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Abstract. Segmentation of the prostate in computed tomography (CT) is used for planning and guidance of
prostate treatment procedures. However, due to the low soft-tissue contrast of the images, manual delineation of
the prostate on CT is a time-consuming task with high interobserver variability. We developed an automatic,
three-dimensional (3-D) prostate segmentation algorithm based on a customized U-Net architecture. Our data-
set contained 92 3-D abdominal CT scans from 92 patients, of which 69 images were used for training and
validation and the remaining for testing the convolutional neural network model. Compared to manual segmen-
tation by an expert radiologist, our method achieved 83%� 6% for Dice similarity coefficient (DSC),
2.3� 0.6 mm for mean absolute distance (MAD), and 1.9� 4.0 cm3 for signed volume difference (ΔV ). The
average recorded interexpert difference measured on the same test dataset was 92% (DSC), 1.1 mm (MAD),
and 2.1 cm3 (ΔV ). The proposed algorithm is fast, accurate, and robust for 3-D segmentation of the prostate
on CT images. © 2019 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JMI.6.2.025003]
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1 Introduction
In 2017, prostate cancer (PCa) with more than 161,000 newly
diagnosed cases was one of the most frequent cancers diagnosed
among men in the United States.1 Some of the image-guided
treatment interventions for PCa management, e.g., radiation
therapy, are performed with the prostate border delineated on
computed tomography (CT) images. However, the low soft-
tissue contrast of CT images challenges manual prostate seg-
mentation performance in terms of accuracy, repeatability, and
segmentation time.2

Several computerized algorithms have been developed
recently to segment the prostate faster with higher repeatability
compared to manual segmentation.3–15 Some of these algorithms
were learning-based segmentation techniques that used manual
segmentation information of previously acquired CT images
from the same patient for training.9,10 This approach helps to
have a more accurate segmentation. However, as a prerequisite,
manual segmentation of previous CT images from the same
patient must be available to segment the next image. On the
other hand, to evaluate the performance of a computer-assisted
algorithm, it is important to consider the high interobserver
variability in manual segmentation and compare the results to
multiple-observer manual reference, which has not been taken
into account in most of the recently published work.

Deep learning-based approaches demonstrate a strong
capability for fast prostate segmentation in medical images
with high accuracy.3,6,11,16–20 However, most of the deep learning
algorithms presented in the literature have used either patch-
based segmentation, two-dimensional (2-D) slice-by-slice seg-
mentation, or a combination of both. These methods are less

complex and decrease the data load on graphics processing
units (GPU). However, in patch-based segmentation, some intra-
slice information is lost, and in slice-by-slice segmentation, the
interslice information is missing.

In this study, we present an automatic three-dimensional
(3-D) deep learning-based segmentation algorithm to address
the need for a fast, accurate, and repeatable 3-D segmentation
of the prostate on CT images, which does not depend on the
intrapatient data for training. The proposed neural network
has not been trained on previously acquired images from the
target patient. We evaluated the performance of the algorithm
to the manual references from two expert radiologists, and
we used the complementary region-based [Dice similarity
coefficient (DSC), sensitivity rate (SR), and precision rate
(PR)], surface-based [mean absolute distance (MAD)], and vol-
ume-based [signed volume difference (ΔV)] error metrics to
measure the segmentation error of our algorithm against manual
references. We also compared the results to the measured inter-
expert observer difference in manual segmentation. The pro-
posed algorithm showed robustness to some of the image
artifacts caused by metallic implanted objects.

2 Methods

2.1 Data

Our dataset contained 92 3-D abdominal CT scans from 92
patients. Each image was originally 512 × 512 × 27 voxels
in size with a 0.977 × 0.977 × 4.25 mm3 voxel size. Thirty-
seven (40%) images were from post low-dose brachytherapy
patients, with the prostate images distorted by the brachytherapy

*Address all correspondence to Baowei Fei, E-mail: bfei@utdallas.edu 2329-4302/2019/$25.00 © 2019 SPIE

Journal of Medical Imaging 025003-1 Apr–Jun 2019 • Vol. 6(2)

Journal of Medical Imaging 6(2), 025003 (Apr–Jun 2019)

https://doi.org/10.1117/1.JMI.6.2.025003
https://doi.org/10.1117/1.JMI.6.2.025003
https://doi.org/10.1117/1.JMI.6.2.025003
https://doi.org/10.1117/1.JMI.6.2.025003
https://doi.org/10.1117/1.JMI.6.2.025003
https://doi.org/10.1117/1.JMI.6.2.025003
mailto:bfei@utdallas.edu
mailto:bfei@utdallas.edu


seeds. For some other cases (∼20%), the image quality was
affected by other metallic implanted objects, such as fiducial
markers and orthopedic implants. Figure 1 shows some of
the artifacts in our dataset. In this study, we did not exclude
those images with artifacts from the dataset. For each image,
two independent manual segmentations were provided by
two expert radiologists. We randomly selected 75% of the
images (69 patients) for training (65%) and validation (10%)
purposes and kept the remaining 25% (23 patients) reserved
for final testing of the method.

2.2 Preprocessing

The prostate gland occupied 5 to 13 axial slices and <0.1% of
the whole image volume. Hence, to minimize the data load on
the GPU and speed up the training process, we cropped the
images to a bounding box of 96 × 96 × 15 voxels. In the

cropped images, the prostate gland occupied <6% of the
image volume on average. We also truncated the Hounsfield
unit (HU) range based on the observed range for prostate tissues
in the training set. After removing 1% outliers, the lowest and
the highest HU values we observed within the prostate tissue
across the training set were −69 and 165, respectively. For
all the images, we replaced those values below −69 and
above 165 with −69 and 165, respectively. This helps to reduce
the effect of background tissues, such as bones, adipose tissues,
calcifications, brachytherapy seeds, and liquids. Figure 2 shows
a sample image after each preprocessing step.

2.3 Fully Convolutional Neural Network Architecture

In this study, we used a customized version of a fully convolu-
tional neural network (FCNN) called U-Net.21 The FCNNs are
end-to-end networks that produce segmentation maps with the

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 1 Image artifacts that can affect the segmentation: (a)–(e) low-dose rate brachytherapy seeds image
artifacts and (f)–(h) metallic objects interference. The prostate borders manually drawn by a radiologist
were overlaid on the images in green contours.
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same pixel-wise dimensions as their inputs. We modified the
U-Net architecture to make it 3-D and applicable to our images.
Figure 3 shows the architecture of the proposed 3-D U-Net. The
FCNN is a four-level U-Net model with 21 layers, including
18 convolutional and 3 max pool layers. For 17 convolutional
layers, we used rectifier linear unit activation function, and
for the last convolutional layer, sigmoid activation function
was used. We kept the size of the output channels for all the
convolutional layers the same as the input channels by zero-pad-
ding the input channel before convolution. For the two upper
levels, we used a convolution kernel size of 5 × 5 × 3, and
for the two lower levels, we used kernel size of 3 × 3 × 3.
In the contracting path (left side of the network), we used
one 2 × 2 × 1max-pooling layer after each pair of convolutional
layers. In the expansive path (right side of the network), we used
one upconvolutional layer (2 × 2 × 1 upsampling followed by
2 × 2 × 2 convolution) after each pair of convolutional layers.
We applied a dropout to 10 of the layers as denoted by the
pale blue boxes in Fig 3. In each of the three top levels of
the U-Net model, the last feature map of the contracting path
is concatenated to the first feature map of the expansive path.
Due to a huge imbalance between the number of background
and prostate voxels, we used a loss function based on “soft
Dice” similarity coefficient:22

EQ-TARGET;temp:intralink-;sec2.3;326;583L ¼ 1 −
2
P

iðhðxiÞ:yiÞP
i½hðxiÞ� þ

P
iðyiÞ

;

where hðxiÞ is the i’th probability value of the output probability
map and yi is the i’th value of the reference binary mask. For
optimization, we used Adadelta23 gradient-based optimizer.

2.4 Postprocessing

We applied thresholding with the threshold level of 50% to build
binary masks out of probability maps. Then we automatically
found and kept the largest 3-D object in the image as the prostate
label and removed the smaller objects as the false positive
objects. During validation, we observed a small amount of
oversegmentation of the algorithm on the validation images.
Therefore, to compensate the oversegmentation, we applied
an erosion operator24 using a 3 × 3 square shape structuring
element to the segmentation results in order to slightly shrink
the labels.

2.5 Implementation Details

We used the TensorFlow25 machine learning framework to
implement the 3-D U-Net model in Python. We used a desktop

(a) (b) (c)

(d)

Fig. 2 Preprocessing steps for the image segmentation. (a) A sample midgland slice of the original CT
image with prostate border overlaid in green contour. (b) The image after HU truncation. The selected
bounding box is shown in a yellow dashed square. (c) The cropped image and (d) its manual segmen-
tation label.

Fig. 3 The four-level 3-D U-Net FCNN architecture. The numbers above the feature maps indicate the
number of feature channels and the numbers below the feature maps indicate the size of each feature
channel.
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computer with 512 GB of memory and an NVIDIA GeForce
GTX 1080 Ti GPU. We used a batch size of one and initial
learning rate of 1.0. We applied an exponential learning rate
decay with a decay rate of 0.99 and decay step of one epoch.
We set the dropout rate to 40%, and the decay rate and epsilon
conditioning parameters for Adadelta optimizer to 0.9 and
1 × 10−10, respectively.

2.6 Data Augmentation

We used data augmentation to double the number of training
data using horizontal flipping of the images by exploiting the
left-right symmetry of the images.

2.7 Evaluation

We compared the algorithm segmentation results against manual
segmentation using a set of segmentation error metrics, includ-
ing the DSC,26 sensitivity (or recall) rate (SR), PR, MAD, and
ΔV. For details regarding the calculation of the metrics, see
Ref. 27. To measure the variability in the results, we used
95% confidence intervals using bootstrapping28 with 10,000
repetitions. We reported the median of the 10,000 means and
the 95% confidence interval.

Due to the interobserver variability in manual segmentation
of the prostate in CT images,2 it is not possible to define a
single gold standard for prostate segmentation in CT images.
Therefore, we consider the two manual segmentations as two
independent manual reference segmentations in this study.
We measured the interexpert observer variability in manual
prostate segmentation in CT images by comparing the two refer-
ences using DSC, MAD, and ΔV evaluation metrics. To mea-
sure the accuracy of the algorithm, we compared the output
segmentation label separately to each manual reference segmen-
tation using the evaluation metrics.

3 Experiments and Results

3.1 Interexpert Observer Variation in Manual
Segmentation

The interexpert observer differences in ground-truth segmenta-
tion were quantified by comparing the two manual references
from the test images using DSC, MAD, and ΔV. The MAD
values were calculated in bilateral mode27 (MADb) and absolute
volume difference (jΔVj) was calculated because of the lack of

a reference in comparison between two manual segmentations.
The mean (and 95% confidence interval) for the whole gland
were 91.7% ([90.8%, 92.5%]), 1.1 mm ([1.1, 1.2 mm]),
and 2.4 cm3 ([1.9, 3.1 cm3]), based on DSC, MADb, and jΔVj,
respectively.

3.2 Training

We used our two sets of manual reference segmentations by
radiologist experts (hereafter referred to as references A and B)
and made six different combinations of training, validation, and
testing datasets to design three experiments: (1) single-reference
training (in-group), (2) single-reference training (out-group),
and (3) multireference training. For all the experiments, we
used only one of the reference segmentations for validation
and test. Additionally, we applied data augmentation to our
60 training images to double the size of our training set for
all of the following experiments.

Single-reference training (in-group): We trained the FCNN
model using a single-observer manual reference segmentation
(e.g., reference A) and validated the training by comparing
the results to the same observers’ manual reference segmenta-
tion (i.e., reference A). We repeated this experiment using the
other observers’ manual segmentation. Therefore, we have two
trained models: one trained using reference A (model I) and the
other trained using reference B (model II). Since the segmenta-
tion of the prostate in CT images is a challenging task even for
the expert radiologists, the training accuracy does not approach
100%. Therefore, for each experiment, we trained the FCNN
model until the validation accuracy does not improve much.
We set the maximum iteration number to 200 training epochs
(24,000 iterations). For model I, we got the best performance
after 188 epochs (22,560 iterations). For model II, we got
the best performance after 139 epochs (16,680 iterations).
Training process times for model I and model II were about
31 and 27 h, respectively. Table 1 shows the results.

Single-reference training (out-group): In this experiment, we
performed the FCNN training with the training set with ground
truth from one expert’s (e.g., reference A) manual segmentation
but used the other expert’s (e.g., reference B) manual segmen-
tation of the testing data for performance evaluation of the test-
ing data. We used the two FCNN models trained during the in-
group single-reference-training experiment and tested model I
by comparing the segmentation results against reference
segmentation B, and model II by comparing the segmentation

Table 1 Training, validation, and testing performance of the three FCNN models in terms of DSC. DSCTr, DSCv, and DSCTs are the means and
[95% confidence intervals] of DSC values across the training, validation, and test datasets, respectively.

FCNN model

Training
reference

(# of samples)

Validation/test
reference

(# of samples) DSCTr (%) DSCV (%) DSCTs (%)

Single-reference training (model I) A (120) A (9/23) 92.3 [91.9, 92.7] 82.8 [78.3, 86.3] 82.2 [79.5, 84.1]

Single-reference training (model I) A (120) B (9/23) 88.7 [87.6, 89.7] 82.3 [78.3, 85.4] 82.2 [80.2, 83.9]

Single-reference training (model II) B (120) B (9/23) 90.7 [90.1, 91.3] 82.3 [78.4, 85.6] 82.4 [80.4, 84.2]

Single-reference training (model II) B (120) A (9/23) 89.2 [88.3, 90.0] 80.9 [77.7, 83.5] 82.8 [80.4, 84.5]

Multireference training (model III) A and B (240) A (9/23) 92.5 [91.9, 93.1] 82.6 [80.0, 84.9] 83.1 [80.3, 85.0]

Multireference training (model III) A and B (240) B (9/23) 90.9 [90.2, 91.5] 83.4 [80.6, 85.6] 82.6 [80.1, 84.6]
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Table 2 The performance of the proposed FCNN (model III) against two expert observers (references A and B) compared to a number of recently
published work.

Method, year NPat N Img N test MAD (mm) DSC (%) SR (%) PR (%) Exec. time (s)

Proposed algorithm (reference A) 92 92 23 2.3� 0.6 83� 6 87� 8 80� 9 1.1� 0.4

Proposed algorithm (reference B) 92 92 23 2.4� 0.8 83� 6 90� 7 77� 8 1.1� 0.4

Kazemifar et al.,3 2018 85 85 ∼25 — 88� 12 87 92 ∼1

Shahedi et al.,7 2018 70 70 10 1.9� 0.5 88� 2 94� 3 82� 4 22� 2

Ma et al.,6 2017 92 92 92 — 84 — — —

Ma et al.,4 2016 15 15 15 — 85� 3 83� 1 — —

Shi et al.10, 2016 24 330 258 1.3� 0.8 92� 4 90� 5 — —

Shi et al.,9 2015 24 330 258 1.1� 0.6 95� 3 93� 4 — —

Skalski et al.,13 2015 27 27 15 — 81� 5 — — —

Shao et al.,8 2015 70 70 70 1.9� 0.2 88� 2 84 86 —

Base Midgland Apex

1#tneitaP
2#tneitaP

3#tneitaP

Fig. 4 Qualitative segmentation results for three sample cases. Each row shows the results for one
patient. For each image, the algorithm (model III) segmentation results are shown with yellow contours
and the reference contours with blue dashed and green dotted contours on three sample 2-D slices.
The bottom row shows the results from the patient in our test dataset with the lowest DSC value (62%).
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results against reference segmentation A. Table 1 shows the
results.

Multireference training:We used both experts’manual refer-
ences to form the ground truth of the training data to train the
FCNN model (model III), and validated the trained model by
comparing the results once to the reference A and once to
the reference B, separately. Therefore, before augmentation,
each training image appeared twice: once with ground truth
obtained from reference A and once with ground truth obtained
from reference B. We set the maximum number of training iter-
ations to 200 epochs (48,000 iterations). We achieved the best
performance after 105 epochs (25,200 iterations). Training proc-
ess time for the model was about 35 h. Table 1 shows the results.

3.3 Testing Results

The 23 image testing dataset was segmented using our three
trained deep learning models (models I, II, and III), and the
performance was stratified from the six different experiments
defined in Sec. 3.2. Table 1 shows the training, validation,
and testing DSC results for the six experiments. Table 2
shows the performance of the proposed algorithm (model III)
against two experts’ manual references (multireference training
paradigm) and compares the results of several recently pub-
lished state-of-the-art segmentation algorithms. Figures 4 and
5 show the segmentation results of the proposed algorithm in

2-D and 3-D, respectively, for three sample test cases using
model III (multireference training paradigm). The average ΔV
values for model III on the test dataset were 1.9� 4.0 cm3 and
3.9� 3.6 cm3 when comparing to reference A and reference B,
respectively. The average segmentation time for each 3-D image
segmentation was 1.1 s.

3.4 Cross Validation

To test our CNN model on the whole image dataset, we applied
a fourfold cross-validation methodology. We randomly divided
the 92 image dataset into four subsets of 23 images, and
each subset was used as a test set while the remaining data
(3 × 23 ¼ 69 images) was used for training. We used the
exact same network architecture, hyperparameters, and setup
that were used for model III and trained the network four
times. We applied flipping data augmentation to all the training
images and used manual segmentations from both radiologist
experts for each image to yield a total size of 276 training
images. We trained each network for up to 150 epochs
(41,400 iterations) and stopped training when the training accu-
racy plateaued. We chose the best trained model determined by
minimum training loss. Table 3 shows the performance of the
algorithm in terms of DSC for each test fold against the two
manual references, separately. The overall DSC on the whole
dataset has also been reported in the table.

Reference A Reference B Algorithm

1# tneitaP
2# tneitaP

3# tneitaP

Algorithm vs. 
reference A

Algorithm vs. 
reference B

Fig. 5 Qualitative segmentation results in 3-D for the three sample cases shown in Fig. 4. Each row
shows the results for one patient. The bottom row shows the results from the patient in our test dataset
with the lowest DSC value (62%).
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3.5 Quantitative Assessment of the Effect of Image
Artifacts

To assess the impact of the image artifacts on the segmentation
results, we selected a subset of 43 images that were not affected
by imaging artifacts (nonaffected subset) and quantified the seg-
mentation algorithm performance on them. We trained and
tested our algorithm on the selected subset using a threefold
cross validation with a similar study design used in Sec. 3.4.
For this test, we chose batch size of 10. For comparison reasons,
we also randomly selected a subset of 43 images from the whole
dataset (partially affected subset) and trained and tested the seg-
mentation algorithm on this subset with the same setup used for
nonaffected subset. Table 4 shows the performance of the algo-
rithm against the two manual references in terms of DSC for
both experiments. The average accuracy of the segmentation
on the artifact-affected images based on DSC metric is slightly
(∼1.2%) dropped compared to the nonaffected images. The
variation of the DSC values is also higher for the affected
images. However, no statistically significant differences are
detected between the DSC values measured from 43 nonaffected
images and the DSC values measured from the 43 artifact-
affected images, using the one-tailed t-test29 (P < 0.05).

4 Discussion
The proposed segmentation technique is able to segment the
prostate in 3-D CT image volumes in about 1 s with acceptable
segmentation accuracy and high robustness to image distortion
by brachytherapy seeds or metallic implants. The algorithm does
not need to be trained on previously acquired CT images of the
same target patient. Therefore, this segmentation method could

be used when there is no previously acquired CT image avail-
able for the patient (e.g., for radiation therapy planning).

The proposed method is not a patch-based method and does
not use a slice-by-slice technique. It segments the prostate fully
in 3-D and takes intra- and interaxial slice information into
account for segmentation. The smaller standard deviation of
the DSC, in comparison to Kazemifar et al.3, which was a seg-
mentation method based on a 2-D U-Net model, indicates that
using interaxial slice information could be useful to have a more
robust segmentation. The cross validation also supports this by
showing segmentation results on the whole dataset (Table 3)
similar to the main test results reported in Table 1. Using both
manual references for training the model improved the training
process. We also observed a small improvement (∼1% DSC) in
the test results.

The maximum meaningful accuracy we could measure on
our dataset was limited by the interexpert observer variability
measured on the data. It means that in terms of DSC and
MAD metrics the highest meaningful accuracy will be about
92% and 1.1 mm, respectively, and our algorithm (DSC ¼ 83%
and MAD ¼ 1.9 mm) is about 9% and 0.8 mm off from
“perfect” results. For prostate gland volume estimation, the
proposed algorithm could achieve a segmentation accuracy
(ΔV < 4.0 cm3) close to the observed difference between two
manual references (ΔV ¼ 2.4 cm3). The measured segmenta-
tion accuracy in terms of DSC, MAD, SR, and PR was
lower than some of the recently published results in the litera-
ture. According to Table 4, one reason could be that the algo-
rithm has been trained on a dataset in which more than 50% of
the CT images are affected by at least one type of image distor-
tion described above, such as brachytherapy seeds or metallic
implants. However, most importantly, another explanation for
our slightly lower reported results is that our models were not
trained using previously acquired CT images from the test
patient, unlike Refs. 9 and 10 (ranked the highest DSC and
the lowest MAD values in Table 2). Despite the relatively low
metric values for some of the test images, visual inspection
showed comparable similarity between the manual segmenta-
tion and that of the algorithm (e.g., see patient #3 in Fig. 4).

It is important to interpret the results in the context of the
strengths and limitations of this study. To the best of our knowl-
edge, this work is the first to apply multiobserver training and
evaluation for the prostate CT image segmentation. We reported
the interexpert observer difference on the test dataset and com-
pared the algorithm results to the observed range of the metrics
in manual segmentation. We also used the complementary
region-based (DSC, SR, and PR), surface-based (MAD), and
volume-based (ΔV) error metrics to evaluate the performance
of the algorithm. However, this study was limited by the
small training sample size we used in this study, with 60 CT
images for the main experiment (Table 1) and 69 images for
the fourfold cross validation (Table 3). Data augmentation
was employed to partially compensate the data size. However,
some image artifacts in the test set, such as those produced by
some of the metallic implants, were not seen by the network
during training. Therefore, to have a more accurate and robust
deep learning model, the training set must be more
representative.

5 Conclusions
We developed a fast, 3-D fully convolutional deep neural net-
work for the segmentation of the prostate on CT images, which

Table 3 Fourfold cross-validation results. The mean and 95% con-
fidence intervals of DSC values across the test datasets.

Test set
Number of
samples

DSC (%)
(reference A)

DSC (%)
(reference B)

Test fold 1 23 79.5 [76.0, 82.4] 80.8 [78.0, 83.0]

Test fold 2 23 82.7 [80.3, 84.6] 83.4 [81.3,85.2]

Test fold 3 23 82.6 [81.0, 84.1] 83.4 [81.9, 84.8]

Test fold 4 23 79.9 [76.1, 83.0] 81.0 [77.9, 83.6]

Whole dataset 92 81.1 [79.6, 82.4] 82.1 [80.9, 83.2]

Table 4 Segmentation accuracy of the FCNN on a subset of 43
images with no imaging artifacts and a subset of 43 images that is
partially affected by image artifacts. The mean and 95% confidence
intervals of DSC values across the whole subsets.

Test set
Number of
samples

DSC (%)
(reference A)

DSC (%)
(reference B)

Nonaffected
data

43 78.9 [76.6, 80.7] 79.5 [77.5, 81.1]

Artifact-
affected
data

43 77.7 [73.7, 80.4] 78.2 [74.4, 80.8]
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has been demonstrated as robust to image distortions by differ-
ent image artifacts caused by brachytherapy seeds, metallic fidu-
cial markers, or metallic orthopedic implants. We have used a
multiobserver training and testing approach and have evaluated
the performance of our algorithm against the observed interex-
pert difference of manual segmentation to demonstrate the
robustness and generality of the proposed method. This algo-
rithm could be used for prostate segmentation in any study
that needs to measure prostate volume from CT images. This
algorithm is also useful for a quick and reliable initial segmen-
tation to be reviewed and corrected by an expert. As future work,
we will improve the performance of this neural network model
by adding more levels to the deep learning structure, applying
batch normalization, and optimizing the neural network hyper-
parameters. It is also important to evaluate the impact of the
algorithm on the performance of a clinical procedure, such as
radiation therapy planning.
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