occur within a gen-

omic sequence. One important way to detect relevant evolutionary

or mechanistic relationships between genomic features is therefore

to search for significant overlap or spatial proximity between these
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features. The commonly employed approaches that search for such

significant overlap exploit the fact that the genomic features that are

associated either directly or indirectly will not occur independently

along the genome. The reference genome enables the detection of

spatial proximity by acting as a central entity to interlink the

mapped genomic features (International Human Genome

Sequencing Consortium, 2004). Each genomic feature can be repre-

sented as a set of regions on the reference genome map using

chromosomal coordinates (e.g. chr1: 1–1000), which are typically a

range of numbers denoting the start and end positions of the se-

quence nucleotides on a specific chromosome. Many high-

throughput sequencing experiments result in sets of such genomic

regions as their main output (often referred to as genomic intervals),

and the lists/collections of genomic regions are commonly referred

to as genomic tracks or region sets. Arithmetic set operations are

performed between genomic tracks to determine the amount of

overlap or spatial proximity, followed by statistical testing to assess

whether or not the observed overlap or spatial proximity is likely to

be due to chance. Such analytical approaches are generally referred

to as co-occurrence or colocalization analysis of genomic elements

or alternatively as region set enrichment analysis. Throughout this

manuscript, we refer to this methodology as colocalization

analysis.

Colocalization analyses of genomic features involve computa-

tionally intensive genome arithmetic operations and rigorous statis-

tical testing. The analyses may utilize a wide range of curated

functional annotations that are often taken from public datasets

(e.g. Supplementary Table S1). Several generic and specialized tools

are available to perform colocalization analysis, as libraries for spe-

cific programming languages, as command line tools, or as web-

based tools with varying levels of functionality and comprehensive-

ness. Specifically, tools are available to (i) generate hypotheses by

comparing a region set against public data [e.g. Bock et al. (2009),

Halachev et al. (2012) and Sheffield and Bock (2016)], (ii) perform

genome arithmetic operations [e.g. Lawrence et al. (2013) and

Quinlan and Hall (2010)], (iii) visualize the intersecting genomic

regions [e.g. Conway et al. (2017) and Khan and Mathelier (2017)]

and, (iv) perform statistical testing of colocalization between a pair

of tracks [e.g. Favorov et al. (2012) and Sandve et al. (2010)] or be-

tween multiple tracks [e.g. Layer et al. (2018) and Simovski et al.

(2017)]. For an overview of the multitude of tools available for

colocalization analysis, see reference (Dozmorov, 2017). The exist-

ing tools follow different concepts and workflows, and there is add-

itional variation arising from the setup and parameter choices that

the user makes when using these tools. These differences can strong-

ly influence the conclusions. Colocalization analysis is in some cases

used for confirmatory analysis, where the establishment of an asso-

ciation is in itself the primary investigational aim. But perhaps more

common is the use of colocalization analysis in an explorative fash-

ion, serving to generate hypotheses that are afterwards followed up

by tailored experiments and computational analyses. While false

positives are less of a scientific problem when colocalization analysis

is used in an explorative phase, it may make the analysis indiscrim-

inate and thus invalidate its main purpose of guiding subsequent ex-

perimental and computational investigations in fruitful directions.

Thus, with a focus on avoiding false findings, in the following sec-

tions, we point out the methodological challenges of statistical

colocalization analysis, provide runnable examples that highlight

the issues, and survey existing ways to handle these challenges. The

sections are presented as recommendations on best practices, start-

ing with data representation, continuing through statistical testing

and ending with some guidance on the interpretation of results.

2 Make sure that the trivial aspects of data
representation are handled correctly

The sequence coordinates of any two reference genome builds may

differ substantially (Kanduri et al., 2017). Similarly, the coordinates

of genomic regions differ depending upon the indexing scheme used

(0-based indexing or 1-based indexing; see Fig. 1a). To avoid errone-

ous genome arithmetic operations, it is important to make sure that

the genome coordinates are compatible.

Continuous data associated with genomic sequences is often dis-

cretized into a set of high-valued genomic regions before analysis [as

in e.g. peak calling of chromatin immunoprecipitation sequencing

(ChIP-seq) data (Zhang et al., 2008)]. Since discretization reduces

information (see an example in Fig. 1b), using the original continu-

ous signal in statistical testing has the potential to improve statistical

power. Both generic (Stavrovskaya et al., 2017) and technology-

specific [e.g. Chen et al. (2015) and Shao et al. (2012)] methodolo-

gies have been proposed to correlate continuous signal of genomic

tracks. Another solution to avoid the loss of data due to threshold-

ing, is to incorporate some form of uncertainty associated with gen-

omic regions (e.g. weights, P-values) into the descriptive measure of

colocalization.

In certain analysis scenarios (e.g. when computing distances be-

tween genomic features), genomic regions may be represented by

their start-, end- or mid-point, or may be expanded to include

(a)

(b)

(c)

Fig. 1. (a) Examples of coordinates of a sequence of nucleotides on zero-

based and one-based genome coordinate systems. The brackets represent

closed while parentheses represent open intervals. Being closed at a position

represents the inclusion of that position in the genomic interval, whereas

being open represents the exclusion of that position. (b) Example of discretiz-

ing continuous value to call genomic intervals. Here, although both profile-A

and profile-B look visually similar, one of the genomic intervals in profile-B

was not called because of marginally falling below a chosen threshold or

owing to algorithm parameters, resulting in the exclusion of that region from

further analyses. (c) Example of variations when computing distances from

start, midpoint or end coordinates. Here, although both the points are 1 kb up-

stream of the genomic intervals, because of the differences in the length of

genomic intervals the distances largely differ (here almost 2-fold) when com-

puted to the midpoint or end
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flanks. The choices of a reference point (start, midpoint or end), and

flank sizes will provide alternative perspectives about the genomic

features of interest (e.g. see Fig. 1c). Therefore, if reduction of trans-

formation of data is required, one has to be conscious about their

effects and interpretation.

Examples: https://hyperbrowser.uio.no/coloc/u/hb-superuser/p/

data-representation-1

3 Avoid using a single fixed resolution if there is
no good biological reason for it

Deoxyribonucleic acid (DNA) sequence properties and genomic fea-

tures are often scale-specific, and they may thus appear differently

when measured at different scales (Supplementary Fig. S1). The

strength of statistical association observed between genomic features

may thus vary when observed across multiple scales. To avoid mis-

conceptions, the choice of scale ought to reflect the intrinsic scale at

which the biological phenomena occur. Therefore, analysis of scale-

specific events should either be guided by a knowledge-driven choice

of the resolution or through rigorous investigation at multiple

scales.

A common strategy in the analysis of genomic elements is to

apply binning of genomic elements into multiple windows of prede-

fined size, in order to obtain window-level statistics. However, it is

known that the density of functional elements varies along the chro-

mosomes. For example, focused genetic variation such as single nu-

cleotide polymorphisms (SNPs) and insertions or deletions (InDels)

occurs on a scale of a single base or a few bases; transcription factor

binding sites determined through ChIP-seq typically span �100

bases; RNA transcripts and broad genetic variation, like copy num-

ber variations (CNVs), typically occur on a scale of kilo bases; and

recombination regions can span several megabases. A priori selec-

tion of window size is thus a reasonable approach when prior know-

ledge exists about the resolution of the genomic event of interest.

Without prior knowledge, however, using a single fixed window

size can lead to a loss of statistical power and misleading

conclusions.

For many research questions, the biological resolution of a gen-

omic event of interest is not known. Therefore, an alternative to

drawing conclusions based on an arbitrary window size could be to

analyze the correlations between tracks at multiple scales to identify

the scale-specific relationship between biological processes of inter-

est. A few studies have previously tackled this problem by employing

techniques routinely used in image processing and segmentation.

For example, wavelet-transforms have been used to transform the

observed signal intensity in a way that captures the variation in the

data at successively broader scales. By correlating the transformed

signal at each scale, the scale-specific interactions between biological

processes of interest have been evaluated (Chan et al., 2012; Liu

et al., 2007; Spencer et al., 2006). With the same objective, multi-

scale signal representation, which is routinely used in image segmen-

tation, has been applied to genomic signals to convolve the genomic

signal into segments at successive scales to capture the unknown

scale variations of the signal (Knijnenburg et al., 2014). Recently,

Gaussian kernel correlation has been proposed to correlate continu-

ous data generated in genomics experiments (Stavrovskaya et al.,

2017). Although the method was intended for correlating continu-

ous data, the underlying idea is to avoid binning of continuous data

into windows of arbitrarily-chosen size. The overarching theme of

all these methods is to smoothen the observed signal, capturing the

regional variation and subsequently to perform spatial correlation.

This is equivalent to assessing correlations at several different scales

that are successively broader.

Overall, a reasonable choice of window size would depend on

the research question, and the choice should be based upon the type

of genomic feature under study. Similar ideas are appropriate when

choosing a reasonable length of flanking sequences where previous

experimental evidence is not available.

Examples: https://hyperbrowser.uio.no/coloc/u/hb-superuser/p/

predefined-resolution

4 Choose an appropriate test statistic and a
suitable measure for effect size

In colocalization analysis, the pairwise relation of two tracks is sum-

marized using a test statistic. The test statistics used in colocalization

analyses are based on counts, distances or overlap. Examples of

these metrics include the total number of intersecting genomic inter-

vals between two tracks (counts), the total number of bases overlap-

ping between the intersecting elements of two tracks (overlap) and

some form of distance (average or geometric) between the closest

elements. It has even been proposed to exchange the overlap/dis-

tance value of each individual genomic interval with a P-value that

denotes its proximity to the genomic elements of a second track

(Chikina and Troyanskaya, 2012). Adding P-values in this way will

in effect scale the per-interval proximity values by what distance

would be expected by chance, and allow subsequent direct interpret-

ation of the distribution of computed P-values. While most of the

existing colocalization analysis tools based on exact tests use a count

statistic, Monte Carlo (MC) simulations-based tools make use of

other test statistics as well.

The precise formulation of a research question reflects a specific

choice of test statistic in MC simulation-based methods. As an ex-

ample, let us consider the choice of test statistic when investigating

whether genome-wide association study (GWAS) -implicated SNPs

preferentially lie in the proximity of annotated genes. One way to

formulate this question is as follows: do the SNPs fall inside protein-

coding genes more frequently than expected by chance? This formu-

lation would suggest using a count-based test statistic. However,

one could also ask whether SNPs are preferentially located in gene-

rich regions. One possible test statistic could then be based on

expanding the SNP locations with large flanks on both sides, fol-

lowed by an assessment of whether the overlap between these

expanded regions and genes is higher than expected by chance. A

third possibility is to ask whether the SNPs are generally close to

genes. The test statistic could then be based on determining the

closest gene of each SNP, computing the geometric or arithmetic

average of these distances (respectively emphasizing immediate or

moderate proximity), and assessing whether this average is differ-

ent from what would be expected by chance. Notably, all the

above formulations have an asymmetric aspect, meaning that the

observations and the conclusions may change depending upon the

direction of analysis. The inverse formulations—whether genes fall

inside SNPs, whether genes are located in SNP-rich regions or

whether genes are generally close to SNPs—appear less meaningful

biologically.

In all the above formulations, the test statistic describes the

relation of interest. However, in the majority of cases, the test

statistic does not serve as an effective metric to understand the size

of the effect. For instance, a statistically significant overlap of

1000 base pairs between a pair of tracks does not directly reveal

whether or not the observed overlap is of sufficient magnitude that
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it could plausibly have biological consequences. Therefore, certain

descriptive measures can be used to quantify effect size, supporting

biological data interpretation. A widely used measure of effect size

is the ratio between the observed value of the test statistic

compared to the expected value (typically as a ratio of observed to

expected).

Examples: https://hyperbrowser.uio.no/coloc/u/hb-superuser/p/

test-statistic

5 Remember that all statistical tests are limited
by the realism of the assumed null model

Statistical hypothesis testing has been one of the main approaches to

assess whether the observed colocalization between two genomic

features is likely to have occurred only because of chance. In this ap-

proach, it is hypothesized that the genomic features being tested

occur independently along the genome (null hypothesis, H0), and

the probability of the observed colocalization, or something more

extreme, is computed (i.e. the P-value). The P-value is computed by

comparing the observed test-statistic (e.g. overlap, distance, counts)

with the background distribution of a test statistic, which is

obtained through a model that assumes that null hypothesis is true

(i.e. the null model). The null model should appropriately model the

distributional properties and dependence structure of the genomic

features along the genomic sequence (Fig. 2). Essentially, the aim is

to as closely as possible preserve the characteristics of each genomic

track in isolation, while at the same time nullifying any dependence

between the two genomic tracks (because they are assumed to be in-

dependent in H0).

All the statistical tests assume some form of null model that can

range from being too simplistic to being too cautious. The conclu-

sions of colocalization analysis would vary depending upon the

choice of null model, where too simplistic null models give over-

optimistic findings (Ferkingstad et al., 2015). Therefore, under-

standing the assumptions of the null model will help the researcher

to assess whether the assumptions are appropriate for their data.

This will allow the researcher to make an informed choice and to

avoid false positives.

To grasp the implications of a given null model, it is useful to

consider i) which properties of the real data are preserved in the null

model, and ii) how the remaining properties are distributed (Sandve

et al., 2010). A null model could for instance preserve the number of

elements in each track, some distributional properties of each track

(e.g. clumping tendency), or the tendency of each track to have more

occurrences in certain parts of the genome (e.g. certain chromo-

somes). Consider an example case of a colocalization test between

the binding sites of two transcription factors (TFBS). Suppose that

the null model of choice preserves the number of TFBS in each track,

but assumes that the TFBS are uniformly distributed across the gen-

ome. By understanding the assumptions of the null model, the re-

searcher can assess whether this is a reasonable assumption given

the known clumping tendencies of TFBS (Haiminen et al., 2008).

6 Make an informed choice about the most
suitable null model

The null models that are routinely used in colocalization analysis

can broadly be categorized into two types (Fig. 3). They are (i) the

general null models of co-occurrence based either on analytical de-

termination or Monte Carlo (MC) simulations, and (ii) the ones that

use an explicit set of background or ‘universe’ regions to contrast

the observed level of colocalization between a pair of genomic tracks

(using e.g. a hypergeometric distribution). This categorization is

described in detail in Box 1, together with descriptions on the statis-

tical methodologies and assumptions, and a discussion on the advan-

tages and disadvantages of each method. Below, we briefly provide

a set of recommendations to aid the choice of appropriate null

models.

6.1 Use a simple analytical test only if the typically

simple null model is acceptable
Simple analytical tests typically assume a simple null model as exem-

plified in Box 1 by Fisher’s exact test. When using simple analytical

tests, one should be conscious of whether the null model fits with

the data, and if not, how robust the test is to handle such violations.

Assuming a too simple null model has been found to result in

smaller P-values and thus more false positives (Ferkingstad et al.,

2015). A recent study has reported a good correlation between the

P-values obtained through a Fisher’s exact test (contingency table

filled with per-interval counts) and MC simulations (Layer et al.,

2018). However, the MC simulations reported in that study were

based on a simple permutation model of uniform distribution of

genomic intervals (Layer et al., 2018), which can lead to strong

over-estimation of statistical significance (De et al., 2014; Sandve

et al., 2010).

6.2 Consider using a MC-based hypothesis testing with

a realistic (non-uniform) null model
Approaches based on MC simulations are computationally intensive

and may require careful customization. As discussed in Box 1, the

degree of preservation of the data characteristics in a null model

affects the conclusions obtained through MC simulations. Previous

case studies have shown that the higher the preservation of data

characteristics in null models, the lower the statistical significance

(larger P-values) (Ferkingstad et al., 2015). However, it is also rec-

ommended to assess the consistency of conclusions with different

choices of null model to avoid being blindly conservative (De et al.,

Fig. 2. Examples of the distributional properties and dependence structure of

genomic features along the genomic sequence. Genomic tracks contain gen-

omic regions that are known to occur in clumps and with variable lengths.

Also, genomic sequences could be characterized by the distributional and

biological properties of genomic events, where stretches of sequence share

similar biological properties (as homogeneous blocks). Furthermore, multiple

genomic annotations colocalize with each other and thus any statistical asso-

ciation should disentangle the effect mediated by the colocalization of con-

founding features

1618 C.Kanduri et al.

https://hyperbrowser.uio.no/coloc/u/hb-superuser/p/test-statistic
https://hyperbrowser.uio.no/coloc/u/hb-superuser/p/test-statistic


2014). A null model that aptly captures the randomness while mim-

icking the real complex nature of the genome would be an ideal

choice. The development of such a model is far from trivial. The

genomic sequence could be perceived as a frozen state of evolution,

consisting of a large number of rare events over time. A considerable

proportion of such stochastic events may depend on the previous

rare events in evolution that might be predictable from a sequence

analysis perspective. This points to comparative genomics as a po-

tentially powerful approach to characterize the randomness of

genome.

6.3 Use analytical tests based on a set of universe

regions, if it flows naturally from the analysis domain,

but construct the control set with great care
The use of a universe of genomic regions represents both an advan-

tage and a disadvantage. As an example, when analyzing a set of

SNPs, it could be useful to define the full set of common SNP loca-

tions as universe regions. In settings where such universe regions can

be readily constructed, it simplifies the statistical assessment and

offers high flexibility in the null model, for instance by supplying a

universe set that matches the genomic track in terms of potentially

confounding genome characteristics. However, the specification of a

control set must be done with great care. Discrepancies between the

case and control sets in various properties of the data (such as gen-

omic heterogeneity and clumping) might easily in itself break the

assumptions of the analytical test, possibly leading to false positives.

Examples: https://hyperbrowser.uio.no/coloc/u/hb-superuser/p/

null-models

7 To avoid false positives use null models that
account for local genome structure

The genome organization is complex, with several interdependen-

cies. Various genomic elements and sequence properties occur along

the genome in a non-uniform and dependent fashion (Gagliano

et al., 2014; Kindt et al., 2013; Zhang et al., 2007), leading to vari-

ous local heterogeneities in the genomic sequence (see Fig. 2). A

track-level similarity measure or summary statistic may conceal such

heterogeneity. Some few tools have tried to handle this issue by com-

puting summary statistics in user-defined or fixed-size windows

along the genome. However, this approach is again problematic be-

cause of the inherent problems of predefining the window sizes (dis-

cussed above in Section 2). Statistical testing that does not preserve

the local genomic structure may lead to spurious findings of associ-

ation or enrichment (Bickel et al., 2010). As an example, consider

the case of assembly gaps in the physical maps of the genomes

Fig. 3. The statistical methods for colocalization analysis can broadly be categorized into two types depending upon whether they use (a) a general null model of

colocalization (b) or a specifically selected set of universe regions to estimate a null model (upper and lower panels). Both methods are further categorized as ei-

ther (i) analytical tests (ii) or tests based on Monte Carlo simulations (left and right panels). Upper left: analytical tests with a general null model is exemplified by

a binomial test on whether Track 1 (T1) positions are located inside Track 2 (T2) regions more than expected by chance. Upper right: General Monte Carlo-based

tests provide great flexibility in the choice of test statistics and randomization strategies (null model). Here, exemplified by a simple overlap statistic (bps overlap)

and uniform randomization of T2. Lower left: A set of universe regions limits the analysis to (here) the ‘case’ regions of T1 and a set of ‘control’ regions that could

have been part of T1. Simple counting of the overlapping regions in T1 and T2 provides the basis of a Fisher’s exact test. Lower right: The combination of uni-

verse regions and Monte Carlo-based testing is not previously presented in literature, but might be designed to combine advantages of them both. For a detailed

overview of the null model categories, see Box 1
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Box 1. Null models and statistical tests of colocalization

This section provides a categorization of statistical tests of

colocalization and the associated null models into four sub-

types, as illustrated in Figure 3. The statistical tests differ on

whether they make (a) use of a general null model of colocal-

ization or (b) a specifically selected set of universe regions to

estimate a null model. Further they can be classified as (i)

analytical tests or (ii) tests based on Monte Carlo

simulations:

(a) Colocalization analysis methods based on general null

models

(i) Analytical tests

Analytical tests are either parametric or non-parametric.

Parametric tests assume that the data is sampled from a

population that follow a particular probability distribution as

described by a set of parameters, e.g. the mean and variance

of a normal distribution. Individual genomic tracks typically

contain genomic regions of variable lengths (number of base

pairs covered) that are often dependent on each other, for in-

stance by occurring in clumps along the genome, as illus-

trated in Figure 2 (Bickel et al., 2010; Haiminen et al., 2008;

Sandve et al., 2010). Therefore, the challenge of using para-

metric tests for colocalization analysis lies in finding a para-

metric distribution of colocalization that reflects the variable

lengths, clumping nature and other dependency structures of

the genomic features. Violating the assumptions on the prob-

ability distribution invalidates the results, although it depends

on the distribution and the type and extent of violating to

what degree the results may still be informative and

interpretable.

Non-parametric tests, on the other hand, do not assume any

a priori distribution, and are thus typically more robust (but

with less statistical power). For instance, a tempting straight-

forward non-parametric test would be a Fisher’s exact test,

which is an often-used test of colocalization [e.g. Roadmap

Epigenomics Consortium et al. (2015)]. Fisher’s exact test

operates on observations allocated to two different categories,

and tracks all combinations of categories in a 2x2 contin-

gency table. When testing the significance of colocalization

between a query track and reference track, the 2x2 contin-

gency table for Fisher’s exact test typically consists of (a) co-

occurrences of query and reference track, (b) occurrences

solely for query track, (c) occurrences solely for reference

track and (d) occurrences for neither query nor reference

tracks. With such an approach, the first challenge is to quan-

tify co-occurrence in such a way as to also allow counting of

lack of occurrences. A second challenge is that the Fisher’s

exact test assumes in the null hypothesis that each counted

observation is independently allocated to the categories.

Counting coverage per base pair is a straightforward way to

meet the first challenge, but will in the usual cases lead to an

extreme dependence between observations (due to consecu-

tive base pairs being covered by the same element). It is

therefore necessary to discretize occurrence and co-

occurrence to per-interval counts or to per-fixed-window

counts, which comes with reduced resolution and still it

ignores the widespread clumping of elements in the genome.

Fisher’s exact test assumes that the column and row totals

are fixed, which in the context of colocalization analysis

means that the total number of observations (base pairs,

regions or fixed-size windows) in the query and reference sets

are preserved. However, other properties of the data like re-

gion lengths, clumping tendencies, local heterogeneity or

other confounders are not preserved in the method itself, and

such properties are likely to create dependencies in the alloca-

tion of categories to the observations.

In brief, non-parametric tests are not assumption-free, they

are still limited by whether the assumptions are met by the

data and experiment conditions.

(i) Tests based on Monte Carlo simulations

In a typical Monte Carlo (MC) simulations-based approach,

a null model will be used to repeatedly generate sample data,

which is then used to calculate the distribution of the test

statistic. The test statistic distribution will be utilized to esti-

mate the P-value empirically as the proportion of

extreme test statistics (number of test statistics that are equal to

or larger than the observed test statistic) (Fig. 3). Monte Carlo

simulations provide high flexibility in terms of selecting appro-

priate test statistics and null models (even as two mostly inde-

pendent choices), albeit at high computational cost (Fig. 4a).

The simplest form of permutation model randomly shuffles the

genomic locations along the genome, inappropriately assuming

uniformity and independence along the genome (Fig. 4b). The

definitions of other permutation models vary to a great degree

in terms of the essential geometric and biological properties

they retain from the observed data, and how the remaining

properties are randomized (Fig. 4c and d). Some of the com-

mon choices to be made when choosing a permutation strategy

are whether to preserve the interval lengths and clumping ten-

dencies (distances), whether to allow or disallow overlaps

among the shuffled locations, whether to restrict the shuffling

to certain regions of the reference sequence (for instance,

restricting by chromosomes or arms and avoiding assembly

gaps; see Fig. 2). Shuffling by allowing overlaps when the real

data does not contain overlaps, and vice versa, may result in a

null model that is not representative of the observed data. The

degree of preservation of the data properties thus obviously af-

fect the statistical conclusions.

(b) Colocalization analysis based on a specifically selected set

of universe regions

(i) Analytical tests

Another approach of colocalization analysis requires defining

a set of universe regions from the outset to estimate a null

model. The universe set is comprised of the actual ‘case’

regions in the track being queried for colocalization, in add-

ition to a set of ‘control’ regions selected somehow in neg-

ation to the case regions. Ideally, the full universe set is com-

prised of all the regions that could have possibly ended up in

the genomic tracks being queried for colocalization (Sheffield

and Bock, 2016). As an example, when testing the colocaliza-

tion of a SNP set with other annotations, the background set

could be all the SNPs covered by the technology platform,

which are all assumed to have equal probability to be

included in the SNP set of interest.

Specifically defining a universe makes it less problematic to

use analytical tests, as a carefully chosen universe makes it

easier to follow the assumptions of an analytical test. This is

exemplified in the following with Fisher’s exact test. As

1620 C.Kanduri et al.



(International Human Genome Sequencing Consortium, 2004;

Treangen and Salzberg, 2012). It has recently been shown that

ignoring to account for assembly gaps (spanning around 3–6% of

the total genome size) can lead to a higher degree of false findings

(Domanska et al., 2018). On the other hand, in a typical MC

simulations-based approach, too much preservation of the local gen-

omic structure will result in too little randomness and in poor P-

value estimates. A few tools provide the functionality to preserve the

local genomic structure either by restricting the randomizations to

regions matched by the local genomic properties [e.g. Heger et al.

(2013), Quinlan and Hall (2010) and Sandve et al. (2010)], or by

defining an explicit background set matched by local genomic prop-

erties (Dozmorov et al., 2016; Gel et al., 2016; Sheffield and Bock,

2016). In addition, a few SNP-centric tools match the genomic loca-

tions of SNPs with a selection maintaining properties such as gene

density, minor allele frequency, number of SNPs in linkage disequi-

librium (LD) and proximity to transcription start and end sites.

Although matching of the SNP locations based on the above param-

eters will not be sufficient to control the false-positive rates, match-

ing at least by the number of SNPs in LD has been shown to be

critical for appropriate statistical performance (Trynka et al., 2015).

A similar bias arises because of the intrinsic nature of some of the

technology platforms, like genotyping arrays, which vary greatly in

the number of probed markers and the physical distribution of these

within the genome. Not accounting for these differences when gen-

erating the null distributions could also lead to false interpretations.

Nevertheless, one of the main challenges of matching by genomic

properties is that it requires prior knowledge about all the genomic

properties that would otherwise confound the observations when

not appropriately matched. An alternative solution to handle this

challenge is to restrict the testing space to the local site (for example

restricting the distribution of the information elements being tested

to locally homogenous blocks as in Fig. 4d). Several approaches

have been proposed for handling this issue. The first approach

implemented in several tools, allows the users to restrict the analysis

space to user-supplied or dynamically-defined genomic regions [e.g.

in Heger et al. (2013), Sandve et al. (2010), Sheffield and Bock

(2016) and Trynka et al. (2015)]. In MC-simulations-based

(a)

(b)

(c)

(d)

Fig. 4. Examples of different permutation strategies in Monte Carlo Null models.

(a) In this illustration, let us assume that the dependence relationship between

track-A and track-B is being queried. Note the local heterogeneities within the

genomic region, where blue and green segments represent blocks of locally

homogenous regions. The red segment represents assembly gaps. Tracks A

and B are comprised of points and genomic intervals respectively, and different

colors are used to distinguish them. (b) The simplest form of permutation

model assumes uniformity and independence of genomic locations and thus

shuffles either of the track without any restrictions. Note here that one of the

points was also shuffled to an assembly gap region. (c) Another null model pre-

serves the sequence distance between the points or genomic intervals when

shuffling and avoids gaps. (d) A more conservative strategy preserves the se-

quence distance, while also shuffling to regions matched by biological proper-

ties (blue and green colors) thus preserving local heterogeneity

detailed under point (a, i) Fisher’s exact test operates on

observations that can fall within two different binary catego-

ries, here whether a region is a case or a control region and

whether it overlaps the reference track or not. Note again

that the Fisher’s exact test in itself preserves very little of the

properties of the data, only the total number of observations

in each of the two categories. Large discrepancies between

the case and control regions for other properties, like the

lengths of the regions or their clumping tendencies along the

genome, could break the null hypothesis that the observations

are allocated independently into the two categories, and thus

invalidate the test. The important issue is whether such dis-

crepancies in themselves break the null hypothesis that the

observations are allocated independently into the two catego-

ries. If for instance, the case regions are larger than the con-

trol regions, they are more likely to overlap the reference

regions only due to their length. Another example is if both

case and reference regions favour areas of open chromatin,

while the control set is selected without this in mind. In both

cases the Fisher’s exact test might correctly report signifi-

cance, i.e. that the null hypothesis does not hold, but this

will just be due to deficiencies in the experiment conditions

and the result will not be biologically relevant. Thus, the set

of control regions must be carefully selected to match the

properties of the case regions in terms of e.g. region lengths,

clumping tendencies, local genome structure and confounding

factors (as described elsewhere in this paper).

In brief, when combining an analytical test with estimating a

null model by selecting a set of universe regions, the definition

of a realistic null model is ‘outsourced’ from the method (the

statistical test) to the universe selection process carried out by

the user. If this selection is not done carefully, the results will

typically be overly optimistic and produce false positives.

(ii) Tests based on Monte Carlo simulations

The combination of Monte Carlo simulation with estimating a

null model from a set of universe regions is, to our knowledge,

not used in any published methods for colocalization analysis.

Theoretically, the combination might be used to alleviate some

of the possible issues of using analytical tests. Monte Carlo

simulation allows careful delineation of the randomization

process, allowing the preservation of properties such as region

lengths and clumping tendencies in the method itself,

simplifying the process of selecting a set of universe regions.

The obvious drawback is increased computational time.
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approaches, this functionality could be used to restrict the shuffling

of genomic intervals to user-supplied regions that are matched by

local genomic properties, whereas approaches that explicitly require

a background set of regions could construct the background set to

match the local genomic properties. While the simplest and most

typical way of restricting the analysis space is based on a discrete de-

cision of whether or not to include a given region, it is also possible

to provide a continuous (probabilistic) value for the inclusion of a

given region or base pair (Sandve et al., 2010). An alternative ap-

proach (Bickel et al., 2010) uses segmentation to segregate the local-

ly homogeneous regions of the genome. Subsequently, random

blocks of homogenous regions are subsampled within the segments

to estimate a confidence interval of colocalization. With this

method, the biologist has to make essential choices in some aspects

like the scale of segmentation, and the subsample size, that would

affect the statistical conclusions.

Examples: https://hyperbrowser.uio.no/coloc/u/hb-superuser/p/

local-genomic-structure

8 Consider potential confounding features and
control for their effects

A statistically significant correlation between two functional genomic

elements may in fact be driven by colocalization with another (known

or unknown) third genomic element or sequence property (in some

cases unknown) that was not included in the analysis (see Fig. 2).

Spatial dependencies exist for a number of genomic elements. For ex-

ample, a significant fraction of copy number variation occurs in prox-

imity to segmental duplications (Sharp et al., 2005); non-coding

variants are concentrated in regulatory regions marked by DNase I

hypersensitive sites (DHSs) (Maurano et al., 2012); DHS exons are

enriched near promoters or distal regulatory elements (Mercer et al.,

2013); higher gene density is found in GC content-rich regions (Lander

et al., 2001); and extensive pairwise overlap is often found between

the binding sites of transcription factors that co-occur and co-operate

(Zhang et al., 2006). Not testing for the association of potential con-

founding factors (e.g. GC content, overlap with repetitive DNA, length

of the genomic intervals, genotype and other genetic factors) might

thus lead to incomplete or erroneous conclusions. When the colocali-

zation of a pair of genomic features is confounded by a third genomic

feature, one could unravel the specific relations by contrasting the pair-

wise overlap statistics or enrichment scores of all the three features.

Below are two examples that handled confounding factors by

including them into the null model. Trynka et al. (Trynka et al., 2015)

used stratified sampling where the track to be randomized is divided

into two sub-tracks defined by either being inside or outside regions in

the confounding track. The sub-tracks are then individually random-

ized. However, as with any stratified analysis, this may result in the loss

of statistical power. Another example based on MC simulations

handled the potential confounding relation between two tracks by shuf-

fling the genomic locations according to a non-homogenous Poisson

process, where the Poisson parameter depended on the locations defined

in a third (or several) co-localizing genomic tracks (Sandve et al., 2010).

Examples: https://hyperbrowser.uio.no/coloc/u/hb-superuser/p/

confounding-features

9 Use additional methods to test the validity of
the conclusions

One of the major harms of false-positive findings in colocalization

analysis (or in any genomic analysis) is the triggering of futile

follow-up projects (MacArthur, 2012). When relying on the conclu-

sions of colocalization analysis to plan follow-up experiments, one

might therefore find it beneficial to have an additional validation

step to test whether some form of biases have crept into the analysis.

Such validation can be performed by simulating artificial data of

pairs of genomic tracks with no significant relationship (i.e. occur-

ring independently of each other), and check whether the devised

analytical methodology then results in a uniform distribution of P-

values. [e.g. see Fig. 1 in Storey and Tibshirani (2003) and Altman

and Krzywinski (2017)].

10 Summary and outlook

In the preceding sections, we provided guidelines for performing statis-

tical colocalization analysis, which is routinely employed to under-

stand the interplay between the genomic features. We highlighted the

methodological challenges involved in each step of the colocalization

analysis and discussed the existing approaches that can handle those

challenges, when available. The state-of-the-art methodology for stat-

istical analyses of colocalization vary in the comprehensiveness of han-

dling such challenges. Moreover, ad hoc implementations of project-

specific methodologies, which are common in biology-driven collab-

orative projects, may not necessarily handle all the challenges dis-

cussed above to a reasonable extent. Therefore, there is a need for the

development of a unified and generic methodology that handles sev-

eral of the potential shortcomings discussed here.

To avoid misinterpretation of the conclusions in colocalization

analyses, it is essential to be aware of the pitfalls discussed in this

article. In addition, as with any application of statistical hypothesis

testing, it is also highly recommended to consider the effect size in

addition to P-values. There has lately been considerable focus on the

fallacies of blindly drawing conclusions from a P-value (Halsey

et al., 2015; Nuzzo, 2014). This is particularly important in situa-

tions with very large datasets, which is often the case in genome ana-

lysis, since even a minor deviation from the null hypothesis may be

statistically significant (without obvious biological relevance). It is

thus recommended to apply measures that combine effect size and

precision, such as confidence intervals, or by filtering, ranking or

visualizing results based on a combination of P-values and their cor-

responding effect sizes (e.g. using volcano plots).

False findings in colocalization analysis could be avoided by being

aware of the accumulated knowledge on best methodological practices.

The accumulated knowledge can be categorized into two layers: (i)

First, a generic layer represented by all the guidelines detailed in this

manuscript, and (ii) second, a specific layer represented by the data

type-specific particularities. One of the main examples of such data

type-specific particularities is the genomic properties that are to be

matched when drawing samples for the null (e.g. LD for SNPs, chro-

matin accessibility levels and GC content for transcription factor foot-

printing and so on). In this example, which properties are to be

matched would depend on both the annotations being tested and can

also be unknown in several cases. In such cases, simulation experiments

as suggested in Section 9 of this article could be performed to test and

evaluate the potential biases that could inflate the false findings.

While the existing tools are focused on a simple linear sequence

model of the reference genome, there are ongoing efforts to repre-

sent reference genomes in a graph structure to better represent the

sequence variation and diversity (Church et al., 2015; Paten et al.,

2017). Novel coordinate systems are being proposed for the better

representation of genomic intervals on a graph structure (Rand

et al., 2017). As the preliminary evidence suggest that the genome
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graphs improve read mapping and subsequent operations like vari-

ant calling (Novak et al., 2017), we anticipate that the accuracy of

colocalization analyses would also improve as a consequence. The

future tool development in colocalization analyses should be tail-

ored towards handling genome graphs, pending the availability of a

universal coordinate system and exchange formats.

Another recent development is single-cell sequencing, which is

now beginning to extend beyond RNA-seq to also include other -

omics assays. It is being increasingly acknowledged that explicit

phenotype-genotype associations could be established by integrating

multiple omics features from the same cell (Bock et al., 2016;

Macaulay et al., 2017). The inherent limitation of single cell sequenc-

ing technology in generating low coverage, sparse and discrete meas-

urements (as of now) however affects the statistical power in detecting

true associations between multiple omics features. One way of over-

coming the low statistical power is by aggregating the signal across

similar functional elements (e.g. aggregating expression levels of func-

tionally similar genes) (Bock et al., 2016; Farlik et al., 2015). Apart

from overcoming the inherent challenges of single cell sequencing tech-

nology, colocalization analysis is one of the suitable ways to integrate

multiple omics features, especially due to the ripe methodologies that

can appropriately model the genomic heterogeneities.
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