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Abstract

The objective of the present study was to investigate the correlations between serum under-
carboxylated osteocalcin (ucOC) or osteocalcin (OC) concentrations and %body fat, serum
adiponectin and free-testosterone concentration, muscle strength and dose of exogenous
insulin in patients with type 1 diabetes. We recruited 73 Japanese young adult patients with
childhood-onset type 1 diabetes. All participants were receiving insulin replacement therapy.
The correlations between logarithmic serum ucOC or OC concentrations and each parame-
ter were examined. Serum ucOC and OC concentrations were inversely correlated with %
body fat (r=-0.319, P =0.007; r =-0.321, P = 0.006, respectively). Furthermore, multiple lin-
ear regression analyses were performed to determine whether or not serum ucOC or OC
concentrations were factors associated with %body fat. Serum ucOC and OC concentra-
tions remained significant factors even after adjusting for gender, HbA1c, body weight-
adjusted total daily dose of insulin and duration of diabetes (§ =-0.260, P = 0.027; 3 =
-0.254, P = 0.031, respectively). However, serum ucOC and OC concentrations were not
correlated with serum adiponectin or free-testosterone concentrations, muscle strength or
dose of exogenous insulin. In conclusion, our study demonstrates the inverse correlation
between serum ucOC or OC concentrations and body fat in patients with type 1 diabetes.

Introduction

Bones perform several functions, such as supporting the body, protecting the internal organs
and central nervous system and contributing to hematopoiesis. Recently, it has been reported
that the skeleton also functions as an endocrine organ and systemically regulates the functions
of other organs [1].
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Several bone-derived hormones have been defined, including fibroblast growth factor 23
and lipocalin 2, among others [2-5]. Osteocalcin (OC), another such hormone, is reported to
affect glucose and energy metabolism [6]. It is produced by osteoblasts and acts as a bone
matrix protein. The serum level of OC was reported to be sustained after adulthood, and the
reference value of serum OC concentrations is 8.4-33.1 ng/ml in males, 7.8-30.8 ng/ml in pre-
menopausal females and 14.2-54.8 ng/ml in postmenopausal females [7]. Undercarboxylated
osteocalcin (ucOC) is considered to be the active form of circulating OC, exerting endocrine
functions according to experimental studies [8, 9]. However, whether or not ucOC is the active
form in humans as well is unclear. The reference value of the serum ucOC concentrations is
<4.5 ng/ml in general, although Shiraki et al. reported that the mean serum ucOC concentra-
tions was 3.0 ng/ml in their Japanese cohort study [10].

Circulating ucOC binds to the G protein-coupled receptor GPRC6A on pancreatic B-cells
and stimulates insulin secretion in animal models [11, 12]. In addition, the serum ucOC con-
centrations were shown to correlate with the insulin sensitivity in patients with type 2 diabetes
[13, 14]. It was also indicated that higher serum ucOC concentrations were correlated with a
reduction in the diabetes risk in community-dwelling populations [15, 16], and ucOC
enhanced the B-cell function in human islets from cadaveric donors [17]. Furthermore, the
production of ucOC is regulated by insulin signaling via insulin receptor on the osteoblasts of
amouse model [18, 19]. Therefore, a positive feedback loop exists between ucOC and insulin.

We previously investigated the correlation between the serum ucOC concentrations and
secretory ability of insulin in patients with type 2 diabetes [20]. ucOC was shown to correlate
positively with the change in the C-peptide response in the glucagon loading test and the meal
tolerance test [20]. It has also been reported that OC was correlated with a reduced fat mass
and increased serum adiponectin levels, serum testosterone levels and muscle strength in OC
knockout mice [6, 21-23]. In addition, serum ucOC concentrations were shown to be corre-
lated inversely with fat mass and positively correlated with serum adiponectin and serum free-
testosterone concentrations in patients with type 2 diabetes [24-26].

As mentioned above, the effects of ucOC on glucose and energy metabolism may promote
the pathophysiology and complications of diabetes. Evidence supporting the clinical signifi-
cance of ucOC concerning type 2 diabetes is gradually accumulating, and many clinical studies
have provided supportive experimental results. However, there are few equivalent data in
patients with type 1 diabetes [27-29]. Experimental results suggest that the production of
ucOC is regulated by exogenous insulin injection in patients with type 1 diabetes whose
endogenous insulin secretion has been depleted. Furthermore, the metabolically beneficial
effects of ucOC, such as its effects of reducing fat mass, increasing adiponectin, increasing tes-
tosterone levels and increasing exercise capacity, are also found in patients with type 1
diabetes.

Since type 2 diabetes is a heterogenous disease, we focused on young adult patients with
type 1 diabetes to assess the influence of the exogenous insulin dose on the ucOC and OC con-
centrations and to determine its metabolic effects clearly. We therefore investigated the corre-
lations between serum ucOC or OC concentrations and clinical characteristics in young adult
patients with type 1 diabetes in this study.

Subjects and methods
Study design

The study protocol was approved by the research ethics committee of Tokushima University,
Tokushima, Japan (#2281-7), and was registered as a clinical trial (UMIN000020901).

PLOS ONE | https://doi.org/10.1371/journal.pone.0216416 May 3, 2019 2/11


https://doi.org/10.1371/journal.pone.0216416

@ PLOS|ONE

Osteocalcin and body fat in type 1 diabetes

We recruited 77 young patients with type 1 diabetes who had undergone medical checkups
for diabetic complications at Osaka University Hospital and Osaka Police Hospital in July and
August 2017. These medical checkups were annually conducted by Advisory Doctors of Osaka
Association for Diabetes Education and Care. Each patient provided their written informed
consent.

We excluded 4 patients who were <20 years old, as the serum OC concentrations is known
to be higher in adolescents than in adults [7]. We therefore analyzed the data from 73 subjects.
The median age was 35 years old, and 21 males (30.1%) and 52 females (69.9%) were included.
All participants were treated by diabetologists and were receiving insulin injections at least
four times daily or with continuous subcutaneous insulin infusion. Exogenous injected doses
of insulin were investigated for more than three days and defined as an average amount of
insulin. We enrolled only typical childhood-onset type 1 diabetes patients in this study, exclud-
ing those with slowly progressive type 1 diabetes. As vitamin K insufficiency is known to
increase the serum ucOC concentration, participants with eating disorders, anemia, hemor-
rhagic diathesis and hepatic disorders were not included in this study.

Measurement procedures

Blood samples were obtained during the medical checkups. Glycated hemoglobin (HbA1c) was
measured using high-performance liquid chromatography. Based on the serum creatinine con-
centrations (Cr), the estimated glomerular filtration rate (eGFR) was calculated according to the
equation of the Japanese Society of Nephrology; eGFR (mL/min/1.73 m*) = 194 x Cr"%** x
age'0'287 (x 0.739 if female). Serum ucOC concentrations (electro-chemiluminescence immunoas-
say; ECLIA), serum OC concentrations (ECLIA), serum adiponectin concentrations (latex agglu-
tination turbidimetric immunoassay; LA) and serum free-testosterone concentrations (in males)
(radio immunoassay; RIA) were examined (SRL, Tokyo, Japan).

Our measurement of OC evaluated the total OC levels, including the ucOC. The coefficient
of variation (CV) of osteocalcin measurement was <15%. The measurement of ucOC evalu-
ated OC molecules with two uncarboxylated glutamic acid residues at positions 21 and 24, but
not the carboxylated one. The CV of ucOC measurement was <10%. OC and ucOC were mea-
sured by direct immunoassays with commonly used commercially available antibodies against
OC and ucOC, respectively [30, 31].

The protocol for evaluating the body composition and muscle strength was described previ-
ously [32]. In brief, the body composition—including the body fat and skeletal muscle—were
analyzed with the In Body bioelectrical impedance analyzer (Bio Space, Seoul, Korea). The
total fat mass and lean body mass evaluated by this device were validated by comparing the
findings with those of dual-energy X-ray absorptiometry [33, 34]. However, the bioelectrical
impedance analyzer cannot distinguish visceral and subcutaneous fat mass. The skeletal mus-
cle mass index (SMI) was calculated by dividing the extremity skeletal muscle by the height-
squared. The grip strength and knee extension strength were measured using handheld dyna-
mometers (T.K.K.5401, Takei Scientific Instruments, Tokyo, Japan; p-tus F-100, ANIMA,
Tokyo, Japan). Gait speed was assessed by recording the total time it took to walk five meters.

Statistical analyses

Continuous variables with normal or non-normal distributions were described as the

mean + standard deviation or median (Q1, Q3), respectively. Categorical variables were
reported as percentages (%). Statistical analyses were performed using the SPSS 24 software
program (IBM Japan, Tokyo, Japan). Because the serum ucOC and OC concentrations did not
show normal distributions, the data were also analyzed using log-transformed ucOC and OC
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values. The Pearson’s correlation coefficient, two-way analysis of variance and multiple linear
regression analysis were used. A P value of < 0.05 was considered to be statistically significant.

Results

The characteristics of the participants are shown in Table 1. The mean duration of diabetes
was 25 + 7 years, and the median body mass index (BMI) was 22.9 kg/m®. Concerning their

Table 1. Clinical characteristics of the participants.

Reference range

Gender (male/female) (%) 30.1/69.9

Age (years) 35 (31, 39)

Duration of diabetes (years) 25.7+7.3

BMI (kg/m?) 22.9 (21.5,25.1) 18.5-25.0

Insulin regimen (MDI/CSII) (%) 46.6/53.4

TDD (units) 40.0 (31.3, 50.5)

TDD/kg (units/kg) 0.65 (0.52, 0.77)

Basal (units) 14.8 (11.4,18.7)

Basal/kg (units/kg) 0.25(0.19, 0.29)

Bolus (units) 22.9 (18.0, 34.5)

Bolus/kg (units/kg) 0.39 (0.32, 0.53)

HbAlc (%) 74+1.0 4.6-6.2

€GFR (ml/min/1.73 m’) 92.9 + 14.1 > 60

Albuminuria (mg/gCr) 3.9 (2.9, 6.0) <30

Retinopathy (NDR/NPDR/PDR/NA) (%) 42.5/50.7/5.5/1.4

%Body fat (%) 26.8+72 Male: 15-20
Female: 20-25

Adiponectin (ug/ml) 12.9 (9.9, 17.4) > 4.0

Free-testosterone (pg/ml) (in males) 10.9 (8.6, 13.2) 20-29 years old: 7.6-23.8
30-39 years old: 6.5-17.7
40-49 years old: 4.7-21.6

SMI (kg/m?) 6.7 (6.3,7.5) Male: > 7.0
Female: > 5.7

Grip strength (kg) 30.2 (23.0, 38.4) Male: > 26.0
Female: > 18.0

Knee extension strength (kg) 20.6 £5.9 >0.3

Gait speed (m/s) 1.34+0.22 > 0.8

ucOC (ng/ml) 3.3(24,4.7) <45

OC (ng/ml) 14.8 (11.7, 18.5) Male: 8.4-33.1
Female: 7.8-30.8
(premenopausal)

Use of drugs

ACE inhibitors/ARBs (%) 16.4

CCBs (%) 4.1

Statins (%) 8.2

EPAs (%) 55

BMI, body mass index; MDI, multiple daily injections of insulin; CSII, continuous subcutaneous insulin infusion;
TDD, total daily dose of insulin; TDD/kg, body weight-adjusted total daily dose of insulin; Basal, basal dose of
insulin; Basal/kg, body weight-adjusted basal dose of insulin; Bolus, bolus dose of insulin; Bolus/kg, body weight-
adjusted bolus dose of insulin; HbAlc, glycated hemoglobin; eGFR, estimated glomerular filtration rate; NDR, no
diabetic retinopathy; NPDR, non-proliferative diabetic retinopathy; PDR, proliferative diabetic retinopathy; SMI,
skeletal muscle mass index; ucOC, undercarboxylated osteocalcin; OC, osteocalcin; ACE, angiotensin-converting
enzyme; ARB, angiotensin receptor blocker; CCB, calcium channel blocker; EPA, eicosapentaenoic acid.

https://doi.org/10.1371/journal.pone.0216416.t001
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insulin regimen, the rates of participants receiving multiple daily injections of insulin (MDI)
and continuous subcutaneous insulin injection (CSII) were 46.6% and 53.4%, respectively.
The median total daily dose of insulin (TDD) was 40.0 units, and the body weight-adjusted
TDD (TDD/kg) was 0.65 units/kg. The mean basal and bolus dose of insulin were 14.8 units
(Basal) and 22.9 units (Bolus), respectively, and the mean body weight-adjusted basal and
bolus dose of insulin were 0.25 units/kg (Basal/kg) and 0.39 units/kg (Bolus/kg), respectively.
The mean HbAlc was 7.4% + 1.0%, and the eGFR was 92.9 + 14.1 ml/min/1.73 m”. The
median albuminuria was 3.9 mg/gCr, and no one met the diagnostic criteria of chronic kidney
disease.

Concerning diabetic retinopathy, the rates of participants with no diabetic retinopathy
(NDR), non-proliferative diabetic retinopathy (NPDR) and proliferative diabetic retinopathy
(PDR) were 42.5%, 50.7% and 5.5%, respectively. In addition, no one met the Asian diagnostic
criteria of sarcopenia [35]. The median serum ucOC and OC concentrations were 3.3 ng/ml
and 14.8 ng/ml, respectively. No participants used anti-diabetic drugs besides insulin, and only
a small number used anti-hypertensive or anti-hyperlipidemic drugs.

UcOC and OC were not correlated with the gender, age, duration of diabetes, BMI, HbAlc
or eGFR and were only significantly inversely correlated with %body fat (ucOC: r = -0.261,

P =0.028; OC: r =-0.278, P = 0.019; log ucOC: r = -0.319, P = 0.007; log OC: r = -0.321,

P =0.006) (Table 2 and Fig 1). UcOC and OC were not correlated with the insulin regimen or
TDD/kg, including Basal/kg and Bolus/kg (Table 2). We reanalyzed the correlation between
the log ucOC or OC and dose of exogenous insulin separately for MDI and CSII (S1A Table).
However, we noted no correlations between log ucOC or OC and the dose of exogenous insu-
lin in the unadjusted model or after adjusting for age and gender (S1B Table). In addition,
there were no correlations between ucOC or OC and the serum adiponectin or serum free-tes-
tosterone concentrations (in males), SMI, grip strength, knee extension strength or gait speed
(Table 2). The log ucOC and log OC were correlated each other (r = 0.946, P < 0.001).

We further performed a two-way analysis of variance for %body fat concerning the factors
of gender and categorical variables of ucOC or OC divided at the median serum ucOC or OC
concentration. There were significant differences in %body fat by gender (P = 0.0086, in the
ucOC model; P = 0.0097, in the OC model) (Fig 2). In contrast, there were no significant dif-
ferences in %body fat by the categorical variable of ucOC and OC (P = 0.185; P = 0.094, respec-
tively). In addition, there were no significant interactions between gender and ucOC or OC
(P =0.356; P = 0.671, respectively) (Fig 2).

Next, multiple linear regression analyses were performed to identify the serum ucOC or
OC concentration as a factor associated with %body fat. Before the analysis, we confirmed that
the values of %body fat showed a normal distribution curve (P > 0.200, Kolmogorov-Smilnov
test). In model 1 adjusted for gender, ucOC and OC remained significant (ucOC: = -0.270,

P =0.019; OC: B =-0.279, P = 0.016; log ucOC: § = -0.303, P = 0.008; log OC: B = -0.300,

P =0.009) (Table 3). In model 2, which was further adjusted for HbAlc, ucOC and OC also
remained significant (ucOC: f = -0.233, P = 0.039; OC: = -0.234, P = 0.039; log ucOC: p =
-0.252, P = 0.027; log OC: B = -0.246, P = 0.032) (Table 3). Finally, in model 3, which was fur-
ther adjusted for TDD/kg and duration of diabetes, ucOC and OC still remained significant
(ucOC: B =-0.240, P = 0.038; OC: = -0.243, P = 0.038; log ucOC: B = -0.260, P = 0.027; log
OC: Bp=-0.254, P = 0.031) (Table 3).

Discussion

In the present study, we evaluated the serum ucOC or OC concentrations and clinical charac-
teristics in young adult patients with long standing type 1 diabetes. We found an inverse
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Table 2. Correlations between logarithmic serum ucOC and OC concentrations and each parameter in univariate models.

ucOC (ng/ml) OC (ng/ml) Log ucOC (ng/ml) Log OC (ng/ml)
r P r P r P r P

Age (years) -0.157 0.184 -0.178 0.132 -0.186 0.114 -0.193 0.102
Duration of diabetes (years) -0.174 0.140 -0.176 0.137 -0.138 0.243 -0.143 0.229
BMI (kg/mz) -0.184 0.120 -0.176 0.137 -0.204 0.084 -0.185 0.117
TDD (units) -0.032 0.788 -0.030 0.798 0.012 0.918 -0.009 0.942
TDD/kg (units/kg) 0.061 0.607 0.057 0.635 0.089 0.456 0.061 0.611
Basal (units) -0.040 0.738 -0.030 0.803 0.011 0.923 -0.002 0.984
Basal/kg (units/kg) 0.040 0.737 0.053 0.658 0.065 0.584 0.061 0.608
Bolus (units) -0.021 0.860 -0.024 0.838 0.010 0.933 -0.010 0.931
Bolus/kg (units/kg) 0.049 0.680 0.036 0.762 0.067 0.575 0.036 0.764
HbAlc (%) -0.086 0.473 -0.116 0.334 -0.057 0.635 -0.127 0.288
eGFR (ml/min/1.73 mz) -0.203 0.086 -0.231 0.050 -0.103 0.387 -0.168 0.155
Albuminuria (mg/gCr) 0.074 0.535 0.102 0.389 0.028 0.816 0.085 0.475
%Body fat (%) -0.261 0.028* -0.278 0.019* -0.319 0.007* -0.321 0.006*
Adiponectin (pg/ml) -0.078 0.511 -0.060 0.617 -0.140 0.237 -0.070 0.554
Free-testosterone (pg/ml) 0.081 0.719 0.104 0.644 0.074 0.743 0.079 0.726
(in males)

SMI (kg/mz) -0.060 0.622 -0.043 0.719 -0.061 0.613 -0.017 0.885
Grip strength (kg) 0.017 0.887 0.030 0.800 0.146 0.222 0.124 0.298
Knee extension strength (kg) 0.014 0.908 0.055 0.642 0.103 0.386 0.116 0.330
Gait speed (m/s) -0.055 0.649 0.005 0.969 0.009 0.943 0.084 0.483

* Statistically significant (P < 0.05).

ucOC, undercarboxylated osteocalcin; OC, osteocalcin; BMI, body mass index; MDI, multiple daily injection of insulin; CSII, continuous subcutaneous insulin infusion;

TDD, total daily dose of insulin; TDD/kg, body weight-adjusted total daily dose of insulin; Basal, basal dose of insulin; Basal/kg, body weight-adjusted basal dose of

insulin; Bolus, bolus dose of insulin; Bolus/kg, body weight-adjusted bolus dose of insulin; HbAlc, glycated hemoglobin; eGFR, estimated glomerular filtration rate;

SMI, skeletal muscle mass index.

https://doi.org/10.1371/journal.pone.0216416.t002

correlation of ucOC and OC with %body fat, in accordance with the results in experimental
models [6, 11]. Previous experimental studies have shown that OC knockout mice have an
increased fat mass [6], and continuous injection of ucOC was shown to decrease the fat mass
[11]. In addition, serum ucOC concentrations were shown to be inversely correlated with %
trunk fat in patients with type 2 diabetes [24]. We observed this correlation between ucOC and
fat mass in patients with type 1 diabetes as well. Although ucOC was considered to be the
active form of OC in experimental findings, serum OC concentrations were also inversely cor-
related with %body fat, similar to ucOC, in this study.

The assay for OC detects both the carboxylated and uncarboxylated forms, reflecting the
total OC. We measured the amount of undercarboxylated osteocalcin retaining the carboxyl-
ated residue at position 17. Theoretically, the ucOC level should be one-quarter of the total OC
amount. Indeed, the mean serum ucOC level (4.2 ng/ml) was roughly one-quarter of the
serum level of total OC (16.5 ng/ml) in our cohort. In addition, the serum ucOC and OC levels
were highly correlated (r = 0.946, P < 0.001). Previous experimental models have shown that
insulin signaling enhances both the production of OC from osteoblasts and the conversion of
OC into ucOC by osteoclasts, so ucOC and OC are balanced. Therefore, we were able to detect
a significant correlation of %body fat with both ucOC and OC.

In addition, we performed a multiple linear regression analysis involving both ucOC and
OC, simultaneously. As a result, both ucOC and OC lost significance. However, they were
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Fig 1. UcOC and OC were inversely correlated with %body fat. The correlation between %body fat and ucOC (A),
OC (B), log ucOC (C) and log OC (D). Pearson’s correlation coefficients (r), P values and regression equations are
shown.

https://doi.org/10.1371/journal.pone.0216416.g001

suggested to have multicollinearity (variance inflation factor [VIF] > 10). As mentioned
above, we were unable to distinguish the significance of ucOC and OC in the present study. As
such, whether or not ucOC is the active form of OC in humans remains unclear. In addition,
the receptor of ucOC on the adipocytes to reduce fat mass has not yet been identified [8], and
ucOC may exert no direct effects on adipose tissue. Thus, further studies are necessary in
order to clarify the precise effects of ucOC or OC on adipocytes.

The BMI was not found to be correlated with ucOC or OC in the univariate model
(Table 2). While the BMI was significantly correlated with logarithmic ucOC (but not OC)
after adjusting for each factor (S2 Table), this correlation with BMI was weaker than that with

A ucOC B ocC

P for interaction = 0.356 P for interaction = 0.671

* *

N
o
I
o
1

w
o
w
o
T

-
o

%Body fat (%)
S
%Body fat (%)

> S

Low High Low High Low High Low High

Male Female Male Female

Fig 2. Two-way ANOVA for %body fat concerning factors of gender and categorical variables of ucOC or OC.
There were significant differences in %body fat by gender (P = 0.0086, in the ucOC model; P = 0.0097, in the OC
model). In contrast, there were no significant differences in %body fat by categorical variables of ucOC or OC

(P =0.185; P = 0.094, respectively). In addition, there were no significant interactions between gender and ucOC or
OC (P =0.356; P = 0.671, respectively). * Statistically significant (P < 0.05).

https://doi.org/10.1371/journal.pone.0216416.9002
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Table 3. Multiple linear regression analyses between %body fat and logarithmic serum ucOC or OC
concentration.

ucOC (ng/ml) Log ucOC (ng/ml)

B P B P
Model 1 -0.270 0.019* -0.303 0.008*
Model 2 -0.233 0.039* -0.252 0.027*
Model 3 -0.240 0.038* -0.260 0.027*

OC (ng/ml) Log OC (ng/ml)

B P B P
Model 1 -0.279 0.016" -0.300 0.009*
Model 2 -0.234 0.039* -0.246 0.032*
Model 3 -0.243 0.038* -0.254 0.031*

Model 1: adjusted for gender. Model 2: model 1 + HbAlc. Model 3: mode 2 + TDD/kg and duration of diabetes

* Statistically significant (P < 0.05).

B, standard partial regression coefficient; ucOC, undercarboxylated osteocalcin; OC, osteocalcin; HbAlc, glycated
hemoglobin; TDD/kg, body weight-adjusted total daily dose of insulin.

https://doi.org/10.1371/journal.pone.0216416.t1003

%body fat. Although the BMI was correlated with %body fat (r = 0.701, P < 0.001), we con-
sider this to be because the BMI mainly reflects not only the fat mass but also skeletal muscle.
Neither ucOC nor OC correlated with the SMI even after adjusting for each factor. In general,
gender, age, blood glucose level and insulin affect fat mass; however, serum ucOC and OC
concentrations remained significantly inversely correlated with %body fat even after adjusting
for these factors. The bone-derived hormones ucOC and OC may thus prevent weight gain in
patients with type 1 diabetes in contrast to the administration of insulin therapy, etc. Taken
together, these present and previous findings suggest that ucOC may be a viable target for the
development of new drugs for diabetes.

In contrast to previous reports of experimental studies, we failed to observe any correlations
between serum ucOC or OC concentrations and the dose of exogenous insulin, serum adipo-
nectin concentrations, serum free-testosterone concentrations in males or muscle strength,
such as the SMI, grip strength, knee extension strength or gait speed even after adjusting for
each factor. In detail, first, while we did observe a correlation between serum ucOC or OC con-
centrations and %body fat, we did not observe any correlation between serum ucOC or OC
concentrations and serum adiponectin concentration. This may be due to the substantial
increase in the serum adiponectin level in patients with type 1 diabetes treated by insulin ther-
apy [36]. Second, we also failed to observe any marked relationship between serum ucOC or
OC concentrations and serum free-testosterone concentrations in males, possibly because the
participants of our study were relatively young and did not meet the diagnostic criteria of late-
onset hypogonadism. Third, we observed no relationships between serum ucOC or OC con-
centrations and the SMI, grip strength, knee extension strength or gait speed, likely because
our participants were relatively young and did not meet the diagnostic criteria of sarcopenia.
While a previous report efficiently evaluated the endurance of muscles in a mouse model [23],
it is difficult to evaluate the physical endurance of patients. At least ucOC or OC were not cor-
related with muscular parameters used as a diagnosis of sarcopenia at clinical settings in this
study [35]. Fourth, we were unable to confirm a relationship between serum ucOC or OC con-
centrations and the dose of exogenous insulin. Based on our experimental results, we hypothe-
sized that the serum ucOC concentrations were regulated by exogenous insulin in patients
with type 1 diabetes. However, which factors determine the serum concentrations of ucOC in
patients with type 1 diabetes remains unclear.
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The present study had several limitations. First, this was a cross-sectional study with a small
sample size without a control group. We were therefore unable to prove the causality or indi-
cate the direction of the association concerning ucOC or OC. Second, we were unable to con-
sider behavioral or lifestyle factors, including meals or exercise regimens, or the influence of
drug usage, such as anti-hypertensive or lipidemic drugs. Third, we were unable to examine
the vitamin K intake or plasma vitamin K concentrations, which can affect serum ucOC con-
centrations, and bone turnover markers, including 25-hydroxyvitamin D and parathyroid hor-
mone, or bone mineral densities. Further longitudinal or clinical manipulation studies will be
necessary to determine the significance of ucOC or OC on glucose and energy metabolism in
type 1 diabetes.

In conclusion, our study showed the inverse correlation between serum ucOC or OC con-
centrations and body fat in patients with type 1 diabetes, as previously reported in experimen-
tal models and patients with type 2 diabetes. One of the beneficial effects of ucOC or OC was
also observed in patients with type 1 diabetes.
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