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ABSTRACT Sir2 is a highly conserved NAD+-dependent histone deacetylase that functions in heterochromatin formation and promotes
replicative life span (RLS) in the budding yeast, Saccharomyces cerevisiae. Within the yeast rDNA locus, Sir2 is required for efficient
cohesin recruitment and maintaining the stability of the tandem array. In addition to the previously reported depletion of Sir2 in
replicatively aged cells, we discovered that subunits of the Sir2-containing complexes silent information regulator (SIR) and regulator of
nucleolar silencing and telophase (RENT) were depleted. Several other rDNA structural protein complexes also exhibited age-related
depletion, most notably the cohesin complex. We hypothesized that mitotic chromosome instability (CIN) due to cohesin depletion
could be a driver of replicative aging. Chromatin immunoprecipitation assays of the residual cohesin (Mcd1-Myc) in moderately aged
cells showed strong depletion from the rDNA and initial redistribution to the point centromeres, which was then lost in older cells.
Despite the shift in cohesin distribution, sister chromatid cohesion was partially attenuated in aged cells and the frequency of
chromosome loss was increased. This age-induced CIN was exacerbated in strains lacking Sir2 and its paralog, Hst1, but suppressed
in strains that stabilize the rDNA array due to deletion of FOBT or through caloric restriction. Furthermore, ectopic expression of MCD1
from a doxycycline-inducible promoter was sufficient to suppress rDNA instability in aged cells and to extend RLS. Taken together, we
conclude that age-induced depletion of cohesin and multiple other nucleolar chromatin factors destabilize the rDNA locus, which then
results in general CIN and aneuploidy that shortens RLS.
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UDDING yeast replicative life span (RLS) was originally

described decades ago as the number of times a mother
cell divides before losing viability (Mortimer and Johnston
1959), and has been an effective model system for the iden-
tification, and/or characterization, of several conserved
aging-related genes and pathways, including SIR2, AMPK
(Snfl), and TOR signaling (Wasko and Kaeberlein 2014).
SIR2 is possibly the most famous yeast gene associated with
replicative aging and encodes the founding family mem-
ber of the NAD*-dependent histone/protein deacetylases,
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commonly known as sirtuins [reviewed in Buck et al. (2004)].
The NAD*-dependence of sirtuins provides a direct link be-
tween metabolism and cellular processes regulated by these
enzymes. In fact, recent evidence points to depletion of cellular
NAD* pools as a potential mechanism for aging-associated
disease, which could be mediated by impairment of sirtuins
or other NAD*-consuming enzymes (Gomes et al. 2013).
Therefore, understanding how sirtuins are impacted by aging
and how they regulate age-altered cellular processes is of
intense interest.

Eukaryotic genomes generally encode for several sirtuin
homologs. The Saccharomyces cerevisiae genome, for exam-
ple, encodes SIR2 and four additional Homologs of Sir Two
(HST1-HST4) (Brachmann et al. 1995; Derbyshire et al.
1996). Sir2 and its fellow silent information regulator
(SIR) proteins-Sirl, Sir3, and Sir4—were originally shown
to establish and maintain silencing of the silent mating loci

Genetics, Vol. 212, 75-91 May 2019 75


http://orcid.org/0000-0001-7129-5094
http://www.yeastgenome.org/locus/S000002200/overview
http://www.yeastgenome.org/locus/S000002200/overview
http://www.yeastgenome.org/locus/S000002200/overview
http://www.yeastgenome.org/locus/S000002200/overview
http://www.yeastgenome.org/locus/S000002161/overview
http://www.yeastgenome.org/locus/S000002200/overview
http://www.yeastgenome.org/locus/S000005429/overview
http://www.yeastgenome.org/locus/S000002517/overview
http://www.yeastgenome.org/locus/S000002161/overview
http://www.yeastgenome.org/locus/S000002200/overview
http://www.yeastgenome.org/locus/S000002885/overview
http://www.yeastgenome.org/locus/S000002200/overview
http://www.yeastgenome.org/locus/S000002200/overview
http://www.yeastgenome.org/locus/S000005429/overview
http://www.yeastgenome.org/locus/S000002599/overview
http://www.yeastgenome.org/locus/S000002200/overview
http://www.yeastgenome.org/locus/S000001809/overview
http://www.yeastgenome.org/locus/S000004434/overview
http://www.yeastgenome.org/locus/S000002635/overview
https://doi.org/10.1534/genetics.119.302047
https://doi.org/10.25386/genetics.7766783
mailto:jss5y@virginia.edu

HML and HMR (Rine and Herskowitz 1987). These pro-
teins form the so-called SIR complex that is recruited to,
and then spreads across, the HM loci and telomeres to form
hypoacetylated heterochromatin-like domains [reviewed in
Gartenberg and Smith (2016)]. Sir2 is required for replica-
tive longevity and its abundance is significantly reduced in
replicatively aged yeast cells (Dang et al. 2009), presenting
a possible mechanism for the decline of Sir2-dependent
processes during aging, including gene silencing. Indeed,
the depletion of Sir2 in aged cells causes hyperacetylated
H4K16 and silencing defects at subtelomeric loci (Dang
et al. 2009). It has been reported that aged cells become
sterile (mating-incompetent) due to loss of silencing at
HML and HMR (Smeal et al. 1996), which results in coex-
pression of the normally repressed «1/a2 and al/a2 tran-
scription factor genes encoded at these loci. In theory, this
should induce a diploid-like, or “pseudodiploid,” gene
expression pattern and sterility, as is observed for a silencing-
defective sir2A mutant (Rine and Herskowitz 1987). How-
ever, more recent experiments point toward a silencing-
independent mechanism of sterility, whereby aggregation
of the Whi3 protein in aged cells makes them insensitive
to pheromones (Schlissel et al. 2017).

Alternative models for Sir2 control of RLS have focused on
the rDNA tandem array where Sir2 is important for cohesin
recruitment (Kobayashi et al. 2004; Ganley and Kobayashi
2014). Cohesin association with the rDNA also requires
Tof2 and the Lrs4/Csm1 (cohibin) complex (Huang et al.
2006). Sir2 silences RNA polymerase II-dependent transcrip-
tion at the rDNA locus via a nucleolar histone deacetylase
complex called regulator of nucleolar silencing and telophase
(RENT) (Bryk et al. 1997; Smith and Boeke 1997), consisting
of Sir2, Net1, and Cdc14 subunits (Shou et al. 1999; Straight
et al. 1999). Specifically, RENT represses the transcription of
endogenous noncoding RNAs from the intergenic spacer
(IGS) regions (Li et al. 2006). Derepression of the bidirec-
tional promoter (E-pro) within IGS1 in sir2A cells displaces
cohesin from the rDNA, thus destabilizing the array by mak-
ing it more susceptible to unequal sister chromatid exchange
(Kobayashi and Ganley 2005). Mild Sir2 overexpression, on
the other hand, enhances silencing, suppresses recombina-
tion between repeats, and extends RLS (Smith et al. 1998;
Kaeberlein et al. 1999).

Extrachromosomal rDNA circles (ERCs) derived from these
unequal recombination events specifically accumulate to high
levels in old mother cells (Sinclair and Guarente 1997), where
they can interfere with G1 cyclin expression (Neurohr et al.
2018). Such an ERC-centric model is supported by RLS ex-
tension of fob1A strains (Defossez et al. 1999). Fob1 binds to
the rDNA at IGS1 to block DNA replication forks from collid-
ing with elongating RNA polymerase I molecules (Kobayashi
and Horiuchi 1996). The blocked forks can collapse, resulting
in DNA double-strand breaks (DSBs) that trigger unequal
sister chromatid exchange (Takeuchi et al. 2003). The fre-
quency of rDNA recombination and ERC production is re-
duced in a fob1A mutant due to loss of the fork block, thus
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extending RLS (Defossez et al. 1999). More recently, this
rDNA-centric model of aging has been extended to include
general rDNA instability having negative effects on genome
integrity, including ERC accumulation, and is also considered
a critical contributor to aging (Ganley and Kobayashi 2014).

In addition to promoting cohesin recruitment to the rDNA,
Sir2 is also required to establish sister chromatid cohesion
(SCC) at HML and HMR (Chang et al. 2005; Wu et al.
2011). Moreover, we previously observed significant overlap
between Sir2 and cohesin at additional binding sites through-
out the genome (Li et al. 2013). Outside heterochromatin,
the cohesin loading complex (Scc2/Scc4) deposits cohesin
(Mcd1, Irrl, Smcl, and Smc3) onto centromeres and other
cohesion-associated regions (CARs) (Ciosk et al. 2000; Kogut
et al. 2009) to maintain SCC until anaphase, when Mcd1 is
cleaved by separase to facilitate sister chromatid separation
[reviewed in Marston (2014)]. Cohesin defects therefore re-
sult in chromosome instability (CIN) due to improper chro-
mosome segregation [reviewed in Wood et al. (2010)]. A
previous study found that cells deleted for SIR2 have a CIN
phenotype related to hyperacetylation of H4K16 (Choy et al.
2011), though the functional relationship to cohesin was not
considered. Given the natural depletion of Sir2 from replica-
tively aging yeast cells (Dang et al. 2009), we hypothesized
that the frequency of CIN should increase with age. Here, we
establish that CIN is indeed more frequent in aged cells and is
associated with SCC defects. We go on to show that, like Sir2,
cohesin subunits are depleted from aged mother cells, pro-
viding a likely reason for problems with SCC. Interestingly,
despite the overall reduction in cohesin protein levels, the
chromosomal distribution of cohesin enrichment was not uni-
form. In moderately aged mother cells, enrichment at the
rDNA was drastically reduced, while binding at centromeres
was not, suggesting a mechanism by which SCC is preferen-
tially maintained at centromeres to ensure cell viability. How-
ever, this comes at the expense of chronic rDNA instability,
which is exacerbated by additional age-induced reductions in
the RENT and cohibin/monopolin complexes. The defects in
rDNA stability can be suppressed by overexpressing the Mcd 1
subunit of cohesin, which also extends RLS, thus making
cohesin a dose-dependent longevity factor. Lastly, the age-
associated CIN phenotype is suppressed by deleting FOB1
or by caloric restriction (CR) growth conditions, suggesting
a model whereby rDNA instability on chromosome XII caused
by RENT, cohibin, and cohesin depletion drives the mitotic
segregation defects of other chromosomes during replicative

aging.

Materials and Methods
Yeast strains, plasmids, and media

Yeast strains were grown at 30° in yeast peptone dextrose
(YPD) or synthetic complete (SC) medium for strains bear-
ing plasmids (Matecic et al. 2010). SIR2, HST1, or FOB1 open
reading frames were disrupted with one-step PCR-
mediated gene replacement using kanMX4, natMX4, or hphMX4
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drug-resistance markers, respectively. The HMR deletion made
by replacement with hphMX4 spans sacCer3 genome chro-
mosome III coordinates 293170-294330. All C-terminally
13xMyc (EQKLISEEDL)-tagged proteins were targeted at en-
dogenous loci in the Mother Enrichment Program (MEP)
strains UCC5181 and UCC5179 (Lindstrom and Gottschling
2009), followed by mating to generate homozygous diploids.
All deletions and fusions were confirmed by colony PCR,
western blotting, or both. pRF4 was constructed by PCR am-
plifying the MCD1 open reading frame from ML1 genomic
DNA, and ligating into PstI and Notl sites of pCM252 (Belli
et al. 1998), a tetracycline-inducible overexpression vector
(Euroscarf). pRF10 and pRF11 were constructed by remov-
ing the expression cassette by Pvull blunt-end digestion of
pCM252 and pRF4, respectively, and ligating it between the
Pvull sites of pRS405 bearing LEUZ2, thus replacing the TRP1
marker with LEU2. pRF10 and 11 were then digested with
EcoRV and integrated into the genome at leu2AI. pJSB186
was constructed by ligating a Xhol and Spel fragment from
pSB766 containing SIR2 and its promoter into the MCS of
PRS306 using the same enzymes (Buck et al. 2002). pJSB186
was then integrated into ura3-52 by digesting with BstBI. All
strains used in this work are listed in Supplemental Material,
Table S1 and all primers are listed in Table S2.

Isolation of aged yeast cells

Aged yeast cell enrichment was based on the MEP strain
background (Lindstrom and Gottschling 2009; Lindstrom
et al. 2011). For all assays, 1 pl of an overnight culture was
inoculated into 100 ml of YPD medium and then grown into
log phase. Approximately 1 X 108 cells were harvested, and
centrifuged cell pellets washed three times with 1X phos-
phate buffered saline (PBS). Cells were then resuspended
in 1 ml PBS and mixed with 5 mg of Sulfo-NHS-LC-Biotin
(Pierce Chemical, Rockford, MA) per 1 X 108 cells for
30 min at room temperature. After biotin labeling, 5 X 107
cells were added to 1.5-liter YPD cultures, containing 1 wM
estradiol and 100 pg/ml ampicillin to prevent bacterial con-
tamination. These cultures were allowed to grow for 24—
36 hr before processing in an assay-specific manner (see be-
low). For non-MEP strain backgrounds, estradiol was not
added to the cultures.

Western blotting

Two 1.5-liter cultures were used for each western blot exper-
iment, corresponding to ~2 X 107 total aged cells after pu-
rification for each biological replicate. Cells were pelleted
using a Sorvall RC-5B Plus centrifuge with an SLA-3000 rotor
at 2000 rpm, then resuspended at a density of 6 X 108 cells/
ml in RNAlater (Ambion) for 45 min in two separate conical
tubes. Following fixation, cells were pelleted and resus-
pended in 45 ml of cold PBS and 2 mM EDTA in 50 ml conical
tubes. The mixture was incubated at 4° for 30 min with
800 .l of Streptavidin MicroBeads (Miltenyi Biotec), which
were then purified through an autoMACS Pro Cell Separator
using the posseld2 program (University of Virginia Flow

Cytometry Core Facility). A 20-pl aliquot of each output
was used for bud-scar counting using calcofluor white stain-
ing, before combining the isolated samples into a single
microfuge tube. Samples were frozen at —80° before protein
extraction. Thawed cells were vortexed twice for 1 min in
20% TCA (trichloroacetic acid) with ~100 pl of acid-washed
glass beads, with a brief cooling period in between vortexing.
Beads were allowed to settle before transferring the super-
natant to a fresh microfuge tube. A 250 wl wash of 5% TCA
was applied twice to the beads and pooled with the initial
lysis sample. Proteins were precipitated at 10,000 rpm in a
microfuge for 5 min at 4°. Pellets were then resuspended in
50 pl of 1X SDS sample buffer (50 mM Tris-HCI pH 6.8, 2%
SDS, 10% glycerol, and 0.7 M 2-mercaptoethanol) and neu-
tralized with 30 .l of 1 M Tris-HCI, pH 8.0. Samples were run
on a 9% (w/v) SDS-polyacrylamide gel and transferred to an
Immobilon-P membrane (Millipore, Bedford, MA). Mem-
branes were incubated for 1 hr at room temperature in 1X
TBST + 5% nonfat milk with primary antibodies 1:2000
a-Myc 9E10 or 1:5000 a-Vma2 (Life Technologies), 1:5000
a-Sir2 (Santa Cruz Biotechnology), 1:1000 «-Sir4 (Santa
Cruz Biotechnology), or 1:1000 «-Sir3 (Santa Cruz Biotech-
nology). HRP-conjugated secondary antibodies (Promega,
Madison, WI) were diluted 1:5000 and detected using chem-
iluminescence with HyGLO (Denville Scientific). Quantita-
tion was performed with ImageJ by using the rectangle tool
to outline protein bands and an equivalent-sized box for
background. After subtraction of background, the signal of
the aged cell band was divided by the signal of the Vma2
loading control, and finally normalized to the quantity of
the Vma2-normalized young cell band, which was arbitrarily
set at 1.0.

Chromatin immunoprecipitation assays with aged and
young cell populations

Two 1.5-liter cultures were used for each biological replicate.
After centrifugation, cells were washed with 1X PBS, then
resuspended with 45 ml of PBS and incubated with 800 .l of
streptavidin microbeads, followed by sorting with an auto-
MACS Pro Cell Separator. Sorted cells were immediately
cross-linked with 1% formaldehyde for 20 min at room tem-
perature, then transferred to screw cap microcentrifuge tubes
and the pellets flash frozen in liquid nitrogen. Cells were
thawed and lysed in 600 pl FA140 lysis buffer (50 mM
HEPES, 140 mM NaCl, 1% Triton X-100, 1 mM EDTA,
0.1% SDS, 0.1 mM PMSF, and 1X protease inhibitor cocktail;
Sigma [Sigma Chemical], St. Louis, MO) by shaking with
acid-washed glass beads in a Mini-Bead beater (Biospec Prod-
ucts). Cell lysates were recovered and sonicated for 30 cycles
of 30 sec “on” and 30 sec “off” in a Diagenode Bioruptor,
followed by centrifugation at 16,000 X g. A 1/10th superna-
tant volume input was taken for each sample and cross-link-
ing reversed by incubating overnight at 65° in 150 pl elution
buffer (TE and 1% SDS). The remaining supernatant was
used for immunoprecipitation overnight at 4° with 5 pg of
primary antibody and 30 pl of protein G magnetic beads
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(Pierce Chemical), followed by washing 1X with FA-140
buffer, 2 with FA-500 buffer (FA-140 with 500 mM NaCl),
and 2X with LiCl solution (10 mM Tris-HCI pH 8.0, 250 mM
LiCl, 0.5% NP-40, 0.5% SDS, and 1 mM EDTA). DNA was
eluted twice with 75 pl of elution buffer in a 65° water bath
for 15 min. The eluates were combined and cross-linking re-
versed. Input and chromatin immunoprecipitation (ChIP)
DNA samples were purified by an Invitrogen (Carlsbad, CA)
PureLink PCR purification kit. Finally, ChIP DNA was quanti-
fied by real-time PCR and normalized to the input DNA sig-
nal. Young cells were collected as flow-through from the
autoMACS cell sorter and then processed as described for
the aged cells.

SCC assay

From 50 ml log-phase SC cultures of strains 3349-1B, 3312-
7A, 3460-2A, RF258, RF278, and RF290, 5 X 107 cells were
washed and biotinylated as described in the Isolation of aged
yeast cells section. This population was transferred into a 1.5-
liter SC culture and allowed to grow for 14 hr. The original
biotinylated cells were then purified by incubation with
300 pl of streptavidin micro beads followed by gravity filtra-
tion through a Miltenyi LS column. The column was washed
twice with 5 ml of PBS and then processed as described below
for young cells.

From the original log-phase culture, 5 X 107 cells were
transferred to a fresh 50-ml SC culture and arrested in mitosis
with 10 pg/ml nocodazole for 1.5 hr. For the mcd1-1 strain
3312-7A, cells were also shifted to 37° at this time. For bud-
scar staining, 5 mg of calcofluor white was dissolved in 1 ml
of PBS and any remaining aggregate removed by centrifuga-
tion. The 1 ml of soluble calcofluor was then added to the
50-ml SC culture. Nonarrested cells were directly stained
with calcofluor. Cells were then pelleted and washed in
PBS. Following staining, 200 pl of 4% paraformaldehyde
was added directly to the cell pellet and allowed to cross-link
for 15 min at room temperature. The cell pellet was washed
once with PBS and resuspended in ~100-200 pl of 0.1M
KPO4/1 M sorbitol, pH 6.5. Images were captured with a
Zeiss ([Carl Zeiss],Thornwood, NY) Axio Observer z1 wide-
field microscope using a 64X oil objective lens.

Replicative life span assays

Life span assays were carried out as previously described
(Steffen et al. 2009). Briefly, small aliquots of log-phase cul-
tures were dripped in a straight line onto solid agar YPD with
2% glucose. From the initial populations, a minimum of
32 virgin daughter cells were picked for life span assays, with
daughter cells being selectively pulled away from mother
cells using a fiberoptic dissection needle and on a Nikon
(Garden City, NY) Eclipse 400 microscope. All virgin daugh-
ters were required to bud at least once to be included in
the experiment, and dissection was carried out over the
course of several days with temporary incubation at 4° in
between dissection periods to stop division. Cells were con-
sidered dead when they stopped dividing for a minimum of
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two generation times (180 min). For P-values indicated in the
text, a Wilcoxon rank-sum test was conducted for respective
life span assays using the basic wilcox.test function in R.

Mini-chromosome loss (sectoring) assay

The colony sectoring assay was performed on SC plates with
adenine limited to 80 wM. Frequency of mini-chromosome
loss represents the number of 1/2 red/white-sectored colo-
nies divided by the sum of sectored and white colonies. Cells
were plated to an approximate density of 500 cells/plate
based on counts from a Brightline hemocytometer. Any plates
bearing > 1000 cells were discarded. Three biological repli-
cates of each strain were performed, with at least 10 plates
counted per replicate. For aged cell populations, ~5 X 10°
biotinylated cells were aged in 1.5 liters of YPD for 24 hr.
Cells were incubated with 300 pl of streptavidin magnetic
beads [New England Biolabs (NEB), Beverly, MA] and man-
ually washed four times with PBS on a magnetic stand, then
plated onto the limiting adenine SC plates such that ~500
colonies appeared. Bud scars were not counted because the
size of the beads prohibited visualization.

RT-qPCR measurement of MCD1 overexpression

Doxycycline was added to log-phase cultures at a concentra-
tion of 2 wg/ml for 4 hr to induce expression of MCD1. Total
RNA was extracted using a standard acid phenol extraction
protocol (Ausubel et al. 2000). cDNA was created from 1 g
of RNA using a Verso cDNA synthesis kit (Thermo Fisher).
MCD]1 expression levels were quantified on an Applied Bio-
systems (Foster City, CA) StepOne real time PCR machine
with primers JS2844 and JS2949, and normalized to actin
transcript levels (primers JS1146 and JS1147).

Hi-C library construction

Log-phase cultures were cross-linked with 3% formaldehyde
for 20 min and quenched with a 2X volume of 2.5 M glycine.
Cell pellets were washed with dH,O and stored at —80°.
Thawed cells were resuspended in 5 ml of 1X NEB2 restric-
tion enzyme buffer (NEB) and poured into a prechilled mor-
tar containing liquid N,. Nitrogen grinding was performed
twice as previously described (Belton and Dekker 2015),
and the lysates were then diluted to an ODgg of 12 in 1X
NEB2 buffer. Next, 500 wl of cell lysate were used for each
Hi-C library as follows. Lysates were solubilized by the addi-
tion of 50 wl 1% SDS and incubation at 65° for 10 min. Then,
55 wl of 10% Triton X-100 were added to quench the SDS,
followed by 10 pl of 10X NEB2 buffer and 15 pl of HindIII
(20 U/wl; NEB) to digest at 37° for 2 hr. An additional 10 p.l of
HindIIl was added for digestion overnight. The remainder of
the protocol was based on previously published work
with minor exceptions (Burton et al. 2014). In short, ends
were filled in with dNTPs and biotinylated dCTP at 0.4 mM
concentration using Klenow Exo- (NEB) for 1 hr at 37°. After
brief heat inactivation, blunt ends were ligated together in
3-ml reaction volumes with T4 DNA ligase for 6 hr at 16° with
a minimum DNA concentration of 0.5 ng/pl. Following
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ligation, cross-links were reversed at 70° overnight, and DNA
was purified by phenol/chloroform extraction and ethanol
precipitation. Unligated biotinylated ends were removed us-
ing T4 DNA polymerase (NEB). DNA was purified one final
time with two Zymogen DNA Clean and Concentrate-5 kit
columns per ligation reaction and eluted with 65 pl TE
(130 pl in total). Chromatin was quantitated with a Qubit
fluorometer and then sheared using a Diagenode Bioruptor.
Hi-C sequencing libraries were prepared with reagents from
an Illumina Nextera Mate Pair Kit (FC-132-1001) using the
standard Illumina protocol of end repair, A-tailing, adapter
ligation, and 12 cycles of PCR. PCR products were size-se-
lected and purified with AMPure XP beads, before sequencing
with an Illumina Miseq or Hiseq.

Hi-C data analysis

Iteratively corrected heatmaps appearing in this manuscript
were produced using python scripts from the Mirny laboratory
hiclib library, publicly available at: http://mirnylab.bitbucket.
org/hiclib/index.html. Briefly, reads were mapped using the
iterative mapping program and then run through the frag-
ment filtering program using the default parameters. Raw
heat maps were further filtered to remove diagonal reads
and iteratively corrected. Finally, the iteratively corrected
heatmaps were normalized for read-count differences to
make them comparable. The cdc15-2 sample data were
pulled from the Sequence Read Archive database at
SRP094582 (Lazar-Stefanita et al. 2017) and our data are
available from the Gene Expression Omnibus at GSE117037.

Data availability

Strains and plasmids are available upon request. Tables S1
and S2, containing lists of all strains and oligodeoxynucleo-
tides used in the study, are included in the Supplemental
Information file. Figures S1 through S7 are also included in the
same file. Supplemental material available at https://doi.org/
10.25386/genetics.7766783.

Results
Sir2-binding partners are depleted in aged yeast cells

Sir2 is a dosage-dependent longevity factor, such that strains
with one extra SIR2 gene copy have an extended RLS
(Kaeberlein et al. 1999). Mother cells experience a progres-
sive reduction of Sir2 protein during normal replicative aging
that presumably contributes to the aging process (Dang et al.
2009). Sir2 does not function in isolation, so we hypothesized
that protein levels of key Sir2-interacting partners could also
be depleted with age. To isolate sufficient quantities of aged
cells for western blot assays, we turned to MEP strains
developed by the Gottschling laboratory (Lindstrom and
Gottschling 2009). The aged cell-purification procedure
was validated by increased average bud-scar counts with cal-
cofluor white and the expected reduction of Sir2 protein
(Figure 1A). The vacuolar protein Vma2, used as a loading
control for these western blots, does not deplete with age

(Lindstrom et al. 2011). Since Sir2 is the catalytic subunit
of both SIR and RENT (Figure 1B), it was important to know
which complexes were impacted by age. As shown in Figure
1, Cand D, Sir4 was strongly depleted in aged cells while Sir3
was actually enriched. Sir3 enrichment in aged cells was also
observed in an earlier proteomics screen (Janssens et al.
2015). Such a stark difference was considered relevant be-
cause Sir2 and Sir4 interact as a heterodimer that associates
with the acetylated H4 N-terminal tail (Moazed et al. 1997),
while Sir3 is subsequently recruited following H4K16 deace-
tylation to complete SIR holocomplex formation on hetero-
chromatin (Oppikofer et al. 2011). Myc-tagged Netl (RENT
complex) was also strongly depleted from aged cells (Figure
1E), indicating that Sir2/Sir4 and the nucleolar RENT com-
plex are both depleted during aging. It should be noted that
the Sir2 paralog Hst1, which has the capacity to compensate
for loss of Sir2 (Hickman and Rusche 2007; Li et al. 2010),
was also partially depleted from aged cells (Figure 1F). De-
tailed bud-scar and protein quantitation from triplicate bio-
logical samples is reported in Table S3.

CIN increases during replicative aging

Considering the observed depletion of multiple heterochro-
matin factors in aged yeast cells, as well as the CIN phenotype
of a sir2A mutant (Choy et al. 2011), we next tested whether
aged cells had a CIN phenotype that was exacerbated by
complete loss of SIR2 and/or HST1. Strains utilized for this
experiment have an artificial chromosome III bearing a sup-
pressor tRNA gene, SUP11 (Spencer et al. 1990). Loss of the
chromosome prevents suppression of an ochre stop codon in
ade2-101, resulting in the classic ade2 red colony phenotype.
The frequency of nondisjunction events was measured by
counting half-sectored red/white colonies from young and
aged cell populations (Figure 1G). Sectoring was elevated
in young populations of sir2A and hst1A mutants, and addi-
tively increased in a sir2Ahst1A double mutant (Figure 1H,
black bars, left side of panel). Interestingly, sectoring was
significantly higher for aged populations of each strain (Fig-
ure 1H, gray bars, left side of panel), suggesting that addi-
tional age-associated factors were involved. We next tested
whether the sir2A effect on sectoring was related to a pseu-
dodiploid phenotype caused by derepression of the HM loci.
This reporter strain background was MATa, so we deleted
HMR (chromosome III 293170-294330) to eliminate the
al/a2 transcription factors. Reversal of the pseudodiploid
phenotype was confirmed by restoration of mating to the
sir2A hmrA strains (data not shown). Importantly, this ma-
nipulation significantly suppressed sectoring of the young
sir2A and sir2A hst1A mutants, but not the hstIA mutant
(Figure 1H, middle of panel), indicating that there was in-
deed a sir2A-induced pseudodiploid effect that contributed
to mini-chromosome loss (Figure 1H, black bars, middle of
panel). However, aging still increased sectoring in each strain
even when HMR was deleted (Figure 1H, gray bars, middle of
panel), suggesting that the aging-associated CIN factor was
unrelated to mating-type control.
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Because of the observed Net1 depletion (Figure 1E), we
hypothesized that age-induced mini-chromosome loss could
be related to rDNA instability caused by loss of the RENT
complex. To address this idea, FOBI was deleted from
wild-type (WT), sir2A, hstlA, and sir2A hst1A reporter
strains to stabilize the rDNA, followed by retesting the sec-
toring phenotypes. As shown in Figure 1H (right side of
panel), the frequency of sectoring observed for each aged
fobIA strain was generally similar to that observed with
young FOB1™ versions of the strains (Figure 1H, black bars,
left side of panel), suggesting that destabilization of the rDNA
during aging does contribute to the instability of other chro-
mosomes. The hmrA and fobl1A mutations were potentially
suppressing chromosome loss through independent mecha-
nisms, thus begging the question of whether combining them
would fully suppress CIN in a sir2A hst1A hmrA fob1A qua-
druple mutant. Remarkably, aged cells from this mutant com-
bination lost the mini-chromosome marker at a very low rate
comparable to young WT cells, with no statistical difference
(Figure 1H, one-way ANOVA).

Cohesin levels are depleted in aged yeast cells

The above results raised the question of what factor(s) related
to rDNA stability, chromosome segregation, and Sir2 was
becoming defective in aged cells. Cohesin perfectly fitted this
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profile and was earlier shown in mammalian oocytes to be-
come depleted with age [reviewed in Jessberger (2012)]. To
test whether cohesin was another Sir2-linked factor depleted
during yeast aging, we C-terminally Myc-tagged the Mcd1 or
Smcl subunits (Figure 2A) in the MEP strain background.
Western blotting demonstrated that both subunits were sig-
nificantly depleted from aged cells (Figure 2B), implying de-
pletion of the whole cohesin complex. We also observed
depletion of the cohibin/monopolin subunit Lrs4 (Figure
S2), which can function as a cohesin clamp at the rDNA
(Huang et al. 2006). Furthermore, a Myc-tagged Scc2 subunit
of the Scc2/Scc4 cohesin loading complex was age-depleted
(Figure 2C), though not as severely as the cohesin complex,
predicting that the remaining cohesin complex could still be
loaded onto chromatin in aged cells. ChIP assays for Mcd1-Myc
in MEP cells aged for 24 hr demonstrated strong depletion
from the rDNA IGS (IGS1) (Figure 2D), but was surprisingly
enriched at the centromeres of chromosomes XI and III.
This effect did not appear to significantly extend into the
pericentric region of chromosome III (Figure 2E). To rule out
primer specificity or chromosome size effects, we tested three
centromeres from other chromosomes and observed the
same trend for each of them (Figure 2F). To confirm that
the enrichment was centromere-specific, we tested two addi-
tional sites on chromosome IV that were 15- and 200-kb away
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from the centromere, and observed no increase in the aged
compared to young samples (Figure 2G). To test if the en-
richment of Mcd1-Myc at centromeres in aged cells was spe-
cific to cohesin and not a ChIP artifact, we next tested the
distribution of Sir4-Myc, which was also depleted from aged
cells (Figure 1C). In this case, Sir4-Myc was depleted from
TELXV in aged cells (one of its normal targets) without any
apparent redistribution to centromeres (CEN4) or the rDNA
(Figure 2H), indicating that not all age-depleted proteins
become enriched at centromeres. Based on these results,
we hypothesized that as cohesin starts depleting during rep-
licative aging, its association with the rDNA is severely af-
fected, while a significant portion of the remaining complex
is retained and potentially redistributed to centromeres. This
is consistent with an earlier finding that cohesin preferen-
tially associates with pericentromeric regions instead of chro-
mosome arms when Mcd1 expression is artificially reduced
below 30% of normal (Heidinger-Pauli et al. 2010). We next
asked if the centromere enrichment would be lost in an older
cell population by extending growth of the MEP culture time
course to 36 hr. As shown in Figure 2I, the Mcd1-Myc asso-
ciation with CEN4 and CEN14 returned to the original levels
observed in young cells, while remaining depleted at the
rDNA array (Figure 2J). It is important to note that in a recent
report (Pal et al. 2018), cohesin enrichment at centromeres
was actually reduced in very old yeast cells (> 25 gen-
erations). Combined with our findings, a model emerges
whereby cohesin enrichment at centromeres is initially en-
hanced during aging, but is then catastrophically lost as cells
approach the end of their life span.

SCC is compromised in aged yeast cells

Previous work found that SCCwas surprisingly normal despite
the forced reduction (< 30%) of Mcdl protein levels
(Heidinger-Pauli et al. 2010), leading us to ask whether co-
hesion would be maintained in our moderately aged yeast
cells that were also depleted for cohesin, yet still showed
enrichment at centromeres. To this end, we utilized strains
with a LacO array located ~10-kb away from centromere IV
(CEN4) as a proxy for centromeric cohesion, or at the LYS4
locus on chromosome IV, located ~400-kb away from the
centromere, as a proxy for arm cohesion (Unal et al. 2008;
Guacci and Koshland 2012). Differential positioning of the
array had no significant impact on RLS (Figure S3). SCC was
monitored by Lacl-GFP appearing either as one dot in the
case of cohesion maintenance or two dots in the case of co-
hesion loss. Using an mcd1-1 temperature-sensitive mutant
as a positive control (Guacci et al. 1997), we observed a large
increase in two dots when cells were synchronized in mitosis
with nocodazole and shifted to 37° (Figure 3, A and B). WT
cells for the equivalent reporter strain were next biotinylated
and aged for 24 hr, followed by purification with magnetic
streptavidin beads and arrest with nocodazole. Analyzing
cells with more than seven bud scars, which is older than
the average bud-scar count of our western blot experiments,
revealed a mild loss of cohesion (Figure 3, C and D). A similar

analysis was then performed without the use of nocodazole
to rule out any side effects related to triggering the mitotic
spindle checkpoint. To avoid misinterpreting anaphase
events as lost SCC, we C-terminally tagged the spindle pole
body subunit Spc42 with dsRED, and only counted GFP dots
from large-budded cells where the spindle pole bodies had
not separated between the mother and daughter cell. With
this analysis, the fold-change of SCC defect between young
and aged cells was more pronounced (Figure 3, E and F), but
the absolute frequency of loss was still much weaker than
observed with the mcd1-1 mutant, which was not surprising
given that the mean life span of this strain background is ~16
generations (Figure S3). In very old cells (> 25 bud scars) of
a different strain background, an independent study ob-
served SCC loss on chromosome XII at a frequency that
approached 50% (Pal et al. 2018), suggesting that CIN may
become most severe in the oldest cells where cohesin is not
only depleted from the rDNA but also from centromeres.

RLS is modulated by Mcd1 expression levels

Since Sir2 and cohesin are both naturally depleted from rep-
licatively aging yeast cells (Figure 1A and Figure 2B), and
mild Sir2 overexpression extends RLS (Kaeberlein et al
1999), we hypothesized that manipulating cohesin expres-
sion levels would also impact CIN and RLS in a dose-depen-
dent manner. We initially attempted to overexpress the Mcd 1
subunit from a galactose-inducible GALI promoter and then
measure mini-chromosome loss frequency by counting half-
sectored colonies. However, simply growing the reporter
strain in galactose-containing medium, even with an empty
expression cassette, resulted in severe mini-chromosome loss
compared to glucose-containing medium (Figure 4, A and B).
This effect was specific to galactose, as growth with another
nonpreferred carbon source (raffinose) had no effect on sec-
toring (Figure 4, A and B). Though not useful for assaying the
effects of MCD1 overexpression, it was still possible that the
unexpectedly high CIN phenotype would correlate with re-
duced RLS. Therefore, we measured RLS with the mini-
chromosome reporter strain on YEP plates with 2% glucose,
galactose, or raffinose. As shown in Figure 4C, galactose
strongly decreased the mean RLS by ~50% compared to glu-
cose (9.2 vs. 18.9 divisions, P < 1.0 X 10~15), while raffinose
only had a marginal effect (15.5 divisions, P < 0.01). To
confirm that the galactose effect on RLS was not specific to
the mini-chromosome strain, life span assays were repeated
with the commonly used strains BY4741 (MATa) and BY4742
(MAT«). Again, a significant decrease in mean life span was
observed for BY4741 (17.7 divisions) and BY4742 (18.9 di-
visions) on galactose as compared to glucose (24.3 and 24.2
divisions, respectively) (Figure S4, P < 0.001), suggesting
that galactose triggers a high rate of CIN through an un-
known mechanism that also shortens RLS.

To circumvent the use of galactose for MCD1 overexpres-
sion, we turned to an inducible “Tet-On” promoter that is
activated by doxycycline (Belli et al. 1998). Strains harboring
this integrated cassette transcriptionally overexpressed MCD1
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~two- to sevenfold compared to the empty vector control
(Figure S5, A and B). In the mini-chromosome reporter
strain, MCD1 overexpression significantly reduced the fre-
quency of half-sectored colonies in both young and aged pop-
ulations (Figure 4D), in agreement with MCD1 being isolated
as a high-copy suppressor of CIN using a different reporter
system (Zhu et al. 2015). Next, MCD1 was overexpressed in a
strain containing an ochre stop codon in the MCDI open
reading frame (mcd1L12STOP) that reduces Mcdl protein
to ~30% of normal (Heidinger-Pauli et al. 2010). With an
empty pCM252 control CEN vector, mcd1L12STOP exhibited
a 40% reduction in mean RLS (9.9 divisions) compared to an
isogenic WT control (16.5 divisions), indicating that Mcd1
depletion shortens RLS (Figure 4E, P < 0.001). Overexpress-
ing MCD1 almost fully restored longevity to the mutant (14.7
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divisions) and, remarkably, also extended the RLS of the con-
trol WT strain to 19.6 divisions (P < 1.0 X 10~7), which was
primarily due to improved survival during the first ~15 divi-
sions and then followed by a steeper decline in viability (Fig-
ure 4E). This biphasic pattern was highly reproducible and
suggested that the CEN MCD1 overexpression (OE) plasmid
was being lost around midlife due to increased chromosome
loss, as previously seen in aged cells of our CIN assay (Figure
1H). To account for this potential variable, we also integrated
the empty and MCD1 OE vectors into a different FY834 strain
background related to the long-lived BY4741/42 background
(Winston et al. 1995; Brachmann et al. 1998). Not only did
MCD1 OE extend the mean RLS (28.0 divisions) in this back-
ground compared to the control (21.0 divisions), but the
maximum number of divisions was also increased by 25%
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(Figure S6, P < 1.0 X 1077). Therefore, we conclude that
similar to Sir2, Mcd1 is a strong dose-dependent longevity
factor.

Sir2 functions upstream of cohesin for RLS (Kobayashi
et al. 2004; Kobayashi and Ganley 2005) and for SCC at
HMR (Wu et al. 2011), implying that Sir2 is upstream of
cohesin loading and function. However, this relationship
could potentially be more complex since both factors are
depleted with age. To explore this further, we next tested
if SIR2 overexpression could rescue the short RLS of an
Mcd1-depleted mcdI1L12STOP strain by integrating a sec-
ond copy of SIR2 (2xSIR2) at the LEUZ2 locus. As shown in
Figure 4F, 2xSIR2 partially rescued the mean RLS of the
mcd1L12STOP strain (14.1 vs. 9.9 divisions, P < 1.0 X 10~%)
and also increased the maximum RLS of the WT strain. Re-
ciprocally, we asked if MCDI1 overexpression would sup-
press the short RLS of a sir2A or sir2A hst1A mutant. The
double mutant was included to rule out any redundancy
between the two sirtuins. Mean RLS was clearly not in-
creased by MCD1 overexpression as compared to empty vec-
tor for either the single (10.7 vs. 10.2) or double mutant

(10.1 vs. 9.7 divisions, Figure 4G), confirming that SIR2 was
required for MCD1 in regulating RLS. Interestingly, the
sir2A hst1A fob1A hmrA quadruple mutant combination,
which suppressed CIN in aged cells (Figure 1H), fully re-
stored the RLS of the short-lived sir2A hst1A combination
to WT levels (Figure 4G, P = not significant), suggesting that
CIN is a key driver of replicative aging downstream of Sir2
and Hstl.

Considering the strong depletion of cohesin from rDNA in
aged cells (Figure 2D) and the extended RLS when MCD1 was
overexpressed (Figure 4E), we next tested if age-induced
rDNA instability was suppressed by MCD1 overexpression us-
ing a reporter strain harboring ADE2 in the rDNA array
(Kaeberlein et al. 1999). There was a large increase of red/
white 1/2 sectoring (marker loss) from aged cells that was
suppressed upon MCDI1 overexpression (Figure 4H). In the
absence of SIR2, 1/2 sectoring was high from young and aged
cells when the empty vector (pRF10) was integrated, and
MCD1 overexpression did not significantly reduce rDNA insta-
bility in either population (Figure 4H), indicating that at least
some Sir2 was required for Mcd1 to impact rDNA stability. We
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conclude that loss of Sir2 and cohesin in aging cells causes
rDNA array instability that generally exacerbates CIN.

RLS extension by CR correlates with improved
chromosome stability

Reducing glucose concentration in the growth medium is
effective at extending RLS and is considered a form of CR for
yeast (Jiang et al. 2000; Lin et al. 2002). There have been
several hypotheses put forth for the underlying mechanisms,
including stabilization of the rDNA, as CR suppresses recom-
bination within the rDNA (Lamming et al. 2005; Riesen and
Morgan 2009; Smith et al. 2009). Since MCD1 overexpression
suppressed rDNA recombination and extended RLS, we hy-
pothesized that CR may suppress the abbreviated RLS of a
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RLS, replicative life span; WT, wild-type.

cohesin-depleted mcd1L12STOP mutant strain. Indeed, CR ex-
tended the RLS of both the WT and mcd1L12STOP strains
(Figure 5A, P < 0.01 and P < 1.0 X 1077, respectively). How-
ever, the suppression was apparently not due to maintenance
of global cohesin levels because steady-state Mcd1-Myc was
still depleted in glucose-restricted aged cells (Figure 5B). CR
also strongly suppressed mini-chromosome loss in young and
aged cells, even in the sir2A hst1A double mutant (Figure 5C).
Importantly, this CR effect also correlated with almost com-
plete rescue of RLS for the sir2A hst1A mutant (Figure 5D, P =
not significant). Taken together, the results support a mecha-
nism for RLS extension by CR, whereby stabilization of the
rDNA locus helps maintain general mitotic chromosome sta-
bility to protect against aneuploidy.
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The rDNA array has an opportunity to interact with
centromeres during anaphase

To conclude this study, we asked whether there is any mech-
anistic connection between the rDNA and centromeres that
could cause CIN. If rDNA instability has a direct effect on SCC
during aging, then we should observe elevated dissociation of
sister chromatids in a sir2A mutant and improved SCC in a
fob1A mutant. However, as shown in Figure S7, the frequency
of two GFP dots in the SCC assay for these two mutants in
aged populations was comparable to WT (see Figure 3, E and
F). Alternatively, the rDNA could potentially affect centro-
mere function through direct contacts. Previous Hi-C analysis
of the yeast genome and fluorescence microscopy of nucleo-
lar proteins positioned the rDNA off to one side of the nu-
cleus, apparently secluded from the rest of the genome
(Gotta et al. 1997; Duan et al. 2010). The repetitive nature
of rDNA precludes it from appearing in Hi-C contact maps,
but closer inspection of iteratively corrected chromosome XII
contact maps at 10-kb resolution indicated a clear interaction
between unique sequences flanking the centromere-proximal
(left) edge of the array and CEN12 (Figure 6A, yellow arrow).
We hypothesized that this contact was regulated by Sir2 since
it is in the vicinity of a known tRNA boundary [tQ(UUG)L] for
rDNA silencing (Biswas et al. 2009), but deletion of SIR2 had
no effect on the contact (data not shown). Interestingly, all
centromeres of the yeast genome, including CEN12, cluster
together in asynchronous cell population Hi-C data (Figure
6B, yellow arrows; Duan et al. 2010), which potentially pla-
ces them in proximity with the rDNA given the association of
CEN12 with sequences flanking the rDNA. During anaphase,
the rDNA is thought to be separated from centromeres, but
analysis of Hi-C data for cell cycle-synchronized cdc15-2,

tive life span; WT, wild-type.
20 40

# of Divisions

which arrests cells in anaphase, revealed that the rDNA-
proximal/CEN12 contact specifically occurs during anaphase
(Figure 6C; Lazar-Stefanita et al. 2017), during which time the
centromeres are still clustered together by the spindle pole
body (Figure 6D). Taken together, these results suggest that
the rDNA may transiently contact the centromeres during
mitosis, providing a potential window of time for a destabi-
lized rDNA array to negatively impact the integrity of general
chromosome segregation during mitosis (Figure 6E).

Discussion

Nuclear protein depletion during replicative aging as a
paradigm for aging pathologies

During this study, the majority of chromatin-associated pro-
teins that we analyzed by western blotting were depleted in
replicatively aged yeast cells. The only protein unaffected by
age that we tested, other than the vacuolar Vma2 control, was
Sir3 (Figure 1D). A similar proportion of homologous recom-
bination proteins were depleted in an independent analysis
of aged cells, with Rad52 the only one tested that was not
affected (Pal et al. 2018). These results suggest that there is
at least some selectivity to the depletion of nuclear proteins in
aged cells. However, the large number of depleted factors
also makes it likely that targeted nuclear protein deficiency
could lead to multiple age-associated phenotypes. Replica-
tively aging yeast cells appear especially susceptible to this
phenomenon, as even total core histone levels are depleted
(Hu et al. 2014). Evidence also exists for histone depletion
during the aging of metazoan organisms, including mammals
[reviewed in Song and Johnson (2018)]. More generally,
global protein turnover is elevated in cells from prematurely
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aging progeria patients, which may trigger higher translation
rates (Buchwalter and Hetzer 2017). This is significant be-
cause reducing translation is a means of extending life span in
multiple organisms (Mehta et al. 2010). The mechanism(s)
driving nuclear protein depletion in aged yeast mother cells
or other organisms remain unclear.

The specificity for Sir2/Sir4 depletion over Sir3 is intrigu-
ing, given that Sir2 and Sir4 form a tight complex that allo-
sterically stimulates the deacetylase activity of Sir2 (Hsu et al.
2013), while Sir3 is a subunit of the SIR holocomplex
(Oppikofer et al. 2011). Since Sir3 levels are elevated in aged
cells (Figure 1D; Janssens et al. 2015), it is likely to have a
function independent of the SIR complex during aging. The
mechanism for Sir2/Sir4 depletion from aged cells remains
uncharacterized, though in nonaging cell populations the
stability/turnover of Sir4, but not Sir2, is mediated by the
E3 ubiquitin ligase San1 (Dasgupta et al. 2004), which has
also been implicated as a quality control E3 ligase for mu-
tated/unfolded nuclear proteins (Gardner et al. 2005).
Whether Sanl controls Sir4 stability during aging remains
unknown, but since Sir4 is more severely depleted than
Sir2 in aged cells (Figure 1A and Figure 2C), Sir4 could be
selectively depleted from the SIR complex, thus leaving Sir2
unprotected and subject to turnover through a different
mechanism. Consistent with this idea, we note that Sir4 is
depleted independently of Sir2 during extended G1 arrest
(Larin et al. 2015). Alternatively, Sir2/Sir4 could be equally
depleted as a complex from telomeres and the HM loci (not
necessarily via Sanl), leaving the nucleolar pool of Sir2/
RENT more resistant to aging. Under this scenario, protecting
the integrity of the rDNA array could take precedence
over other heterochromatic domains. Interestingly, the
Schizosaccharomyces pombe Sanl ortholog has also been im-
plicated in a chaperone-assisted degradation pathway that
functions in quality control of kinetochores to promote chro-
mosome stability (Kriegenburg et al. 2014).

Sir2 depletion in replicatively aged yeast cells is reminis-
cent of Sirt1 depletion in serially passaged mouse embryonic
fibroblasts, which correlates with declining mitotic activity
(Sasaki et al. 2006). Sir2 and Sirt1 are both known to func-
tion in regulating DNA replication origins (Hoggard et al.
2018; Utani and Aladjem 2018), and the effect of deleting
SIR2 on early origin firing is thought to be mediated by com-
petition for limiting factors with the repeated rDNA origins
(Yoshida et al. 2014). Furthermore, CR has been proposed to
extend RLS by reducing rDNA origin firing, which improves
overall genome replication (Kwan et al. 2013). This may help
explain why CR can extend RLS and suppress CIN, even when
SIR2 and HST1 are deleted. Conversely, depleted cohesin in
old cells could potentially cause rDNA instability by impact-
ing DNA replication and repair.

A precarious balance between rDNA and
centromeric cohesin

SCC ensures that chromosomes are not segregated until the
Mcd1/Sccl cohesin subunit is cleaved, in response to a mitotic

spindle checkpoint signal that all chromosomes are properly
attached to microtubules and aligned at the metaphase plate
[reviewed in Marston (2014)]. Cohesin is also critical during
meiosis, and it is well established in mammals that SCC de-
fects occur in the oocytes of older mothers, causing meiotic
chromosome missegregation events during both anaphase I
and II (Jessberger 2012). This phenomenon is believed to be
a major mechanism for increased aneuploidy risk that usually
results in embryonic lethality or, in the case of chromosome
21 trisomy, Down’s syndrome. The meiotic cohesin subunit
Rec8 is depleted in the oocytes of older mice, as is Shugoshin
(Sgo2), which normally protects/maintains centromeric
cohesin (Lister et al. 2010). More recent experiments in
Drosophila suggest that oxidative stress in aged oocytes con-
tributes to the SCC defects (Perkins et al. 2016). Our results
in replicatively aging yeast cells reveal that aging-induced
cohesin depletion and the resulting chromosome missegre-
gation can extend to mitotic cells. Though cohesin depletion
or defects have not been reported for aging mammalian so-
matic cells, the mitotic spindle checkpoint protein BubR1 is
depleted in dynamic somatic tissues such as the spleen in
aged mice (Baker et al. 2004). Deficiency of this protein re-
sults in premature aging phenotypes (Baker et al. 2004),
while overexpression extends life span (Baker et al. 2013).
This is similar to the effects we observe with Mcd1 depletion
and overexpression on yeast RLS. Interestingly, BubR1 is also
a deacetylation target of Sirt2, which appears to stabilize the
protein and extend life span, thus linking mitotic spindle
checkpoint regulation to NAD* metabolism (North et al
2014). It remains unclear if Sir2, Hst1, or other sirtuins reg-
ulate the yeast BubR1 ortholog, Mad3, or additional check-
point and kinetochore proteins.

SCC is the canonical function for cohesin, though the
complex also functions in establishing and regulating genome
organization at the level of chromatin structure, gene regu-
lation, and DSB repair [reviewed in Uhlmann (2016)].
Among these various processes, SCC at centromeres ap-
pears the most critical, because artificial depletion of Mcd1 to
< 30% of normal levels results in preferential cohesin binding
to pericentromeric regions rather than CARs on chromosome
arms (Heidinger-Pauli et al. 2010). SCC was also well main-
tained in these strains at the expense of normal chromosome
condensation, DNA repair, and rDNA stability (Heidinger-
Pauli et al. 2010). In aged yeast cells, we observed relative
enrichment of Mcd1-Myc at centromeres as compared to loss
at the rDNA (IGS1) locus (Figure 2, D and E), consistent with
pericentromeric cohesin retention in the artificially depleted
system. Despite maintaining the cohesin complex at centro-
meres, SCC was still slightly impaired in the aged cells, but
only if we analyzed cells more than 7 generations old. We
suspect that cohesin was reduced at centromeres in these
older cells, which would be consistent with the loss of cen-
tromeric Mcd1 enrichment when cells were aged longer (for
36 hr), but it was also likely that some of the centromere-
localized Mcd1 was nonfunctional. These results are in line
with an independent study that analyzed significantly older
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mother cells (~25 generations), and observed reduced cohe-
sin enrichment at centromeres and severe loss of SCC (Pal
et al. 2018). Another recent study using single-cell microflui-
dics found that chromosome loss was very common just prior
to the last cell division (Neurohr et al. 2018). Collectively, the
results suggest that centromere-associated cohesin is prefer-
entially retained during the initial stages of replicative aging,
but then eventually breaks down below a critical threshold in
the oldest cells.

Numerous nuclear proteins are depleted in aged yeast cells,
not just cohesin subunits, so we hypothesize that defects in
other nuclear processes mediated by such factors also con-
tribute to SCC defects and CIN, either directly or indirectly.
The depleted cohesin loading complex (Scc2/4) is an obvious
candidate due to its role in loading cohesin at centromeres
and CARs. Similarly, the depleted cohibin complex (Figure
S2) is proposed to act as a cohesin clamp onto rDNA chroma-
tin (Huang et al. 2006), and also functions at centromeres to
maintain mitotic integrity (Bitto et al. 2015). Sir2 and Hst1
are also obvious candidates given the earlier finding that
H4K16 deacetylation at centromeres by Sir2 helps maintain
chromosome stability (Choy et al. 2011). Part of this effect is
apparently due to the pseudodiploid phenotype of a sir2A
mutation, which has been previously shown to impact RLS
(Kaeberlein et al. 1999). Hstl also binds centromeric DNA
in vitro and in vivo (Ohkuni and Kitagawa 2011), though the
functional relevance of that association remains uncharacter-
ized. The suppression of age-associated mini-chromosome
loss in the absence of FOBI clearly points to rDNA instability
as an unexpected source of general CIN. Such a relationship is
reinforced by the observed depletion of nucleolar proteins
Netl and Lrs4 in aged cells (Figure 2E and Figure S2), both
of which are required for normal rDNA/nucleolar integrity
and stable cohesin association with the rDNA (Smith et al.
1999; Straight et al. 1999; Huang et al. 2006).

How could destabilization of the rDNA locus result in
general CIN and shortened RLS? As depicted in Figure 6, a
unique sequence flanking the rDNA contacts the centromere
of chromosome XII, thus placing it in proximity to other cen-
tromeres during anaphase. Whether the actual rDNA genes
contact centromeres remains unclear due to the current lim-
itations of Hi-C analysis with repetitive DNA. However, spe-
cific regions of the rDNA were previously shown to associate
with various non-rDNA chromosomal regions using a circu-
larized chromosome conformation capture (4C) approach
(O’Sullivan et al. 2009). Furthermore, multiple nucleolar-
associated domains have been identified in metazoan cells
that copurify with nucleoli (Matheson and Kaufman 2016).
Loss of cohesin from the rDNA could potentially disrupt
long-range interactions with centromeres or noncentromeric
regions of cohesin association that influence chromosome in-
tegrity. One potential mechanism could be significant disrup-
tion of overall chromosome condensation during mitosis,
as cohesin appears to play a larger role in the DNA looping
associated with chromosome condensation in budding yeast
than previously thought (Schalbetter et al. 2017).
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Interestingly, another class of nuclear factors depleted in
aged yeast cells are several DNA repair proteins (Pal et al.
2018). Consequently, the lack of proper DNA repair while
the rDNA becomes destabilized correlates with fragmenta-
tion of chromosome XII and the other chromosomes (Pal
et al. 2018). Rad52 foci also appear in aged cells, indicating
persistent DNA damage (Neurohr et al. 2018). It was pro-
posed that the accumulation of breaks and rearrangements
ultimately causes cell death during replicative aging. Such
cells were significantly older (> 25 divisions) compared to
the cells in our study, which exhibited a maximum of 13 di-
visions after 24 hr. Alternatively, it is possible that these
presumably random rearrangements disrupt normal SCC,
leading to CIN.

Aneuploidy as an aging mechanism

All 16 S. cerevisiae chromosomes harbor essential genes, so
if a single chromosome is lost from a haploid yeast cell, then
the affected mother or daughter cell should become invia-
ble, and no longer divide. Given the elevated frequency of
chromosome loss during replicative aging, the chances of
generating an inviable mother cell during a replicative ag-
ing assay increases after each subsequent division. There-
fore, at least a portion of the replicative life span in haploid
yeast cells is controlled by the ability to maintain all
16 chromosomes. However, complete loss of a chromosome
would not be an immediate viability issue for diploid cells,
due to the chances of losing both homologs in a single
mitosis being exceedingly rare. On the other hand, haploid
strains that are disomic for individual chromosomes are
often short-lived, with longer chromosomes typically hav-
ing larger effects (Sunshine et al. 2016). It was hypothe-
sized that such strains suffer from proteotoxic stress due to
inappropriate protein expression levels. Therefore, a simi-
lar mechanism could shorten RLS in a diploid strain that
is trisomic for an individual chromosome, though this has
not yet been tested. Aneuploidy is also a hallmark of aging
in the germline (Nagaoka et al. 2012) and somatic tissues
of mammals (Lushnikova et al. 2011; Baker et al. 2013),
making it a conserved feature of aging from yeast to
humans.

Another exciting feature of this study is the suppres-
sion of CIN by CR growth conditions that extend RLS.
This effect was independent of the reduced cohesin
levels in aged cells, and even improved the RLS of the
cohesin-depleted strains. Since SCC is normal in the cohe-
sin-depleted strain (Heidinger-Pauli et al. 2010), we hy-
pothesize that CR reinforces other processes that are
defective due to reduced cohesin or other depleted factors
that promote rDNA stability. Indeed, CR is known to sup-
press rDNA instability in yeast cells (Riesen and Morgan
2009; Smith et al. 2009) and improve overall genome rep-
lication efficiency (Kwan et al. 2013). Hi-C analysis also
suggests that there could be direct effects of rDNA struc-
ture on centromere function, which will be a focus of fu-
ture investigation.
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