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Abstract

Benzosuberene analogues (1 and 2) and dihydronaphthalene analogues (3 and 4) function as 

potent inhibitors of tubulin polymerization, demonstrate pronounced cytotoxicity (low nM to pM 

range) against human cancer cell lines, and are promising vascular disrupting agents (VDAs). As 

such, these compounds represent lead anticancer agents with potential translatability towards the 

clinic. Methodology previously established by us (and others) facilitated synthetic access to a 

variety of structural and functional group modifications necessary to explore structure activity 

relationship considerations directed towards the development of these (and related) molecules as 

potential therapeutic agents. During the course of these studies it became apparent that the 

availability of synthetic methodology to facilitate direct conversion of the phenolic-based 

compounds to their corresponding aniline congeners would be beneficial. Accordingly, modified 

synthetic routes toward these target phenols (benzosuberene 1 and dihydronaphthalene 3) were 

developed in order to improve scalability and overall yield [45–57% (1) and 32% (3)]. Moreover, 

benzosuberene-based phenolic analogue 1 and separately dihydronaphthalene-based phenolic 

analogue 3 were successfully converted into their corresponding aniline analogues 2 and 4 in good 

yield (>60% over three steps) using a palladium catalyzed amination reaction.
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The discovery and development of small-molecule inhibitors of tubulin polymerization as 

anticancer therapeutics represents an important field of research inquiry that often draws 

structural inspiration from natural products. We have previously reported benzosuberene (1 
and 2) and dihydronaphthalene (3 and 4) analogues (phenolic and aniline-based, 

respectively) that function as potent inhibitors of tubulin polymerization and demonstrate 

enhanced cytotoxicity against a variety of human cancer cell lines [low nM to pM range 

(Fig. 1)].1–7 The structures of these molecules are reminiscent of the natural products 

colchicine and combretastatin A-4 (Fig. 1),8–10 which are potent inhibitors of tubulin 

polymerization.11 These molecules interact with the tubulin-microtubule protein system at 

the colchicine binding site (situated on the tubulin heterodimer) and inhibit microtubule 

formation. Associated with their tubulin-based mechanism of action, these compounds also 

disrupt tumor-associated vasculature and thus function as vascular disrupting agents 

(VDAs).1,3,4,12,13 Solid tumors increasingly require nutrients and oxygen provided by a 

network of vasculature, which has distinct structural and architectural differences compared 

with vasculature associated with normal healthy tissue.14 Tumor-associated vasculature is 

highly disorganized with abnormal bulges, blind ends and shunts.15 It is also characterized 

as leaky and discontinuous. Collectively, these physiological dissimilarities offer a 

therapeutic advantage for the selective targeting and disruption of tumor-associated 

vasculature with VDAs.13

Synthetic routes to each of the four key molecules (1 – 4) were previously established by our 

laboratory.1,3–6 The synthesis of compounds 1 and 3 was later reported by other groups 

utilizing different synthetic approaches to these molecular scaffolds.16–18 Our reported1,3,7 

synthetic routes towards compounds 1 and 2 were quite similar and involved a Wittig 

reaction followed by Eaton’s reagent mediated intramolecular Friedel-Crafts acylation to 

provide the six-seven fused ring system (Scheme 1). One of the critical steps in the synthesis 

of compound 1 involved microwave assisted regioselective demethylation of an aromatic 

methoxy group using an ionic liquid [TMAH][Al2Cl7] to generate the corresponding free 

phenol. In the case of amino functionalized benzosuberene 2, a nitro group was carried 

through the synthesis and ultimately reduced to reveal the aniline functionality. While these 

synthetic routes proved to be robust and reproducible, they proceeded in relatively low 

overall yield [compound 1 (12% over seven steps) and compound 2 (18% over six steps)]. 

Our original synthetic routes (Scheme 1) to the functionalized dihydronaphthalene 

analogues were somewhat laborious and involved regioselective oxidation of 6-

methoxytetralin to sequentially introduce a hydroxy group and a benzylic ketone in the case 

of phenolic-based dihydronaphthalene 3. In the case of amino-dihydronaphthalene 4, a 

regioselective nitration of 6-methoxytetralone was followed by reduction. The overall 

reported yields for the dihydronaphthalene series were also fairly low [compound 3 (8% 

over ten steps) and compound 4 (17% over three steps)]. Therefore, we sought to modify our 

methodology to improve both overall yield and atom economy. We recently described one 

example of an improved synthesis of dihydronaphthalene 3 that proceeds through an aryl 

bromide intermediate.19

Our modified methodology directed towards the synthesis of benzosuberene 1 along with 

methodology to facilitate the direct conversion of phenolic benzosuberene 1 to its 
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corresponding aniline congener 2 (in three steps using a palladium catalyzed amination 

reaction) is detailed in Scheme 2. In this revised methodology an isopropyl protecting group 

replaced the methoxy group utilized previously. The isopropyl group undergoes facile 

deprotection using fairly mild reaction conditions whereas demethylation requires relatively 

harsh reaction conditions.

Benzaldehyde 6 was prepared by protection of the free phenolic moiety of commercially 

available (and inexpensive) benzaldehyde 5 by a nucleophilic substitution reaction with 2-

iodopropane in quantitative yield. Installation of the side chain using a Wittig reaction 

proceeded in an analogous fashion to our original synthetic route with minor improvements 

in yield realized by switching the solvent from THF to DMF and carrying the Wittig reaction 

product forward to the next step prior to purification. Benzaldehyde 6, upon treatment with 

(3-carboxypropyl)-triphenylphosphonium bromide generated a mixture of alkenes (E and Z) 

that were subjected to hydrogenation to afford carboxylic acid 7 (up to 94% yield over two 

steps without the need for purification of the intermediate alkene mixture). The core 

benzosuberone 8 was obtained over two steps in a one-pot reaction. Initially, carboxylic acid 

7 was converted to its corresponding acyl chloride using oxalyl chloride. Subsequently, an 

intramolecular Friedel-Crafts acylation reaction utilizing the crude acyl chloride under mild 

Lewis acid conditions (SnCl4) generated the requisite benzosuberone 8 (80% yield over two 

steps) with preservation of the isopropyl protecting group.20 This one-pot, two-step reaction 

sequence was preferred over the one step cyclization using Eaton’s reagent (in our 

previously reported route), which resulted in concomitant (undesirable) cleavage of the 

isopropyl group (up to 30% yield of deprotected phenolic ketone, from a reaction mixture 

that included deprotected phenolic carboxylic acid). There were also practicality and safety 

considerations (due to highly exothermic work up procedure) associated with the use of 

Eaton’s reagent on large scale. Compound 9 was obtained (84% yield) through an addition-

elimination reaction between in situ generated 3, 4, 5-trimethoxyphenyllithium and ketone 8, 

which was beneficial since it obviated the need for a separate elimination reaction (through 

acidic work-up or a separate AcOH mediated elimination) of the intermediate tertiary 

alcohol that was necessary in our original procedure. Finally, target compound 1 was 

obtained (92% yield) by selective deprotection of the isopropyl group with boron trichloride 

followed by acidic (HCl) work-up.. This modified procedure facilitated the preparation of 

phenolic-based benzosuberene 1 in an overall yield of 45–57% which is approximately four 

times higher than our previously reported procedure.1,7

Compound 1 was successfully converted (via triflate 10) directly to compound 2 through an 

optimized palladium catalyzed amination reaction. Triflate 10 was initially synthesized by 

reaction of compound 1 with triflic anhydride in 92% yield. Subsequently, triflate 10 was 

converted to the target aniline-based benzosuberene analogue 2 through application of the 

well-known Buchwald-Hartwig cross coupling reaction, which we optimized for our specific 

substrate.21 Triflate 10 was heated (toluene at 110 °C) with benzophenone imine in the 

presence of catalytic palladium acetate and racemic-BINAP under basic conditions for 36 h 

in a sealed tube. The corresponding benzophenone-based imine was formed initially, which 

under acidic condition hydrolyzed to generate compound 2 in 79–93% yield (over two 
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steps). The overall yield of compound 2 from compound 1 varied from 63–86% (over three 

steps) which is three to four times higher than the original procedure (Scheme 1).

While our original synthetic methodology towards dihydronaphthalene analogues involved 

reactions that initiated from existing fused aromatic-cycloalkane or -alkanone six-membered 

ring systems,5,6 we subsequently envisioned the synthesis of dihydronaphthalene analogues 

3 and 4 through ring-forming methodology similar to that depicted in Scheme 1 for the 

related benzosuberene analogues.3,4 Unfortunately, efforts to coax the requisite Wittig 

reaction (Scheme 3) to proceed using (2-carboxyethyl)triphenylphosphonium bromide with 

NaH or KOtBu in various solvents (THF, CH3OH, and DMF) mimicking our previous 

methodology1 proved unsuccessful. The reaction was typically complicated by the formation 

of a mixture of various by-products which appeared to result primarily from decomposition 

of the Wittig salt under basic conditions. The reported yield (by Aubé and co-workers) for a 

similar type of Wittig reaction using (2-carboxyethyl)triphenylphosphonium bromide was 

also low (23%), which further confirmed our observations.22

Although we did not fully characterize each of these various decomposition by-products, 

one by-product was identified as acrylic acid, which was obtained by elimination of 

triphenylphosphine. We postulated that a possible driving force for the elimination was the 

formation of stable α, β-unsaturated acrylic acid. Therefore, to solve the problem, instead of 

using (2-carboxyethyl)triphenylphosphonium bromide, we employed (3-

hydroxypropyl)triphenylphosphonium bromide as the Wittig salt 12 (Scheme 4), which was 

readily synthesized in high yield (96%) by treatment of 3-bromo-1-propanol with 

triphenylphosphine at reflux in toluene.23 Wittig salt 12 (as its corresponding in situ TMS 

protected ylide) was reacted with benzaldehyde 6 following a similar protocol as reported.24 

The TMS group was deprotected under acidic workup conditions to generate the 

intermediate alkene (mixture of E/Z isomers) that contained a primary alcohol moiety. The 

crude alkene was subjected to hydrogenation (hydrogen gas, Pd-C catalyst) to afford 

compound 13 (92% over two steps). Alcohol 13 was oxidized (Oxone® and IBX) to its 

corresponding carboxylic acid 14 (71% yield). Cyclic ketone 15 was prepared (92% yield) 

under Friedel-Crafts acylation conditions by conversion of carboxylic acid 14 to its 

corresponding acyl chloride (using oxalyl chloride) followed by exposure to SnCl4. The 

remaining steps (Scheme 4) to prepare dihydronaphthalene analogues 3 and 4 are akin to 

that described for the synthesis of related benzosuberene analogues 1 and 2 (Scheme 2). 

Phenolic dihydronaphthalene analogue 3 was obtained in an overall yield of 32% over seven 

steps. Amino dihydronaphthalene analogue 4 was obtained directly from phenolic 

compound 3 in three steps with an overall yield of 58–72%. These modified procedures 

proved highly scalable, which facilitated the preparation of the majority of these target 

molecules and intermediates in 2–5 gram amounts without any significant change in overall 

yields.

In conclusion, a general and highly efficient synthetic route has been developed for 

functionalized benzosuberene (1 and 2) and dihydronaphthalene (3 and 4) analogues. 

Importantly, an efficient three steps procedure was optimized and employed to synthesize 

aniline-based congeners 2 and 4 directly from their corresponding phenolic-based 

counterparts using a well-established palladium catalyzed amination reaction. These 
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synthetic methodologies should be amendable to the synthesis of a wide variety of 

benzosuberene and dihydronaphthalene analogues with potential extension to other fused 

ring systems.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights:

Efficient synthetic methodology for benzosuberene and dihydronaphthalene analogues

Methodology accommodated larger scale reactions

Palladium catalyzed amination converted phenolic analogues to aniline congeners
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Figure 1. 
Natural products (colchicine and combretastatin A-4), and synthetic benzosuberene and 

dihydronaphthalene analogues as small-molecule inhibitors of tubulin polymerization.
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Scheme 1. 
Previously reported synthetic route by Pinney and co-workers toward benzosuberene and 

dihydronaphthalene analogues 1, 2, 3, and 4.1,3,6,7
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Scheme 2. 
Modified synthetic routes to compounds 1 and 2. Reagents and reaction conditions: (a) 

compound 5 (1.0 eq.), K2CO3 (1.5 eq.), 2-iodopropane (2.0 eq.), DMF, 50–60 °C, 20 h, 

98%. (b) (i) 3-(carboxypropyl)triphenylphosphonium bromide (1.5 eq.), potassium tert-
butoxide (3.5 eq.), compound 6 (1.0 eq.), DMF, 0 °C to RT, 24 h; (ii) Pd-C (0.1 eq., 10 wt

%), H2 balloon, CH3OH, 24 h, 85–94% (two steps). (c) (i) compound 7 (1.0 eq.), oxalyl 

chloride (2.0 eq.), DMF (0.2 eq.), CH2Cl2, RT, 2 h; (ii) SnCl4 (1.2 eq.), CH2Cl2, −10 °C, 40 

min, 75–80% (two steps). (d) (i) 5-bromo-1,3,4-trimethoxybenzene (2.0 eq.), n-BuLi (2.0 

eq.), THF, −78 °C, 30 min. (ii) compound 8 (1.0 eq.), −78 °C, 4 h, RT, 16 h, 84%. (e) 

compound 9 (1.0 eq.), boron trichloride (1.1 eq.), CH2Cl2, 0 °C, 2 h, 85–92%. (f) compound 

1 (1.0 eq.), triethylamine (2.0 eq.), triflic anhydride (1.5 eq.), CH2Cl2, 0 °C to RT, 5 h, 80–

92%. (g) (i) compound 10 (1.0 eq.), benzophenone imine (1.5 eq.), Cs2CO3 (1.5 eq.), 

palladium(II) acetate (0.1 eq.), racemic-BINAP (0.15 eq.), toluene, 110–115 °C, 36 h; (ii) 2 

M HCl, RT, 1 h, THF, 79–93% (two steps).

Mondal et al. Page 10

Tetrahedron Lett. Author manuscript; available in PMC 2020 January 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Scheme 3. 
Unsuccessful Wittig reaction using (2-carboxyethyl)triphenylphosphonium bromide.
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Scheme 4. 
New synthetic routes to compounds 3 and 4. Reagents and reaction conditions: (a) 

compound 11 (2.0 eq.), triphenylphosphine (1.0 eq.), toluene, reflux, 24 h, 96%. (b) (i) 

compound 12 (1.5 eq.), n-BuLi (3.0 eq.), THF, 0 °C, 15 min; TMSCl (1.5 eq.), 0 °C, 30 min; 

compound 6 (1.0 eq.), 0 °C, 1 h, RT, 2 h (ii) Pd-C (0.1 eq., 10 wt%), H2 balloon, CH3OH, 24 

h, 92% (two steps, compound 13). (c) compound 13 (1.0 eq.), Oxone® (1.5 eq.), IBX (0.3 

eq.) ACN/H2O, 70 °C, 20 h, 71%. (d) (i) compound 14 (1.0 eq.), oxalyl chloride (2.0 eq.), 

DMF (0.2 eq.), CH2Cl2, RT, 2 h; (ii) SnCl4 (1.2 eq.), CH2Cl2, −10 °C, 40 min, 92% (two 

steps). (e) (i) 5-bromo-1,3,4-trimethoxybenzene (2.0 eq.), n-BuLi (2.0 eq.), THF, −78 °C, 30 

min. (ii) compound 15 (1.0 eq.), −78 °C, 4 h, RT, 16 h, 65%. (f) compound 16 (1.0 eq.), 

boron trichloride (1.1 eq.), CH2Cl2, 0 °C, 3 h, 85%. (g) compound 3 (1.0 eq.), Triethylamine 

(2.0 eq.), triflic anhydride (1.5 eq.), 0 °C to RT, 5 h, 83–100%. (h) (i) compound 17 (1.0 eq.), 

benzophenone imine (1.5 eq.), Cs2CO3 (1.5 eq.), palladium(II) acetate (0.1 eq.), racemic-

BINAP (0.15 eq.), toluene, 110–115 °C, 36 h; (ii) 2 M HCl, RT, 1 h, THF, 72% (two steps).
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