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At the 2016 ASTRO annual meeting, Dr. Thomas Lynch delivered a keynote address where 

he presented the remarkable development of targeted therapy for non-small cell lung cancer 

with activating mutations in the epidermal growth factor receptor (EGFR)1. He described the 

care of one patient, whose lung cancer had an exceptional response to a first-generation 

EGFR inhibitor, but ultimately progressed with tumor cells harboring a resistant EGFR 

mutation. The patient subsequently derived benefit from a next-generation EGFR inhibitor. 

The use of small molecule inhibitors to treat EGFR mutant lung adenocarcinoma was the 

culmination of years of basic science and translational research2,3. It was also an example of 

precision medicine in oncology, where therapy is tailored to a specific gene mutation in an 

individual patient’s cancer. After the plenary session, a somewhat deflated colleague asked 

me when this kind of precision medicine would come to radiation oncology.

From one perspective, the current practice of radiation oncology already encompasses the 

central tenets of precision medicine. During treatment planning, radiation oncologists 

contour patient-specific tumor and normal tissue anatomy. Beam angles, shapes, and 

energies are designed to maximize the therapeutic ratio. Radiation oncologists select optimal 

treatment plans based on patient-specific dose-volume histograms of normal tissues and 

target volume coverage. Furthermore, individual patient and tumor characteristics factor into 

determining which patients are offered radiation therapy. For example, the treatment 

approach for a 75 year-old woman with a T1 ER+/PR+ invasive ductal adenocarcinoma may 

include lumpectomy and an aromatase inhibitor without adjuvant radiation therapy4, while 

adjuvant radiation therapy and trastuzumab would routinely be recommended to a 40 year-

old woman with Her2 amplified T1 invasive ductal adenocarcinoma after lumpectomy. 

Similarly, in prostate cancer, the treatment for individual patients can vary from active 

surveillance to radiation therapy alone to radiotherapy plus hormonal therapy depending on 

a number of clinical (age, co-morbidities, etc.) and tumor-specific (PSA, Gleason score, 

stage) parameters.
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However, from another perspective, it can feel like radiation oncology is failing to 

incorporate the tremendous advances in cancer genomics and cancer biology into individual 

patient treatments. Instead, when a patient is offered radiation therapy, the same radiation 

dose is typically delivered regardless of the molecular features of the individual cancer.

Others have recently highlighted the opportunity to widen the therapeutic window of 

radiation therapy in the era of precision medicine by combining technology-driven 

improvement of treatment conformality with biology-driven approaches5. In this issue of the 

Red Journal, authors discuss how advances in genomics6, imaging7, and “Big Data”8 can be 

leveraged to tailor radiation therapy to individual patients in an effort to improve outcomes. 

While these and other approaches to precision medicine should be tested to try to improve 

radiation therapy, the limits to personalized cancer medicine that arise from tumor 

heterogeneity9 must be appreciated to avoid what some have recently concluded is a state of 

irrational exuberance in precision medicine for cancer10.

Although the concept of performing genomic sequencing to identify an “actionable 

mutation” that can then be paired with a molecularly targeted drug remains appealing, thus 

far DNA-guided precision medicine has benefited only a small subset of cancers10. Most 

responders to date have tumors with a gain-of-function oncogenic mutation or an 

overexpressed protein driving tumor growth and maintenance. In addition to EGFR mutant 

lung adenocarcinoma and Her2 amplified breast cancer, successful applications of DNA-

guided targeted therapy include EML4-ALK positive lung adenocarcinoma, BRAFV600E 

mutant melanoma, and c-kit mutant GI stromal tumors (GISTs), which show dramatic 

responses to crizotinib, vemurafenib, and imatinib respectively. However, in this subgroup of 

cancers, most patients with macroscopic metastases develop resistance to targeted therapy 

because of intratumor heterogeneity and the selection of pre-existing resistant subclones9. 

Remarkably, the presence of a gain-of-function mutation does not always cause sensitivity to 

a molecularly targeted drug. For example, the presence of the identical BRAFV600E mutation 

in colorectal cancer does not lead to the same sensitivity to vemurafenib as in melanoma11, 

apparently because of EGFR signaling12. Furthermore, a randomized controlled trial of 

patients with metastatic cancer harboring a targetable mutation showed no difference in 

progression-free survival with matched molecularly targeted therapy compared to 

physician’s choice of treatment13. Therefore, while the success of DNA-guided targeted 

therapy in certain cancers with specific driver mutations should be celebrated, the value of 

genomic sequencing for identifying targeted therapies cannot necessarily be extrapolated to 

other cancers. The implication for precision medicine in radiation oncology is that specific 

gene mutations, gene expression patterns14, or imaging biomarkers5 should be studied to try 

to identify radiation-sensitive and radiation-resistant tumors. However, the identification of a 

useful biomarker for one type of cancer may not necessarily translate to other cancers. 

Moreover, tumor heterogeneity has the potential to limit our ability to tailor radiation 

therapy to individual patients.
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Opportunities for Precision Medicine in Radiation Oncology: Selecting 

Individual Patients for Adjuvant Radiotherapy

Many patients with non-metastatic cancer are treated with surgery and adjuvant radiation 

therapy. Randomized clinical trials have established the value of adjuvant radiation therapy 

for specific populations of cancer patients by increasing local control and in some scenarios 

overall survival. However, in these trials over half of the patients randomized to surgery 

alone achieve local control15–17. For these patients, radiation therapy adds toxicity and cost 

without any benefit. Therefore, there is an opportunity to personalize the decision to deliver 

adjuvant radiation therapy to those patients at highest risk for local recurrence. For example, 

intraoperative imaging of microscopic residual cancer in the tumor bed has the potential to 

be used to stratify patients for adjuvant radiation therapy18. Such intraoperative imaging 

technology is now being tested in early phase clinical trials19,20, and could be combined 

with clinical and/or pathological features to help guide the decision of postoperative 

radiation therapy. Just as patients with localized breast cancer are now selected for adjuvant 

chemotherapy based in part on a gene expression score, similar tests of resected breast 

cancers21 and prostate cancers22 could be used to tailor adjuvant radiation therapy to those 

patients most likely to benefit. Although these approaches for precision radiation oncology 

have the potential to refine the selection of individual patients for adjuvant radiation therapy, 

prospective testing and validation in well-designed clinical trials will be required before they 

are broadly implemented in the future.

Opportunities for Precision Medicine in Radiation Oncology: Prescribing 

Radiation Dose Based on Genetic Drivers of Individual Cancers

Genetic drivers of individual cancers also have the potential to be used for prescribing 

radiation dose. For example, the discovery that oropharyngeal squamous cell carcinomas 

associated with human papillomavirus (HPV) infection show significantly better rates of 

progression-free survival after chemo-radiotherapy than other oropharyngeal squamous cell 

carcinomas23 provides the rationale for ongoing clinical trials of treatment de-escalation for 

patients with HPV-associated head and neck cancer. HPV infection leads to the expression 

of several viral genes, including E6. The E6 protein binds to the tumor suppressor p53, 

which causes p53 degradation that in turn leads to p16 overexpression. Therefore, detecting 

expression of p16 in oropharyngeal cancer by immunohistochemistry is a surrogate for a 

tumor associated with HPV infection and identifies a subgroup of patients with better 

outcomes following chemo-radiotherapy23. While ongoing clinical investigations aim to 

identify which p16+ head and neck squamous cell carcinomas can safely be treated with less 

radiation therapy and/or chemotherapy5, HPV-associated head and neck cancer serves as a 

paradigm for using the genetic drivers of tumor development to tailor radiation therapy to 

individual patients. Another example of a driver mutation that is correlated with 

radioresistance is oncogenic KRAS in lung adenocarcinoma24 and in liver metastases25. 

Remarkably, the 1-year local control rate after stereotactic body radiation therapy (SBRT) 

for liver metastases with the combination of KRAS and TP53 mutations was only 20% 

compared to 69% for all other metastases25. These findings suggest that tumor genotype can 

be a critical determinant of local control. Moreover, these results suggest that to achieve 
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optimal rates of local control in cancers with KRAS and TP53 mutations, treatment 

intensification may be required. For example, future clinical trials for liver metastases with 

KRAS and TP53 mutations could test increasing the radiation dose, utilizing alternative 

therapy such as surgery or radiofrequency ablation, or combining radiotherapy with 

concurrent chemotherapy or a drug that blocks the Ataxia Telangiectasia Mutated (ATM) 

kinase to increase radiosensitivity26. In addition to classifying tumor radiation resistance by 

genotype, gene expression can also be utilized to define a radiation sensitivity index that has 

the potential to be used to personalize radiotherapy dose prescription27.

Challenges for Precision Medicine in Radiation Oncology

As radiation oncology moves toward a future of precision medicine based in part on 

genomic features of the tumor, it is important to recognize the challenge of tumor 

heterogeneity where one cancer is comprised of multiple subclones, each harboring different 

mutations. When a tumor is biopsied or resected, genomic analysis may reflect the mutations 

or gene expression present in the dominant clone. It is possible that targeting these pathways 

with molecularly targeted drugs and radiation therapy will increase local control and cure 

before additional heterogeneity develops at sties of metastasis. However, a recent study 

comparing paired medulloblastomas at diagnosis and recurrence after radiotherapy with or 

without chemotherapy demonstrated substantial genetic divergence of the dominant clone at 

recurrence28. This study showed that the dominant clone at recurrence arose through clonal 

selection of a pre-existing minor clone present at diagnosis28. Remarkably, only a minority 

of the mutations present in the tumor at diagnosis were retained at recurrence. Therefore, to 

optimize precision medicine in radiation oncology in the future, cancer therapy will not only 

need to be tailored to treat the dominant clone, but will also need to eradicate minor clones 

poised to seed local and distant recurrence. One approach to addressing the challenge of 

tumor heterogeneity is to combine radiation therapy with immunotherapy to try to activate 

an immune response against different subclones within a cancer. While appreciating the 

problem of tumor heterogeneity increases the challenge of applying precision medicine to 

our cancer patients, it will facilitate the development of strategies with the best chance of 

improving patient outcomes.
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