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Abstract

Despite great efforts over several decades, our best models of primary visual cortex (V1)

still predict spiking activity quite poorly when probed with natural stimuli, highlighting our lim-

ited understanding of the nonlinear computations in V1. Recently, two approaches based on

deep learning have emerged for modeling these nonlinear computations: transfer learning

from artificial neural networks trained on object recognition and data-driven convolutional

neural network models trained end-to-end on large populations of neurons. Here, we test

the ability of both approaches to predict spiking activity in response to natural images in V1

of awake monkeys. We found that the transfer learning approach performed similarly well

to the data-driven approach and both outperformed classical linear-nonlinear and wavelet-

based feature representations that build on existing theories of V1. Notably, transfer learn-

ing using a pre-trained feature space required substantially less experimental time to

achieve the same performance. In conclusion, multi-layer convolutional neural networks

(CNNs) set the new state of the art for predicting neural responses to natural images in pri-

mate V1 and deep features learned for object recognition are better explanations for V1

computation than all previous filter bank theories. This finding strengthens the necessity of

V1 models that are multiple nonlinearities away from the image domain and it supports the

idea of explaining early visual cortex based on high-level functional goals.

Author summary

Predicting the responses of sensory neurons to arbitrary natural stimuli is of major impor-

tance for understanding their function. Arguably the most studied cortical area is primary

visual cortex (V1), where many models have been developed to explain its function. How-

ever, the most successful models built on neurophysiologists’ intuitions still fail to account
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for spiking responses to natural images. Here, we model spiking activity in primary

visual cortex (V1) of monkeys using deep convolutional neural networks (CNNs), which

have been successful in computer vision. We both trained CNNs directly to fit the data,

and used CNNs trained to solve a high-level task (object categorization). With these

approaches, we are able to outperform previous models and improve the state of the art in

predicting the responses of early visual neurons to natural images. Our results have two

important implications. First, since V1 is the result of several nonlinear stages, it should

be modeled as such. Second, functional models of entire visual pathways, of which V1 is

an early stage, do not only account for higher areas of such pathways, but also provide use-

ful representations for V1 predictions.

Introduction

An essential step towards understanding visual processing in the brain is building models that

accurately predict neural responses to arbitrary stimuli [1]. Primary visual cortex (V1) has

been a strong focus of sensory neuroscience ever since Hubel and Wiesel’s seminal studies

demonstrated that neurons in primary visual cortex (V1) respond selectively to distinct image

features like local orientation and contrast [2, 3]. Our current standard model of V1 is based

on linear-nonlinear models (LN) [4, 5] and energy models [6] to explain simple and complex

cells, respectively. While these models work reasonably well to model responses to simple sti-

muli such as gratings, they fail to account for neural responses to more complex patterns [7]

and natural images [8, 9]. Moreover, the computational advantage of orientation-selective LN

neurons over simple center-surround filters found in the retina would be unclear [10].

There are a number of hypotheses about nonlinear computations in V1, including norma-

tive models like overcomplete sparse coding [11, 12] or canonical computations like divisive

normalization [13, 14]. The latter has been used to explain specific phenomena such as center-

surround interactions with carefully designed stimuli [15–18]. However, to date, these ideas

have not been turned into predictive models of spiking responses that generalize beyond sim-

ple stimuli—especially to natural images.

To go beyond simple LN models for natural stimuli, LN-LN cascade models have been pro-

posed, which either learn (convolutional) subunits [19–21] or use handcrafted wavelet repre-

sentations [22]. These cascade models outperform simple LN models, but they currently do

not capture the full range of nonlinearities observed in V1, like gain control mechanisms and

potentially other not-yet-understood nonlinear response properties. Because experimental

time is limited, LN-LN models have to be designed very carefully to keep the number of

parameters tractable, which currently limits their expressiveness, essentially, to energy models

for direction-selective and complex cells.

Thus, to make progress in a quantitative sense, recent advances in machine learning and

computer vision using deep neural networks (‘deep learning’) have opened a new door by

allowing us to learn much more complex nonlinear models of neural responses. There are two

main approaches, which we refer to as goal-driven and data-driven.

The idea behind the goal-driven approach is to train a deep neural network on a high-level

task and use the resulting intermediate representations to model neural responses [23, 24]. In

the machine learning community, this concept is known as transfer learning and has been

very successful in deep learning [25, 26]. Deep convolutional neural networks (CNNs) have

reached human-level performance on visual tasks like object classification by training on over

one million images [27–30]. These CNNs have proven extremely useful as nonlinear feature

V1 system identification with CNNs
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spaces for tasks where less labeled data is available [25, 31]. This transfer to a new task can be

achieved by (linearly) reading out the network’s internal representations of the input. Yamins,

DiCarlo and colleagues showed recently that using deep networks trained on large-scale object

recognition as nonlinear feature spaces for neural system identification works remarkably well

in higher areas of the ventral stream, such as V4 and IT [32, 33]. Other groups have used simi-

lar approaches for early cortical areas using fMRI [34–36]. However, this approach has not yet

been used to model spiking activity of early stages such as V1.

The deep data-driven approach, on the other hand, is based on fitting all model parameters

directly to neural data [37–41]. The most critical advance of these models in neural system

identification is that they can have many more parameters than the classical LN cascade mod-

els discussed above, because they exploit computational similarities between different neurons

[38, 40]. While previous approaches treated each neuron as an individual multivariate regres-

sion problem, modern CNN-based approaches learn one model for an entire population of

neurons, thereby exploiting two key properties of local neural circuits: (1) they share the same

presynaptic circuitry (for V1: retina and LGN) [38] and (2) many neurons perform essentially

the same computation, but at different locations (topographic organization, implemented by

convolutional weight sharing) [39–41].

While both the goal-driven and the data-driven approach have been shown to outperform

LN models in some settings, neither approach has been evaluated on spiking activity in

monkey V1 (see [42, 43] for concurrent work). In this paper, we fill this gap and evaluate both

approaches in monkey V1. We found that deep neural networks lead to substantial performance

improvements over older models. In our natural image dataset, goal-driven and data-driven

models performed similarly well. The goal-driven approach reached this performance with as

little as 20% of the dataset and its performance saturated thereafter. In contrast, the data-driven

approach required the full dataset for maximum performance, suggesting that it could benefit

from a larger dataset and reach even better performance. Our key finding is that the best models

required at least four nonlinear processing steps, suggesting that we need to revise our view of

V1 as a Gabor filter bank and appreciate the nonlinear nature of its computations. We conclude

that deep networks are not just one among many approaches that can be used, but are—despite

their limitations—currently the single most accurate model of V1 computation.

Results

We measured the spiking activity of populations of neurons in V1 of two awake, fixating rhe-

sus macaques using a linear 32-channel array spanning all cortical layers. Monkeys were view-

ing stimuli that consisted of 1450 natural images and four sets of textures synthesized to keep

different levels of higher-order correlations present in these images (Fig 1, see Methods). Each

trial consisted of a sequence of images shown for 60 ms each, with no blanks in between. In

each session, we centered the stimuli on the population receptive field of the neurons.

We isolated 262 neurons in 17 sessions. The neurons responded well to the fast succession

of natural images with a typical response latency of 40ms (Fig 2B). Therefore, we extracted the

spike counts in the window 40–100 ms after image onset (Fig 2B). The recorded neurons were

diverse in their temporal response properties (e.g. see autocorrelogram Fig 2A), average firing

rates in response to stimulus (21.1 ± 20.8 spikes/s, mean ± S.D.), cortical depth (55% of cells in

granular, 18% in supragranular, and 27% infragranular layers), and response-triggered average

(RTA) structure (Fig 2C), but neurons recorded on the same array generally had their recep-

tive fields at similar locations approximately centered on the stimulus (Fig 2C). Prior to analy-

sis, we selected neurons based on how reliable their responses were from trial to trial and

included only neurons for which at least 15% of their total variance could be attributed to the

V1 system identification with CNNs
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stimulus (see Methods). This selection resulted in 166 neurons, which form the basis of the

models we describe in the following.

Generalized linear model with pre-trained CNN features

We start by investigating the goal-driven approach [23, 24]. Here, the idea is to use a high-per-

forming neural network trained on a specific goal—object recognition in this case—as a non-

Fig 1. Stimulus paradigm. A: Classes of images shown in the experiment. We used grayscale natural images (labeled

‘original’) from the ImageNet dataset [44] along with textures synthesized from these images using the texture synthesis

algorithm described by [45]. Each row shows four synthesized versions of three example original images using different

convolutional layers (see Materials and Methods for details). Lower convolutional layers capture more local statistics

compared to higher ones. B: Stimulus sequence. In each trial, we showed a randomized sequence of images (each

displayed for 60 ms covering 2 degrees of visual angle) centered on the receptive fields of the recorded neurons while

the monkey sustained fixation on a target. The images were masked with a circular mask with cosine fadeout.

https://doi.org/10.1371/journal.pcbi.1006897.g001

V1 system identification with CNNs
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Fig 2. V1 electrophysiological responses. A: Isolated single-unit activity. We performed acute recordings with a 32-channel, linear array (NeuroNexus

V1x32-Edge-10mm-60-177, layout shown in the left) to record in primary visual cortex of two awake, fixating macaques. The channel mean-waveform

footprints of the spiking activity of 23 well-isolated neurons in one example session are shown in the central larger panel. The upper panel shows color-

matched autocorrelograms. B: Peri-stimulus time histograms (PSTH) of four example neurons from A. Spike counts where binned with t = 1 ms, aligned

to the onset of each stimulus image, and averaged over trials. The 60 ms interval where the image was displayed is shown in red. We ignored the

temporal profile of the response and extracted spike counts for each image on the 40–100 ms interval after image onset (shown in light gray). C: The

Response Triggered Average (RTA) calculated by reverse correlation of the extracted responses.

https://doi.org/10.1371/journal.pcbi.1006897.g002
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linear feature space and train only a simple linear-nonlinear readout. We chose VGG-19 [28]

over other neural networks, because it has a simple architecture (described below), a fine

increase in receptive field size along its hierarchy and reasonably high classification accuracy.

VGG-19 is a CNN trained on the large image classification task ImageNet (ILSVRC2012)

that takes an RGB image as input and infers the class of the dominant object in the image

(among 1000 possible classes). The architecture of VGG-19 consists of a hierarchy of

linear-nonlinear transformations (layers), where the input is spatially convolved with a set

of filters and then passed through a rectifying nonlinearity (Fig 3). The output of this opera-

tion is again an image with multiple channels. However, these channels do not represent

color—as the three channels in the input image—but learned features. They are therefore

also called feature maps. Each feature map can be viewed as a filtered version of its input.

The collection of such feature maps serves as input for the next layer. Additionally, the net-

work has five pooling layers, where the feature maps are downsampled by a factor of two by

taking the local maximum value of four neighboring pixels. There are 16 convolutional lay-

ers that can be grouped into five groups named conv1 to conv5 with 2, 2, 4, 4, 4 convolu-

tional layers and 64, 128, 256, 512, 512 output feature maps, respectively, and a pooling layer

after each group.

Fig 3. Our proposed model based on VGG-19 features. VGG-19 [28] (gray background) is a trained CNN that takes

an input image and produces a class label. For each of the 16 convolutional layers of VGG-19, we extract the feature

representations (feature maps) of the images shown to the monkey. We then train for each recorded neuron and

convolutional layer, a Generalized Linear Model (GLM) using the feature maps as input to predict the observed spike

counts. The GLM is formed by a linear projection (dot product) of the feature maps, a pointwise nonlinearity, and an

assumed noise distribution (Poisson) that determines the optimization loss for training. We additionally imposed

strong regularization constraints on the readout weights (see text).

https://doi.org/10.1371/journal.pcbi.1006897.g003
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We used VGG-19 as a feature space in the following way: We selected the output of a con-

volutional layer as input features for a Generalized Linear Model (GLM) that predicts the

recorded spike counts (Fig 3). Specifically, we fed each image x in our stimulus set through

VGG-19 to extract the resulting feature maps F(x) of a certain layer. These feature maps were

then linearly weighted with a set of learned readout weights w. This procedure resulted in a

single scalar value for each image that was then passed through a (static) output nonlinearity

to produce a prediction for the firing rate:

rðxÞ ¼ exp ½wTFðxÞ þ b� ð1Þ

We assumed this prediction to be the mean rate of a Poisson process (see Methods for details).

In addition, we applied a number of regularization terms on the readout weights that we

explain later.

Intermediate layers of VGG best predict V1 responses

We first asked which convolutional layer of VGG-19 provides the best feature space for V1. To

answer this question, we fitted a readout for each layer and compared the performance. We

measured performance by computing the fraction of explainable variance explained (FEV).

This metric, which ranges from zero to one, measures what fraction of the stimulus-driven

response is explained by the model, ignoring the unexplainable trial-to-trial variability in the

neurons’ responses (for details see Methods).

We found that the fifth (out of sixteen) layers’ features (called ‘conv3_1’, Fig 3) best pre-

dicted neuronal responses to novel images not seen during training (Fig 4, solid line). This

model predicted on average 51.6% of the explainable variance. In contrast, performance for

the very first layer was poor (31% FEV), but increased monotonically up to conv3_1. After-

wards, the performance again decreased continually up the hierarchy (Fig 4). These results fol-

lowed our intuition that early to intermediate processing stages in a hierarchical model should

match primary visual cortex, given that V1 is the third processing stage in the visual hierarchy

after the retina and the lateral geniculate nucleus (LGN) of the thalamus.

Fig 4. Model performance on test set. Average fraction of explainable variance explained (FEV) for models using

different VGG layers as nonlinear feature spaces for a GLM. Error bars show 95% confidence intervals of the

population means. The model based on layer conv3_1 shows on average the highest predictive performance.

https://doi.org/10.1371/journal.pcbi.1006897.g004
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Control for input resolution and receptive field sizes

An important issue to be aware of is that the receptive field sizes of VGG units grow along the

hierarchy—just like those of visual neurons in the brain. Incidentally, the receptive fields of

units in the best-performing layer conv3_1 subtended approximately 0.68 degrees of visual

angle, roughly matching the expected receptive sizes of our V1 neurons given their eccentrici-

ties between 1 and 3 degrees. Because receptive fields in VGG are defined in terms of image

pixels, their size in degrees of visual angle depends on the resolution at which we present

images to VGG, which is a free parameter whose choice will affect the results.

VGG-19 was trained on images of 224 × 224 px. Given the image resolution we used for the

analyses presented above, an entire image would subtend�6.4 degrees of visual angle (the

crops shown to the monkey were 2 degrees; see Methods for details). Although this choice

appears to be reasonable and consistent with earlier work [33], it is to some extent arbitrary. If

we had presented the images at lower resolution, the receptive fields sizes of all VGG units

would have been larger. As a consequence, the receptive fields of units in earlier layers would

match those of V1 and these layers may perform better. If this was indeed the case, there

would be nothing special about layer conv3_1 with respect to V1.

To ensure that the choice of input resolution did not affect our results, we performed a con-

trol experiment, which substantiated our claim that conv3_1 provides the best features for V1.

We repeated the model comparison presented above with different input resolutions, rescaling

the image crops by a factor of 0.67 and 1.5. These resolutions correspond to 9.55 and 4.25

degrees of full visual field for VGG-19, respectively. While changing the input resolution did

shift the optimal layer towards that with matching receptive field sizes (Fig 5, first and third

row), the resolution we had picked for our main experiment yielded the best overall perfor-

mance (Fig 5, second row, third column). Thus, over a range of input resolutions and layers,

conv3_1 performed best, although conv2_2 at lower resolution yielded only slightly lower

performance.

Careful regularization is necessary

The number of predictors given by the convolutional feature space of a large pre-trained net-

work is much larger than the number of pixels in the image. Most of these predictors will likely

be irrelevant for most recorded neurons—for example, network units at spatial positions that

are not aligned with the neuron’s receptive field or feature maps that compute nonlinearities

Fig 5. VGG-19 based model performance at different input scales. The performance on test set of cross-validated

models that use as feature spaces layers conv2_1 to conv3_3 for different input resolutions. With the original scale used

in Fig 4, we assumed that VGG-19 was trained with 6.4 degrees field of view. Scaling this resolution by a factor of 0.67

and 1.5 justifies the original choice of resolution for further analysis. At the bottom, the receptive field sizes in pixels of

the different layers are shown.

https://doi.org/10.1371/journal.pcbi.1006897.g005

V1 system identification with CNNs
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unrelated to those of the cells. Naïvely including many unimportant predictors would prevent

us from learning a good mapping, because they lead to overfitting. We therefore used a regu-

larization scheme with the following three terms for the readout weights: (1) sparsity, to

encourage the selection of a few units; (2) smoothness, for a regular spatial continuity of the

predictors’ receptive fields; and (3) group sparsity, to encourage the model to pool from a

small number of feature maps (see Methods for details).

We found that regularization was key to obtaining good performance (Table 1). The full

model with all three terms had the best performance on the test set and vastly outperformed a

model with no regularization. Eliminating one of the three terms while keeping the other two

hurt performance only marginally. Among the three regularizers, sparsity appeared to be the

most important one quantitatively, whereas smoothness and group sparsity could be dropped

without hurting overall performance.

To understand the effect of the different regularizers qualitatively, we visualized the readout

weights of each feature map of our conv3_1-based model, ordered by their spatial energy for

each cell, for each of the regularization schemes (see Fig 6A for five sample neurons). Without

the sparsity constraint, we obtained smooth but spread-out weights that were not well local-

ized. Dropping the smoothness term—despite performing equally in a quantitative sense—

produced sparse activations that were less localized and not smooth. Without any regulariza-

tion, the weights appeared noisy and one could not get any insights about the locality of the

neuron. On the other hand, the full model—in addition to having the best performance—also

Table 1. Ablation experiments for VGG-based model, removing regularization terms (rows 2–5) and using factor-

ized readout weights (row 6, [40]).

Model FEV

Full model 0.52

No smoothness 0.51

No sparsity 0.49

No group sparsity 0.51

No regularization 0.33

Factorized readout [40] 0.45

https://doi.org/10.1371/journal.pcbi.1006897.t001

Fig 6. Learned readout weights with different regularization modes. A. For five example neurons (rows), the five highest-energy spatial readouts out of 256 feature

maps of conv3_1 for each regularization scheme we explored. Feature map weights are 10 × 10 for a 40 × 40 input (� 1.1˚). The full model exhibits the most localized

and smooth receptive fields. The scale bar is shared by all features maps of a each model and neuron from their minimum (white) to the maximum (dark). B. The

highest normalized spatial energy of the learned readouts as a function of ordered feature maps (first 70 out of 256 of conv3_1 shown) averaged for all cells. With

regularization, only a few feature maps are used for prediction, quickly asymptoting at 1.

https://doi.org/10.1371/journal.pcbi.1006897.g006
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provides localized and smooth filters that provide information about the neurons’ receptive

field and the set of useful feature maps for prediction.

Finally, we also observed that only a small number of feature maps was used for each neu-

ron: the weights decayed exponentially and only 20 feature maps out of 256 contained on aver-

age 82% of the readout energy (Fig 6B).

An alternative form of regularization or inductive bias would be to constrain the readout

weights to be factorized in space and features [40], which reduces the number of parameters

substantially. However, the best model with this factorized readout achieved only 45.5% FEV

(Table 1), presumably because the feature space has not been optimized for such a constrained

readout.

Goal-driven and data driven CNNs set the state of the art

Multi-layer feedforward networks have been fitted successfully to neural data on natural image

datasets in mouse V1 [38, 40]. Thus, we inquired how our goal-driven model compares to a

model belonging to the same functional class, but directly fitted to the neural data. Following

the methods proposed by Klindt et. al [40], we fitted CNNs with one to five convolutional lay-

ers (Fig 7A; see Methods for details).

The data-driven CNNs with three or more convolutional layers yielded the best perfor-

mance, outperforming their competitors with fewer (one or two) layers (Fig 7B). We therefore

decided to use the CNN with three layers for model comparison, as it is the simplest model

with highest predictive power on the validation set.

We then asked how the predictive performance of both data-driven and goal driven mod-

els compares to previous models of V1. As a baseline, we fitted a regularized version of the

classical linear-nonlinear Poisson model (LNP; [46]). The LNP is a very popular model used

to estimate the receptive field of neurons and offers interpretability and convexity for its

optimization. This model gave us a good idea of the nonlinearity of the cells’ responses.

Additionally, we fit a model based on a handcrafted nonlinear feature space consisting of a

set of Gabor wavelets [4, 47–49] and energy terms of each quadrature pair [6]. We refer to

this model as the ‘Gabor filter bank’ (GFB). It builds upon existing knowledge about V1

function and is able to model simple and complex cells as well as linear combinations

thereof. Moreover, this model is the current state of the art in the neural prediction challenge

for monkey V1 responses to natural images [50] and therefore a strong baseline for a quanti-

tative evaluation.

Fig 7. Data-driven convolutional network model. We trained a convolutional neural network to produce a feature space fed to a GLM-like

model. In contrast to the VGG-based model, both feature space and readout weights are trained only on the neural data. A. Three-layer

architecture with a factorized readout [40] used for comparison with other models. B. Performance of the data driven approach as a function of

the number of convolutional layers on held-out data. Three convolutional layers provided the best performance on the validation set. See

Methods for details.

https://doi.org/10.1371/journal.pcbi.1006897.g007
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We compared the models for a number of cells selected randomly (Fig 8A). There was a

diversity of cells, both in terms of how much variance could be explained in principle (dark

gray bars) and how well the individual models performed (colored bars). Overall, the deep

learning models consistently outperformed the two simpler models of V1. This trend was con-

sistent across the entire dataset (Fig 8B and 8D). The LNP model achieved 16.3% FEV, the

GFB model 45.6% FEV. The performance of the CNN trained directly on the data was compa-

rable to that of the VGG-based model (Fig 8C and 8D); they predicted 49.8% and 51.6% FEV,

respectively, on average. The differences in performance between all four models were statisti-

cally significant (Wilcoxon signed rank test, n = 166; family-wise error rate α = 0.05 using

Holm-Bonferroni method to account for multiple comparisons). Note that the one-layer CNN

(mean 34.5% FEV, Fig 7) structurally resembles the convolutional subunit model proposed by

Fig 8. Deep models are the new state of the art. A: Randomly selected cells. The normalized explainable variance (oracle) per cell is shown in gray. For each cell from

left to right, the variance explained of: regularized LNP [46], GFB [22, 47, 48], three-layer CNN trained on neural responses, and VGG conv3_1 model (ours). B. CNN

and VGG conv3_1 models outperform for most cells LNP and GFB. Black line denotes the identity. The performance is given in FEV. C: VGG conv3_1 features

perform slightly better than the three-layer CNN. D: Performance of the four models in fraction of explainable variance explained (FEV) averaged across neurons.

Error bars show 95% confidence intervals of the population means. All models perform significantly different from each other (Wilcoxon signed rank test, n = 166;

family-wise error rate α = 0.05 using Holm-Bonferroni method to account for multiple comparisons).

https://doi.org/10.1371/journal.pcbi.1006897.g008
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Vintch and colleagues [21]. Thus, deeper CNNs also outperform learned LN-LN cascade

models.

Improvement of model predictions is not linked to neurons’ tuning

properties

We next asked whether the improvement in predictive performance afforded by our deep neu-

ral network models was related in any way to known tuning properties of V1 neurons such as

the shape of their orientation tuning curve or their classification along the simple-complex

axis. To investigate this question, we performed an in-silico experiment: we showed Gabor

patches of the same size as our image stimulus with various orientations, spatial frequencies

and phases (Fig 9A) to our CNN model of each cell. Based on the model output, we computed

tuning curves for orientation (Fig 9B) and spatial phase (Fig 9D) by using the set of Gabors

with the optimal spatial frequency for each neuron.

Based on the phase tuning curves we compute a linearity index (see Methods), which

locates each cell on the axis from simple (linearity index close to one) to complex (index close

to zero). We then asked whether there are systematic differences in model performance as a

function of this simple-complex characterization. As expected, we found that more complex

cells are explained better by the Gabor filter bank model than an LNP model (Fig 9C). The

same was true for both the data-driven CNN and the VGG-based model. However, the simple-

complex axis did not predict whether and how much the CNN models outperformed the

Gabor filter bank model. Thus, whatever aspect of V1 computation was additionally explained

by the CNN models, it was shared by both simple and complex cells.

Next, we asked whether there is a relationship between orientation selectivity (tuning

width) and the performance of any of our models. We found that for cells with sharper orien-

tation tuning, the performance gain afforded by the Gabor filter bank model (and both CNN-

based models) over an LNP was larger than for less sharply tuned cells (Fig 9E). This result is

not unexpected given that cells in layer 2/3 tend to have narrower tuning curves and also tend

to be more complex [51, 52]. However, as for the simple-complex axis, tuning width was not

predictive of the performance gain afforded by a CNN-based model over the Gabor filter bank

(Fig 9E). Therefore, any additional nonlinearity in V1 computation captured by the CNN

models is not specific to sharply or broadly tuned neurons.

Models generalize across stimulus statistics

Our stimulus set contains both natural images as well as four sets of textures generated from

those images. These textures differ in how accurately and over what spatial extent they repro-

duce the local image statistics (see Fig 1). On the one end of the spectrum, samples from the

conv1 model reproduce relatively linear statistics over small regions of a few minutes of arc.

On the other end of the spectrum, samples from the conv4 model almost perfectly reproduce

the statistics of natural images over larger regions of 1–2 degrees of visual angle, covering the

entire classical and at least part of the extra-classical receptive field of V1 neurons.

We asked to what extent including these different image statistics helps or hurts building a

predictive model. To answer this question, we additionally fit both the data-driven CNN

model and the VGG-based model to subsets of the data containing only images from a single

image type (originals or one of four texture classes). We then evaluated each of these models

on all image types (Fig 10). Perhaps surprisingly, we found that using any of the four texture

statistics or the original images for training lead to approximately equal performance, indepen-

dent of which images were used for testing the model (Fig 10). This result held for both the

VGG-based (Fig 10A) and the data-driven CNN model (Fig 10B). Thus, using the very
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Fig 9. Relationship between model performance and neurons’ tuning properties. A. A sample subset of the Gabor stimuli with a rich diversity of frequencies,

orientations, and phases.B. Dots: Orientation tuning curves of 80 sample neurons predicted by our CNN model. Tuning curves computed at the optimal spatial

frequency and phase for each neuron. Lines: von Mises fits.C. Difference in performance between pairs of the four models as a function of tuning width. Tuning

width was defined as the full width at half maximum of the fitted tuning curve.D. Dots: Phase tuning curves of the same 80 sample neurons as in B, predicted by

our CNN model. Tuning curves computed at the optimal spatial frequency and orientation for each neuron. Lines: Cosine tuning curve with fitted amplitude and

offset (see Methods).E. Like C, the difference in performance between pairs of models as a function of the neurons’ linearity index. Linearity index: ratio of

amplitude of cosine over offset (0: complex; 1: simple).F. Performance comparison between GFB and LNP model. Red: simple cells (top 16% linearity,

linearity> 0.3); blue: complex cells (bottom 28% linearity, linearity< 0.04).

https://doi.org/10.1371/journal.pcbi.1006897.g009
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localized conv1 textures worked just as well for predicting the responses to natural images as

did training directly on natural images—or any other combination of training and test set.

This result is somewhat surprising to us, as the conv1 textures match only very simple and

local statistics on spatial scales smaller than individidual neurons’ receptive fields and percep-

tually are much closer to noise than to natural images.

VGG-based model needs less training data

An interesting corollary of the analysis above is the difference in absolute performance

between the VGG-based and the data-driven CNN model when using only a subset of images

for training: while the performance of the VGG-based model remains equally high when using

only a fifth of the data for training (Fig 10A), the data-driven CNN takes a substantial hit (Fig

10B, second and following rows). Thus, while the two models perform similarly when using

our entire dataset, the VGG-based model works better when less training data is available.

This result indicates that, for our current experimental paradigm, training the readout weights

is not the bottleneck—despite the readout containing a large number of parameters in the

VGG-based model (Table 2). Because we know that only a small number of non-zero weights

are necessary, the L1 regularizer works very well in this case. In contrast, the data-driven

model takes a substantial hit when using only a subset of the data, suggesting that learning the

shared feature space is the bottleneck for this model. Thus collecting a larger dataset could

help the data-driven model but is unlikely to improve performance of the VGG-based one.

Fig 10. Training and evaluation on the different stimulus types. For both conv3_1 features of VGG-19 (left) and CNN-based models, we trained with

all and every individual stimulus type (rows) (see Fig 1) and tested on all and every individual type. The VGG model showed good domain transfer in

general. The same was true for the data-driven CNN model, although it performed worse overall when trained on only one set of images due to the

smaller training sample. There were no substantial differences in performance across image statistics.

https://doi.org/10.1371/journal.pcbi.1006897.g010

Table 2. Number of learned parameters for the different models. ‘Core’ refers to the part shared among all neurons.

‘Readout’ refers to the parameters required for each neuron.

Model Core Readout/neuron Total

LNP - 1,601 265,766

GFB - 5,545 920,470

CNN 23,936 867 167,858

VGG 512 25,601 4,250,278

https://doi.org/10.1371/journal.pcbi.1006897.t002
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Discussion

Our goal was to find which model among various alternatives is best for one of the most stud-

ied systems in modern systems neuroscience: primary visual cortex. We fit two models based

on convolutional neural networks to V1 responses to natural stimuli in awake, fixating mon-

keys: a goal-driven model, which uses the representations learned by a CNN trained on object

recognition (VGG-19), and a data-driven model, which learns both the convolutional and

readout parameters using stimulus-response pairs with multiple neurons simultaneously. Both

approaches yielded comparable performance and substantially outperformed the widely used

LNP [46] and a rich Gabor filter bank (GFB), which held the previous state of the art in predic-

tion of V1 responses to natural images. This finding is of great importance because it suggests

that deep neural networks can be used to model not only higher cortex, but also lower cortical

areas. In fact, deep networks are not just one among many approaches that can be used, but

the only class of models that has been shown to provide the multiple nonlinearities necessary

to accurately describe V1 responses to natural stimuli.

Our work contributes to a growing body of research where goal-driven deep learning mod-

els [23, 24] have shown unprecedented predictive performance in higher areas of the visual

stream [32, 33], and a hierarchical correspondence between deep networks and the ventral

stream [35, 53]. Studies based on fMRI have established a correspondence between early layers

of CNNs trained on object recognition and V1 [35, 54]. Here, with electrophysiological data

and a deeper network (VGG-19), we found that V1 is better explained by feature spaces multi-

ple nonlinearities away from the pixels. We found that it takes five layers (a quarter of the way)

into the computational stack of the object categorization network to explain V1 best, which is

in contrast to the many models that treat V1 as only one or two nonlinearities away from pixels

(i.e. GLMs, energy models). Earlier layers of our CNNs might explain subcortical areas better

(i.e. retina and LGN), as they are known to be modeled best with multiple, but fewer, nonline-

arities already [41].

What are, then, the additional nonlinearities captured by our deep convolutional models

beyond those in LNP or GFB? Our first attempts to answer this question via an in-silico analy-

sis revealed that whatever the CNNs capture beyond the Gabor filter bank model is not specific

to the cells’ tuning properties, such as width of the orientation tuning curve and their charac-

terization along the simple-complex spectrum. This result suggests that the missing nonlinear-

ity may be relatively generic and applicable to most cells. There are a few clear candidates for

such nonlinear computations, including divisive normalization [55] and overcomplete sparse

coding [12]. Unfortunately, quantifying whether these theories provide an equally good

account of the data is not straightforward: so far they have not been turned into predictive

models for V1 neurons that are applicable to natural images. In the case of divisive normaliza-

tion, the main challenge is learning the normalization pool. There is evidence for multiple nor-

malization pools, both tuned and untuned and operating in the receptive field center and

surround [56]. However, previous work investigating these normalization pools has employed

simple stimuli such as gratings [18] and we are not aware of any work learning the entire nor-

malization function from neural responses to natural stimuli. Similarly, sparse coding has so

far been evaluated only qualitatively by showing that the learned basis functions resemble

Gabor filters [12]. Solving a convolutional sparse coding problem [57] and using the resulting

representation as a feature space would be a promising direction for future work, but we con-

sider re-implementing and thoroughly evaluating this approach to be beyond the scope of the

current paper.

To move forward in understanding such nonlinearities may require developing more inter-

pretable neural networks or methods that provide interpretability of networks, which are an
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active area of research in the machine learning community. Alternatively, we could build pre-

dictive models constrained with specific hard-coded nonlinearities (such as normalization)

that express our knowledge about important computations.

It is also possible that the mechanistic level of circuit components remains undercon-

strained by function and thus allows only for explanations up to some degree of degeneracy,

requiring knowledge of the objective function the system optimizes (e.g. sparse coding, predic-

tive coding). Our results show that object categorization—despite being a relatively impover-

ished visual task—is a very useful learning objective not only for high-level areas in the ventral

stream, but also for a more low-level and general-purpose area like V1, despite the fact that V1

clearly serves a large number of tasks beyond object categorization. This finding resonates well

with results from computer vision, where object categorization has also been found to be an

extremely useful objective to learn features applicable to numerous other visual tasks [25].

Our current best models still leave almost half of the explainable variance unexplained,

raising the question of how to make further progress. Our finding that the VGG-based model

performed equally well with only 20% of the images in the training set suggests that its perfor-

mance was not limited by the amount of data available to learn the readout weights, which

make for the bulk of the parameters in this model (Table 2). Instead, the VGG-based model

appears to be limited by a remaining mismatch between VGG features and V1 computation.

This mismatch could potentially be reduced by using features from neural networks trained

simultaneously on multiple ethologically relevant tasks beyond object categorization. The

data-driven model reached its full performance only with the full training set, suggesting that

learning the nonlinear feature space is the bottleneck. In this case, pooling over a larger num-

ber of neurons or recording longer from the same neurons should improve performance

because most of the parameters are in the shared feature space (Table 2) and this number is

independent of the number of neurons being modeled.

We conclude that previous attempts to describe the basic computations that different types

of neurons in primary visual cortex perform (e.g. “edge detection”) do not account for the

complexity of multi-layer nonlinear computations that are necessary for the performance

boost achieved with CNNs. Although these models, which so far best describe these computa-

tions, are complex and lack a concise intuitive description, they can be obtained by a simple

principle: optimize a network to solve an ecologically relevant task (object categorization) and

use the hidden representations of such a network. For future work, combining data- and goal-

driven models and incorporating the recurrent lateral and feedback connections of the neocor-

tex promise to provide a framework for incrementally unravelling the nonlinear computations

of V1 neurons.

Methods

Ethics statement

All behavioral and electrophysiological data were obtained from two healthy, male rhesus

macaque (Macaca mulatta) monkeys aged 12 and 9 years and weighing 12 and 10 kg, respec-

tively, during the time of study. All experimental procedures complied with guidelines of the

NIH and were approved by the Baylor College of Medicine Institutional Animal Care and

Use Committee (permit number: AN-4367). Animals were housed individually in a large

room located adjacent to the training facility, along with around ten other monkeys permit-

ting rich visual, olfactory and auditory interactions, on a 12h light/dark cycle. Regular veteri-

nary care and monitoring, balanced nutrition and environmental enrichment were provided

by the Center for Comparative Medicine of Baylor College of Medicine. Surgical procedures

on monkeys were conducted under general anesthesia following standard aseptic techniques.
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To ameliorate pain after surgery, analgesics were given for 7 days. Animals were not sacri-

ficed after the experiments.

Electrophysiological recordings

We performed non-chronic recordings using a 32-channel linear silicon probe (NeuroNexus

V1x32-Edge-10mm-60-177). The surgical methods and recording protocol were described

previously [58]. Briefly, form-specific titanium recording chambers and headposts were

implanted under full anesthesia and aseptic conditions. The bone was originally left intact and

only prior to recordings, small trephinations (2 mm) were made over medial primary visual

cortex at eccentricities ranging from 1.4 to 3.0 degrees of visual angle. Recordings were done

within two weeks of each trephination. Probes were lowered using a Narishige Microdrive

(MO-97) and a guide tube to penetrate the dura. Care was taken to lower the probe slowly, not

to penetrate the cortex with the guide tube and to minimize tissue compression (for a detailed

description of the procedure, see [58]).

Data acquisition and spike sorting

Electrophysiological data were collected continuously as broadband signal (0.5Hz–16kHz)

digitized at 24 bits as described previously [59]. Our spike sorting methods are based on [60],

code available at https://github.com/aecker/moksm, but with adaptations to the novel type of

silicon probe as described previously [58]. Briefly, we split the linear array of 32 channels into

14 groups of 6 adjacent channels (with a stride of two), which we treated as virtual electrodes

for spike detection and sorting. Spikes were detected when channel signals crossed a threshold

of five times the standard deviation of the noise. After spike alignment, we extracted the first

three principal components of each channel, resulting in an 18-dimensional feature space used

for spike sorting. We fitted a Kalman filter mixture model [61, 62] to track waveform drift typi-

cal for non-chronic recordings. The shape of each cluster was modeled with a multivariate t-
distribution (df = 5) with a ridge-regularized covariance matrix. The number of clusters was

determined based on a penalized average likelihood with a constant cost per additional cluster

[60]. Subsequently, we used a custom graphical user interface to manually verify single-unit

isolation by assessing the stability of the units (based on drifts and health of the cells through-

out the session), identifying a refractory period, and inspecting the scatter plots of the pairs of

channel principal components.

Visual stimulation and eye tracking

Visual stimuli were rendered by a dedicated graphics workstation and displayed on a 19” CRT

monitor (40 × 30 cm) with a refresh rate of 100 Hz at a resolution of 1600 × 1200 pixels and a

viewing distance of 100 cm (resulting in�70 px/deg). The monitors were gamma-corrected to

have a linear luminance response profile. A camera-based, custom-built eye tracking system

verified that monkeys maintained fixation within� 0.42 degrees around the target. Offline

analysis showed that monkeys typically fixated much more accurately. The monkeys were

trained to fixate on a red target of� 0.15 degrees in the middle of the screen. After they main-

tained fixation for 300 ms, a visual stimulus appeared. If the monkeys fixated throughout the

entire stimulus period, they received a drop of juice at the end of the trial.

Receptive field mapping

At the beginning of each session, we first mapped receptive fields. We used a sparse random

dot stimulus for receptive field mapping. A single dot of size 0.12 degrees of visual field was
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presented on a uniform gray background, changing location and color (black or white) ran-

domly every 30 ms. Each trial lasted for two seconds. We obtained multi-unit receptive field

profiles for every channel using reverse correlation. We then estimated the population recep-

tive field location by fitting a 2D Gaussian to the spike-triggered average across channels at the

time lag that maximizes the signal-to-noise-ratio. We subsequently placed our natural image

stimulus at this location.

Natural image stimulus

We used a set of 1450 grayscale images as well as four texturized versions of each image. We

used grayscale images to avoid the complexity of dealing with color and focus on spatial image

statistics. The texturized stimuli allowed us to vary the degree of naturalness, ranging from rel-

atively simple, local statistics to very realistic textures capturing image statistics over spatial

scales covering both classical and at least parts of the extra-classical receptive field of neurons.

The images were taken from ImageNet [44], converted to grayscale and rescaled to 256 × 256

pixels. We generated textures with different degrees of naturalness by capturing different levels

of higher-order correlations from a local to a global scale by using a parametric model for tex-

ture synthesis [45]. This texture model uses summary statistics of feature activations in differ-

ent layers of the VGG-19 network [28] as parameters for the texture. The lowest-level model

uses only the statistics of layer conv1_1. We refer to it as the “conv1” model. The next one uses

statistics of conv1_1 and conv2_1 (referred to as conv2), and so on for conv3 and conv4. Due

to the increasing level of nonlinearity of the VGG-19 features and their increasing receptive

field sizes with depth, the textures synthesized from these models become increasingly more

natural (see Fig 1 and [45] for more examples)

To synthesize the textures, we start with a random white noise image and iteratively refine

pixels via gradient descent such that the resulting image matches the feature statistics of the

original image [45]. For displaying and further analyses, we cropped the central 140 pixels of

each image, which corresponds to 2 degrees of visual angle.

The entire data set contains 1450 × 5 = 7250 images (original plus synthesized). During

each trial, 29 images were displayed, each for 60 ms, with no blanks in between (Fig 1B). We

chose this fast succession of images to maximize the number of images we can get through in

a single experiment, resulting in a large training set for model fitting. The short presentation

times also mean that the responses we observe are mainly feedforward, since feedback pro-

cesses take some time to be engaged. Each image was masked by a circular mask with a diame-

ter of 2 degrees (140 px) and a soft fade-out starting at a diameter of 1 degree:

mðrÞ ¼

1 if 0 < r < 0:5

0:5 cos ðpð2r � 1ÞÞ þ 0:5 if 0:5 � r < 1

0 otherwise

8
>><

>>:

ð2Þ

Images were randomized such that consecutive images were not of the same type or synthe-

sized from the same image. A full pass through the dataset took 250 successful trials, after

which it was traversed again in a new random order. Images were repeated between one and

four times, depending on how many trials the monkeys completed in each session.

Dataset and inclusion criteria

We recorded a total of 307 neurons in 23 recording sessions. We did not consider six of these

sessions, for which we did not obtain enough trials to have at least two repetitions for each

image. In the remaining 17 sessions, we quantified the fraction of total variance of each neuron
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attributable to the stimulus by computing the ratio of explainable and total variance (grey bars

in Fig 8):

Var½y� � s2

noise

Var½y�
ð3Þ

The explainable variance is the total variance minus the variance of the observation noise. We

estimated the variance of the observation noise, s2
noise, by averaging (across images) the vari-

ance (across repetitions) of responses to the same stimulus:

s2
noise ¼ Ej½Vari½yijxj��; ð4Þ

where xj is the jth image and yi the response to the ith repetition. We discarded neurons with a

ratio of explainable-to-total variance (see Eq 3) smaller than 0.15, yielding 166 isolated neurons

(monkey A: 51, monkey B: 115) recorded in 17 sessions with an average explainable variance

of 0.285. Monkey A had only sessions with two repetitions while Monkey B had four repeti-

tions per image.

Image preprocessing

All images were contrast-matched before displaying them on the screen. To do so, we

rescaled the pixel intensities of all images such that the central, unmasked 1˚ (70 pixels)

of each image had the same mean and standard deviation. We set the mean to 128 (same as

the gray background) and the standard deviation to the average standard deviation across

images. Any pixels falling outside the range of [0, 255] after this procedure were cropped to

this range.

Prior to model fitting, we additionally cropped the central 80 pixels (1.1˚) of the 140-pixel

(2˚) images shown to the monkey. For most of the analyses presented in this paper, we sub-

sampled these crops to half their size (40 × 40) and z-scored them. For the input resolution

control (Fig 5), we resampled with bicubic interpolation the original 80 × 80 crops to 60 × 60,

40 × 40, and 27 × 27 for scales 1.5, 1, 0.67, respectively.

GLM with pre-trained CNN features

Our proposed model consists of two parts: feature extraction and a generalized linear model

(GLM; Fig 3). The features are the output maps F(x) of convolutional layers of VGG-19 [28]

to a stimulus image x, followed by a batch normalization layer. We perform this normalization

to ensure that the activations of each feature map have zero mean and unit variance (before

ReLU), which is important because the readout weights are regularized by an L1 penalty and

having input features with different variances would implicitly apply different penalties on

their corresponding readout weights.

We fit a separate GLM for each convolutional layer of VGG-19. The GLM consists of linear

fully connected weights wijk for each neuron that compute a dot product with the input feature

maps Fijk(x), a static output nonlinearity f (also known as the inverse of the link function), and

a Poisson noise model used for training. Here, i and j index space, while k indexes feature

maps (denoted as depth in Fig 3). The spiking rate of a given neuron r will follow:

rðxÞ ¼ f
P
FijkðxÞwijk þ b

� �
ð5Þ

Additionally, three regularization terms were applied to the weights:
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1. Sparsity: Most weights need to be zero since we expect the spatial pooling to be localized.

We use the L1 norm of the weights:

Lsparse ¼ lsparse

P
jwijkj ð6Þ

2. Spatial smoothness: Together with sparseness, spatial smoothness encourages spatial local-

ity by imposing continual regular changes in space. We computed this by an L2 penalty on

the Laplacian of the weights:

LLaplace ¼ lLaplace

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

ijk

ðw:;:;k � LÞ
2

ij

r
; L ¼

0 � 1 0

� 1 4 � 1

0 � 1 0

2

6
6
6
4

3

7
7
7
5

ð7Þ

3. Group sparsity encourages our model to pool from a small set of feature maps to explain

each neuron’s responses:

Lgroup ¼ lgroup

X

k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

i;j

w2

ijk

s

ð8Þ

Considering the recorded image-response pair (x, y) for one neuron, the resulting loss func-

tion is given by:

L ¼ �
P
y log rðxÞ þ rðxÞ þ Lsparse þ LLaplace þ Lgroup ð9Þ

where the sum runs over samples (image, response pairs).

We fit the model by minimizing the loss using the Adam optimizer [63] on a training set

consisting of 80% of the data, and reported performance on the remaining 20%. We cross-vali-

dated the hyperparameters λsparse, λLaplace, λgroup for each neuron independently by performing

a grid search over four logarithmically spaced values for each hyperparameter. The validation

was done on 20% of the training data. The optimal hyperparameter values obtained on the val-

idation set where λLaplace = 0.1, λsparse = 0.01, λgroup = 0.001. When fitting models, we used the

same split of data for training, validation, and testing across all models.

Data-driven convolutional neural network model

We followed the results of [40] and use their best-performing architecture that obtained state-

of-the-art performance on a public dataset [38]. Like our VGG-based model, this model also

consisted of convolutional feature extraction followed by a GLM, the difference being that

here the convolutional feature space was learned from neural data instead of having been

trained on object recognition. The feature extraction architecture consisted of convolutional

layers with filters of size 13 × 13 px for the first layer and 3 × 3 px for the subsequent layers.

Each layer had 32 feature maps (Fig 7A) and exponential linear units (ELU [64])

ELUðxÞ ¼

( x if x > 0

expðxÞ � 1 if x � 0
ð10Þ

as nonlinearities with batch normalization [65] to facilitate training in between the layers. As

in the original publication [40], we regularized the convolutional filters by imposing smooth-

ness constraints on the first layer and group sparseness on the subsequent layers. A notable dif-

ference to our VGG-based GLM is that here the readout weights are factorized in space and
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feature maps:

wijk ¼ uijvk; ð11Þ

where uij is a spatial mask and vk a set of feature pooling weights. We fitted models with

increasing number of convolutional layers (one to five). We found that optimizing the final

nonlinearity, f(x), of each neuron was important for optimal performance of the data-driven

CNN. To do so, we took the following approach: we split f(x) into two components:

f ðxÞ ¼ hðxÞgðxÞ ð12Þ

where g(x) is ELU shifted to the right and up by one unit (to make it non-negative—firing

rates are non-negative):

gðxÞ ¼ ELUðx � 1Þ þ 1 ð13Þ

and h is a non-negative, piecewise linear function:

hðxÞ ¼ exp
Xn

i¼1

aiti

 !

ð14Þ

Here, αi are parameters learned jointly with the remaining weights of the network and the ti
are a set of ‘tent’ basis functions to create a piecewise linear function with interpolation points

xi = −3, −2.82, . . ., 6 (i.e. Δx = 0.18):

ti ¼ min max 0;
x � xi� 1

Dx

� �
; max

xiþ1 � x
Dx

� �� �

ð15Þ

We regularize the output nonlinearity by penalizing the L2 norm of the first and second dis-

crete finite differences of αi to encourage h to be close to 1 and smooth:

Lout ¼ lout

Xn

i¼2

þ ðai � ai� 1Þ
2
þ
Xn� 1

i¼2

ð2ai � ai� 1 � aiþ1Þ
2

 !

ð16Þ

Note that we applied this optimization of the output nonlinearity only to the data-driven

model, as doing the same for the VGG-based model did not improve performance. One poten-

tial reason for this difference is that the VGG-based model has a much larger number of fea-

ture maps (256 for layer conv3_1) that each neuron can pool from.

Linear nonlinear poisson model (LNP)

We implemented a simple regularized LNP Model [46]. This model is fitted for each neuron

separately and consists of two simple stages: The first one is a linear filter w with the same

dimensions as the input images. The second is a pointwise exponential function as nonlinear-

ity that converts the filter output into a non-negative spike rate. The LNP assumes spike count

generation through a Poisson process, so we minimize a Poisson loss (negative log-likelihood)

to obtain the kernels of each neuron (see first term of Eq 17 below). Additionally, we imposed

two regularization constraints that we cross-validated: smoothness (Eq 7) and sparsity (Eq 6).

With the sameM image-response pairs (x, y) of the training set that we used for all other
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models, we optimized the following loss function:

LLNP ¼
XM

i¼1

½wTxi � yi log ðw
TxiÞ� þ LsparseðwÞ þ LlaplaceðwÞ ð17Þ

Gabor filter bank model (GFB)

Varying versions of the Gabor filter bank model (GFB) have been used in classical work on

system identification [22, 47, 48, 66]. This model convolves the image with quadrature pairs of

Gabor filters with varying scales, frequencies, aspect ratios, and orientations. Each quadrature

pair consists of an ‘even’ (cosine/symmetric) and an ‘odd’ (sine/antisymmetric) Gabor filter

and produces three feature maps: the results of the convolution with the two filters (‘even’ and

‘odd’ features) and an ‘energy’ feature, which is the spectral power of each pair (i.e. sum of the

squares). Thus, this model allows for modeling simple and complex cells and linear combina-

tions thereof.

The Gabor filters obeyed the following equations with x and y representing spatial dimen-

sions:

gs;f ;g;y;φðx0; y0Þ ¼ exp �
x02 þ g2y02

2s2

� �

cos 2pfx0 þ φð Þ; ð18Þ

where

x0

y0

" #

¼
cos y � sin y

sin y cos y

" # x

y

" #

ð19Þ

The standard deviation (σ) represents the scale of the Gaussian envelope, the aspect ratio (γ)

specifies the ellipticity of the envelope, the spatial frequency (f) quantifies the number of sinu-

soidal cycles divided by the width of the Gaussian aperture (�4σ), The sinusoidal grating is

determined by an orientation (θ) and phase (φ). To form quadrature pairs we set φ to 0 and

π/2 for even and odd filters, respectively. We set the kernel size of every Gabor filter to the

minimum of the input image size and the closest integer to 4σ/γ for both spatial dimensions.

To compute the even and odd feature maps, we convolved the input image with each Gabor

filter using strided convolutions (�) with stride s:

Es;f ;g;y ¼ I � gs;f ;g;y;φ¼0 ð20Þ

Os;f ;g;y ¼ I � gs;f ;g;y;φ¼p=2 ð21Þ

We then computed the energy features as follows:

As;f ;g;y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðEs;f ;g;yÞ
2
þ ðOs;f ;g;yÞ

2
q

ð22Þ

The full feature space of this model FGabor(x) is a concatenation of triplets of even, odd, and

energy features of every Gabor filter. The filter bank consisted of Ns filter sizes, Nf spatial fre-

quencies per size, Nθ orientations and Nγ aspect ratios. The spatial frequencies depended on

the size of the envelope: fn = n/4σ with n = 1, . . ., Nf, which means for n = 3 we used Gabors

with 1, 2 and 3 cycles. Aspect ratios ranged from 0.5 to 1 with equal spacing, except for Nγ = 1

where we used an aspect ratio of γ = 1. As for the GLM with VGG features, we fit a linear read-

out on top of this feature space (Eq 5), followed by a shifted ELU output nonlinearity (Eq 13).
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To train the model, we minimized a Poisson loss and regularized the readout weights to

be sparse (i.e. first two terms in Eq 9); we did not enforce smoothness or group sparsity here,

as they mainly improve interpretability but do not affect performance. We determined the

hyperparameters of the Gabor filter bank by running a search over a number of parameter

combinations and evaluating the performance of each model on the validation set. We con-

verged to the following values: three different sizes (Ns = 3: 6 px/0.17˚, 11 px/0.31˚ and 21

px/0.60˚), three different spatial frequencies (Nf = 3: f = 1, 2, 3) per size, one aspect ratio

(Nγ = γ = 1), eight orientations (Nθ = 8), convolutional stride of 6 for all filters, and L1 regu-

larization parameter α = 0.05. Notably, including multiple different aspect ratios did not

improve performance, presumably because it increased the dimensionality of the feature

space which harmed generalization.

Number of parameters to be learned

The parameters we fit for each of the models belong either to a shared set for all neurons (the

core), or are specific to each neuron (the readout). Table 2 shows the number of parameters

for each of the models and how many belong to either core or readout. For both the LNP and

GFB models, we learn only a readout from a fixed feature space for each neuron plus a bias.

For the LNP we learn one channel of pixel intensities (40 × 40 + 1). For the GFB model, we

have for each size Nf Nθ channels (3 × 8 = 24), and each filter produced a feature output of size

b1 + (40 − size)/stridec. With Ns = 3 we got sizes 6, 11, and 21 so the output features have size

6, 5, and 4, respectively. Since each Gabor filter quadrature pair produces odd, even, and

energy feature spaces, the total dimensionality is 3 × 24 × (62 + 52 + 42) + 1 = 5545. For the

three-layer CNN, we have 32 channels in all layers (32 × 3 biases) and filters with sizes 13 × 13

× 32, 3 × 3 × 32 × 32, and 3 × 3 × 32 × 32, resulting in 23, 963 core parameters. The output fea-

ture space for an image is 28 × 28 × 32 (reduced from 40 × 40 due to the padding of the convo-

lutions: no padding in first layer, zero padding in second and third). With a factorized readout

and a bias, the readout per neuron is then 28 × 28 + 32 plus a bias. In addition, our point-wise

output nonlinearity has 50 parameters. Thus, overall we have 867 readout parameters per neu-

ron for this CNN model.

For the VGG-based model, although we do not learn the feature space, we do learn batch

normalization parameters at the output of the last convolutional layer. For the model that

used conv3_1 (256 feature channels) this means learning scale and bias parameters common

to all neurons: 2 × 256 = 512 for the core. For a 40 × 40 input, the output of the feature space is

10 × 10 × 256 (due to downsampling twice via max pooling). Here, we learn a dense readout

and a bias, so the readout per neuron has 10 × 10 × 256 + 1 = 25, 601 parameters.

Performance evaluation

We measured the performance of all models with the fraction of explainable variance

explained (FEV). That is, the ratio between the variance accounted for by the model (variance

explained) and the explainable variance (numerator in Eq 3). The explainable variance is lower

than the total variance, because observation noise prevents even a perfect model from account-

ing for all variance. We compute FEV as

FEV ¼ 1 �
1

N

P
ðy � ŷÞ2 � s2

noise

Var½y� � s2
noise

; ð23Þ

where ŷ represents the model predictions, y the observed spike counts, and the level of obser-

vation noise, s2
noise is defined in Eq 4 above.
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Implementation details

We implemented all models in TensorFlow [67]. We optimized them with Adam [63] using

mini-batches of size 256, and early stopping: we evaluated performance on the validation set

every 100 training steps, and after ten iterations of no improvement, we decayed the learning

rate by a factor of three and repeated this three times. The learning rate at the beginning of the

optimization was cross-validated for the goal-driven models and set to 1e-4 for the others as

this value always worked best.

Tools. We managed our data and kept track of models, parameters, and performance

using DataJoint [68]. In addition, we used Numpy/Scipy [69], Matplotlib [70], Seaborn [71],

Jupyter [72], Tensorflow [67], and Docker [73]. The code to fit all models is available in this

repository: \url{https://github.com/sacadena/Cadena2019PlosCB}.
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