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ABSTRACT Deconvolution of the genetic architecture underlying yield is critical for understanding bases of genetic gain in species of
agronomic importance. To dissect the genetic components of yield in potato, we adopted a reference-based recombination map
composed of four segregating alleles from an interspecific pseudotestcross F1 potato population (n = 90). Approximately 1.5 million
short nucleotide variants were utilized during map construction, resulting in unprecedented resolution for an F1 population, estimated
by a median bin length of 146 kb and 11 genes per bin. Regression models uncovered 14 quantitative trait loci (QTL) underpinning
yield, average tuber weight, and tubers produced per plant in a population exhibiting a striking 332% average midparent-value
heterosis. Nearly 80% of yield-associated QTL were epistatic, and contained between 0 and 44 annotated genes. We found that
approximately one-half of epistatic QTL overlap regions of residual heterozygosity identified in the inbred parental parent (M6).
Genomic regions recalcitrant to inbreeding were associated with an increased density of genes, many of which demonstrated
signatures of selection and floral tissue specificity. Dissection of the genome-wide additive and dominance values for yield and yield
components indicated a widespread prevalence of dominance contributions in this population, enriched at QTL and regions of residual
heterozygosity. Finally, the effects of short nucleotide variants and patterns of gene expression were determined for all genes un-
derlying yield-associated QTL, exposing several promising candidate genes for future investigation.
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YIELD is regarded as the most important agricultural trait
in efforts to breed superior crops. Owing to its multifac-

eted nature, genetic dissection of the fine-scale architecture
controlling yield has remained a challenge in most agricul-
turally relevant species. For example, in rice, yield is a man-
ifestation of individual yield components such as panicle
number, grains per panicle, and grain weight [reviewed in
Xing and Zhang (2010) and Jeon et al. (2011)]. Each yield
component can be further deconstructed into a finer grid of
quantitative measurements. For instance, rice grain weight is

largely determined by the relative height, width, depth, and
density of each individual grain (Xing and Zhang 2010).
Considering that most yield components are quantitative in
nature, the number of genetic elements controlling each of
these individual traits can range from one to thousands com-
prising an intricate network (Lippman and Zamir 2007; Xing
and Zhang 2010; Yan et al. 2011). Individually, each gene or
genetic element is likely to have a small effect on yield, but
collectively, these loci can account for a substantial propor-
tion of phenotypic variation (Mackay 2009). Yield quantita-
tive trait loci (QTL) represent genomic regions with
statistically significant effects on yield as a result of segregat-
ing alleles. A limiting factor in the detection of QTL is the
power of the population to detect small-effect loci, which
depends on population characteristics such as size and struc-
ture. Indeed, QTLmapping frommultiple segregating pig and
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dairy populations were shown to bias for fewer, large-effect
QTL (Hayes and Goddard 2001). This is in part due to overly
stringent detection thresholds precluding the identification of
anything other than large-effect regions (Zeng 1994). The con-
tributions of QTL to yield variation are also strongly influenced
by the genetic background and environment, further restricting
the identification of QTL to those with large effects (Xing and
Zhang 2010). Another important consideration is the degree of
recombination and the density of markers composing a genetic
map. The effective resolution of a genetic map—or how precise
QTL can be demarcated—is directly determined by the number
recombination events and the density of markers surrounding
breakpoints (Zeng 1994).

Introgression of novel QTL into existing germplasm pro-
vides an important basis to improve crop production. Tradi-
tionally, the improvement of plants and animals through
breeding required the identification and selection of geneti-
cally superior individuals in segregating populations. In po-
tato breeding, selection was carried out in open-pollinated
populations until the 20th century. Most seedlings were likely
products of self-pollination, as themajority of potato cultivars
are self-compatible autotetraploids. Contemporary breeding
is carried out using controlled crosses between superior het-
erozygous tetraploid clones followed by phenotypic selection
across sequential asexual generations (Jansky 2018). Clonal
propagation improves selection accuracy but limits opportu-
nities for recombination, a process central to purifying dele-
terious alleles. This has important consequences for both the
development of improved cultivars and the mapping of agro-
nomically important traits.

Potato yield is typically measured as the total weight of
tubers harvested from a given growing area, such as pounds
perhectare. Potato cultivars developedover the last century in
North America produce similar yields under modern field
management practices, indicating minimal genetic gains in
yield after several decades of breedingand selection (Douches
et al. 1996). The absence of marked genetic gain has been
largely attributed to the complex genetics associated with
autotetraploid potato, such as high heterozygosity, genetic
load, and severe inbreeding depression (Douches et al.
1996; Hirsch et al. 2013). As a result, the autotetraploid
nature of potato has impeded the dissection of the genetic
components underlying yield compared to diploid crop spe-
cies (Douches et al. 1996; Hirsch et al. 2013). To overcome
these obstacles, recent trends have seen the adoption of dip-
loid breeding schemes for the production of mapping popu-
lations in potato (Jansky et al. 2016). Since most diploid
potatoes are self-incompatible, numerous studies have devel-
oped segregating outcross populations by mating two hetero-
zygous dihaploids (2n = 2x = 24) derived from cultivated
potato (Hutten et al. 1995; Śliwka et al. 2017; Manrique-
Carpintero et al. 2018). Alternate population structures, such
as testcross populations, have also been realized by utilizing
crosses between heterozygous material and inbred wild po-
tato species—which contain alleles for self-compatibility—or
a synthetic doubled monoploid (DM) that suffers from severe

inbreeding depression (Hosaka and Hanneman 1998;
Felcher et al. 2012;Manrique-Carpintero et al. 2015). Several
diploid potato populations have demonstrated the utility
of genome reduction for identifying QTL for yield and
other tuber traits (Lindqvist-Kreuze et al. 2015; Manrique-
Carpintero et al. 2015, 2018; Hara-Skrzypiec et al. 2018).
However, genotyping uncertainties and coarse genetic maps
hampered past efforts to clearly define discrete genomic in-
tervals underlying important agronomic traits. In cereal crops
such as rice andmaize, these challenges have been addressed
by the adoption of sequencing-based genotyping (Huang
et al. 2009; Yu et al. 2011; Li et al. 2015; Su et al. 2017).
These methods have demonstrated remarkable accuracy and
utility for QTL mapping. However, implementation of se-
quencing-based genetic maps for populations derived from
outbred crosses has lagged behind.

Outcrossed populations offer several salient advantages
over traditional inbred line-based strategies in biparental
crosses. First, the presence of two additional alleles allows
for greater allelic diversity, potentially revealing trait-
associated loci that may be lost during parental inbreeding.
Small-effect loci may be particularly affected, as selection
during inbred line generation may bias toward large-effect
regions and result in the unintentional loss of less signifi-
cant contributors. Second, outcrossed populations inher-
ently contain greater levels of observable recombination
(Solberg Woods 2014). Recombination (for the purpose of
QTL mapping) within inbred line populations cannot be
observed until the F2 generation, as recombination events
between homologous chromosomes in the inbred parents
are invisible without distinguishing molecular markers. In
mice, QTL resolution of F2 intercross or backcross popula-
tions is typically in the order of 40–60 Mb, a stark compar-
ison to the average of �1 Mb in outbred mice from the
Collaborative Cross (Churchill et al. 2004; Valdar et al.
2006; Durrant et al. 2011). Third, outbred populations
provide an opportunity to combine multiple genetic back-
grounds. Such increased genetic diversity diminishes the
role of genetic background, aiding the identification of
QTL present across multiple haplotypes. Outcrossed popu-
lations also gain the benefit of increased genetic and phe-
notypic variability, allowing investigation of a wide array
of traits in comparison to traditional F2 populations de-
rived from inbred parents on the basis of single-trait di-
vergence. However, the use of low marker densities and
the lack of existing methods to resolve highly accurate
haplotypes is a current bottleneck for the precise determi-
nation of complex trait QTL.

In the present study, we utilized whole-genome rese-
quencing of a pseudotestcross diploid potato population
derived from two widely divergent genetic backgrounds.
Integration of maternal and paternal reference-based hap-
lotype recombination maps afforded unparalleled resolu-
tion, validated via simulations and empirical mapping of a
well-known maturity gene to a physical interval of 250 kb.
Application of this map to potato yield and its components
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uncovered widespread epistatic QTL, and elevated relative
dominance overlapping regions of residual heterozygosity.
Collectively, our analysis provides novel insight into the
genetic, and transcriptional, architecture of residual het-
erozygosity and yield-associated QTL at an unprecedented
resolution in potato.

Materials and Methods

Plant material and phenotypic data curation

Two diploid potato clones, US-W4 and M6 (ABxCD), were
crossed to create a population of 90 F1 individuals. This pop-
ulation was planted in the plain field loamy sand soil at the
University of Wisconsin Hancock Agricultural Research Sta-
tion, Hancock, WI for four consecutive years (2014–2017)
using a randomized complete block design, with three repli-
cates for each genotype plot and five hills (plants) per plot at
30-cm spacing. Rows were separated by 90 cm. A single Red
Norland seed tuber was placed 60 cm from either end of a
plot for the final 3 years to separate plots and to allow for
simplified collection of tubers during harvest. All plots were
planted across all years in the first week of May. Height was
measured (from stem base to the highest point) on each plant
weekly throughout the growing season. Height data were
analyzed as a function of days after planting and based on
the median value among all five plants within a plot. Yield
was determined following hand harvesting as the total
weight of all tubers within a plot. Tuber number reflects
the total number of tubers collected from a single plot. Aver-
age tuber weight was determined by dividing the total weight
by the tuber number for each plot. Yield, average tuber
weight, and tuber number data were evaluated �120–
133 days after planting.

Construction of a four-allele recombination
haplotype map

To construct the recombination map of the inbred parent M6,
short nucleotide variants (SNVs) heterozygous in M6 and
homozygous in US-W4 were selected from an initial set of
3.9 million SNVs. To remove false-positive variants, SNVs
demonstrating low levels of linkage disequilibrium (LD) with
nearby markers were removed. To this end, we estimated
local r2 values for each SNV using the nearest 100 SNVs. Local
r2 values were taken as the average r2 value across the
100 comparisons, filtering SNVs with mean r2 values , 0.1.
The remaining markers were used as input for phaseLD (flags
set: -q) (Marand et al. 2017). Following haplotype reconstruc-
tion of M6, we merged the haplotype maps from US-W4 (AB)
and M6 (CD), producing a four-allele (ABCD) recombination
map where each bin was separated by a single recombination
event stemming from either parent.
Identification of residual heterozygosity

A bimodal distribution of local LD r2 values was observed
across all chromosomes, suggesting a mixture of false-
positive and true heterozygous M6-specific SNVs. Reasoning

that heterozygous SNVs should segregate together, we imple-
mented a two-state hidden Markov model (HMM) to redefine
homozygous and heterozygous M6 SNVs using the R pack-
age, depmixS4 (Visser and Speekenbrink 2010). Specifically,
SNV r2 values were used as input to build an unsupervised
HMMmodel separately for each chromosome. Posterior prob-
abilities for each state (heterozygous and homozygous) at a
particular SNVwere then estimated from the fittedmodels. To
define broader domains exhibiting residual heterozygosity, the
genome was parsed into 10-kb windows, shifting at 2.5-kb
intervals using BEDtools (Quinlan and Hall 2010). A 10-kb
window size was selected to optimize resolution based on
the average SNV density in this data set (227,530 M6-specific
SNVs per 725 Mb = 3.14 SNVs per 10 kb). We then counted
the occurrence of HMM-defined heterozygous SNVs within
each 10-kb window, merging overlapping windows containing
at least one heterozygous SNV. It is important to note that
defining larger windows will result in fewer heterozygous re-
gions that span relatively larger domains. The use of a
sliding window also has a smoothing effect that provides an
opportunity to merge overlapping windows with similar
features, minimizing the effects of sampling errors and ascer-
tainment bias.

Overlap analysis using permutations

Monte Carlo simulations were used to construct null distri-
butions for comparison to parameters of interest. As an ex-
ample, to test for an association between gene density and the
occurrence of residual heterozygosity (n = 23 regions), we
first collected 23 random regions of the genome (excluding
regions of residual heterozygosity and gaps in the reference
assembly) matched with the same length distribution as re-
gions of residual heterozygosity. Then, the average density of
protein coding genes within these 23 random sites was esti-
mated by defining overlap as coordinates that intersect by at
least 1 bp using BEDtools (Quinlan andHall 2010). To build a
distribution of random gene densities, the process of identi-
fying 23 random matched regions and estimating their gene
densities was repeated (permuted) 10,000 times. Thus, the
empirical P-value was determined as the fraction of permu-
tations with gene densities greater than or equal to the gene
density of residual heterozygous regions. We also applied
this general approach to determine the significance of over-
lap between genes under selection or QTL with regions of
residual heterozygosity that were greater than expected by
chance.

Gene ontology term enrichment

Gene ontology (GO) enrichment testswere performed assum-
ing a hypergeometric distribution using the software agriGO
(Tian et al. 2017). The false discovery rate (FDR) was con-
trolled using the Benjamini–Hochberg P-value correction,
with FDR , 0.05 considered significant. Due to a lack of
power from low sample size, blocks with , 50 genes were
excluded from the analysis of individual blocks. However,
these genes were included when assessing GO enrichment
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across all heterozygous regions. Only molecular function on-
tologies were considered during the analysis.

RNA-sequencing analysis of residual heterozygosity

RNA-sequencing (RNA-seq) data derived from M6 tissues
were acquired from a previous study (Leisner et al. 2018).
Raw RNA-seq reads were quality (-q 20) and adapter
trimmed using cutadapt (Martin 2011). Trimmed reads were
aligned using HISAT2 (Pertea et al. 2016), allowing for an
intron size of 15,000 bp in parallel with known gene anno-
tation coordinates (Potato Genome Sequencing Consortium
et al. 2011) to the DM v4.04 reference genome (Hardigan
et al. 2016), keeping the remaining parameters default.
Alignments were conducted using a single-end read mode
and only considering forward reads for libraries constructed
using paired-end chemistry. Raw counts per transcript were
developed using HTSeq count with default parameters
(Anders et al. 2015). Raw counts were then converted to
reads per kilobase by accounting for transcript length, adjust-
ing by the total reads per kilobase for each tissue, and finally
scaling the sum across genes to 1 M, yielding transcripts per
million (TPM) (Li et al. 2010).

Analysis of phenotypic data

Best linear unbiased predictors (BLUPs) for tuber number,
average tuber weight, and yield were calculated as the pre-
dictions of genotypic effects from the model (Equation 1):

yijk ¼ mþ Gi þ Ej þ G3 Eij þ BkðjÞ þ eijk (1)

where yijk is the phenotype of the clone i, grown in year j, in
block k; Gi represents the effect of the clone i; Ej is the effect
of the year j; GEij is the interaction between clone i and year j;
BkðjÞ represents the effect of the block k in the year j; and eijk is
an independent and identically distributed error term.

The year and block termswere treated asfixed,while clone
was treated as a random effect. Plant height, measured
longitudinally within each year, wasmodeled using a random
regression model (Equation 2).

yijk ¼ mþ Gi þ Ej þ G3 Eij þ BkðjÞ þ DAPþ DAP2 þ DAP3

þ G3DAPi þ eijk
(2)

Equation 2 includes all the same terms as listed above (Equa-
tion 1) as well as linear, quadratic, and cubic fixed effects for
days after planting ðDAPÞ, and a random slope term for each
clone ðG3DAPiÞ. The eijk in Equation 2 has a heterogeneous
first-order autocorrelation structure with a continuous time
variable, allowing different variances for each time point and
correlated residuals within each clone.

Model selection was performed using Akaike information
criterion (AIC) and visual assessment of model assumptions.
Broad-sense heritability values for each trait were derived
using the BLUP genotypic effects (Equation 3) (Bernardo
2014).

H2 ¼ s2
G

s2
G þ s2

GE
l þ s2

e
rl

(3)

where s2
G; s2

GE; & s2
e are the estimatedgenotypic, genotypeby

year, and residual variances, l is the number of years, and r is
the number of blocks.

Clones were clustered into two groups using k-means clus-
tering on the predicted slope and intercept terms from ran-
dom regression models, which represent predicted genotypic
effects in the middle of the growing season and differential
growth rates for each genotype, respectively. The resulting
clusters correspondedwith the two distinct growth habits. All
random regression models were fitted with the lme() func-
tion in the R package nlme (Pinheiro et al. 2018). Signifi-
cance tests for midparent heterosis were estimated using
the average yield BLUPs across all clones against the null
hypothesis of 0% heterosis in yield with Welch’s t-test (un-
equal variance).

Power and precision simulations

Simulations to determine the power and precision of our
reference-based haplotype recombination map were carried
out using R/qtl (Arends et al. 2010). Phenotypic heritability
was allowed to range from 0.05 to 0.95 for a single fixed-
position additive QTL. We further allowed the size of the
population to range from 20 to 200 individuals. Power was
defined as the proportion of simulations where the QTL was
detected, while precision was estimated as the proportion of
simulations capturing the precise bin with the designated
QTL.

QTL mapping

QTL mapping was conducted using the BLUPs from yield,
average tuber weight, tuber number, cluster affiliation for
growth type (group), and the random slope and intercept
predictions for plant height as response variables. QTL
mapping was performed by fitting a single multiple linear
model to each recombination bin containing a term for the
US-W4 allele, the M6 allele, and their interaction. For bins
where one parent was not segregating, that parent and the
interaction dropped from the model, as those coefficients
went to zero. P-values and F-statistics for the model overall,
each parental haplotype effect, and the interaction between
parental haplotypes (when applicable) were recorded for
each bin. Significance thresholds (a= 0.05) for single-QTL
scans were estimated by 1000 permutations. LOD scores
were calculated using F-statistics derived from the multiple
linear regression models (Equation 4) (Broman and Sen
2009):

LOD ¼ n
2
log10

"
F

 
df

n2 df 2 1

!
þ1

#
(4)

where n is the number of haplotypes (df ¼ 2 for an
intercross).
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LODscoreswere thenused toestimate thepercent variance
explained (PVE) (Equation 5):

PVE ¼ 12 102
2
n ðLODÞ (5)

QTL mapping using covariates was performed in R/qtl with
cross type coded as a “4way.” The function “scanone”
with slopes from random regression models used as additive
covariates was used for single-marker regression analysis.
Two-dimensional scans for interacting and additive QTL
were performed using the function “scantwo,” again with
the slopes from random regression models specified as addi-
tive covariates, using single-marker regression. One-thou-
sand permutations per trait were carried out using identical
model parameters as for QTL detection, set to an a of 0.05 for
single-QTL mapping and an a of 0.1 for two-dimensional
scans. Additive and dominance values for each haplotype
combination were estimated following a published method
(Da 2015). To ease visualization, we define relative domi-
nance as the log2 transformed ratio of dominance to additive
values with correction (Equation 6).

relative dominance ¼ log2

 
jDijj þ 1
jAijj þ 1

!
(6)

Where Dij and Aij are the dominance and additive values for
the genotype with haplotypes i and j ði 6¼ jÞ.
Fine-scale genetic dissection of tuber number and
weight QTL

PhasedSNVsoverlappingQTLbinswereassessed forpotential
effects using snpEff (Cingolani et al. 2012) and the DM v4.03
gene annotation (Potato Genome Sequencing Consortium
et al. 2011). Counts of various polymorphism effects were
scaled from zero to one for each effect type. Expression values
[reads per kilobase of exon model per million mapped reads
(FPKM)] for various tissue types and treatments were
obtained from the potato genome public repository (Potato
Genome Sequencing Consortium et al. 2011). Gene expres-
sion data were first converted to TPM by normalizing FPKM
values by the total FPKM in each tissue. For heatmap plots,
TPM values were normalized by centering to zero.

Data availability

The software used to generate phased haplotypes is freely
available in the software package phaseLD (https://github.
com/plantformatics/phaseLD). Haplotype bins, pheno-
types, and scripts for QTL mapping can be found on GitHub
at the following open access repository (https://github.
com/joegage/diploid_potato_qtl_mapping). Raw sequenc-
ing data for the F1 population and parental genotypes can be
found under BioProject number PRJNA356643. All supple-
mental figures and tables are available on figshare in files
Figures_S1-12.pdf and Supplemental_Tables.xls. Supple-
mental material available at https://doi.org/10.25386/
genetics.7312142.

Results

Development of a maternal reference-based haplotype
recombination map

Wepreviouslyperformedan interspecific cross betweenUS-W4,
a heterozygous Solanum tuberosum group Tuberosum diha-
ploid clone (2n = 2x = 24), and M6, a seventh-generation
inbred of the wild diploid S. chacoense species (2n = 2x =
24) (Jansky et al. 2014) to construct a pseudoone-way testcross
population consisting of 90 F1 individuals (Marand et al. 2017).
The F1 population was genotyped using whole-genome rese-
quencing (�23 coverage per individual), resulting in the iden-
tification of �3.9 million (M) SNPs and insertion/deletions
(SNVs). A subset of segregating markers (�1.3 M) were iden-
tified as heterozygous in the maternal parent, US-W4. These
markers were subsequently utilized to produce a maternal
reference-based haplotype recombination map with a me-
dian crossover breakpoint resolution of 880 bp and a total of
1055 recombinations (Marand et al. 2017).
Haplotype reconstruction of the inbred paternal diploid
clone M6

A recent report revealed residual heterozygosity in our inbred
paternal parent M6 (Leisner et al. 2018). We aimed to leverage
this residual heterozygosity to identify paternal segregating
haplotypes. Conditioning on SNVs in the F1 population that
were heterozygous in M6 and homozygous in US-W4 revealed
a total of 227,530M6-specific SNVs. To remove artifactual SNVs
and determine regions of residual heterozygosity, we estimated
the local LD for each SNV by averaging r2 values from estimates
with 100 flanking SNVs. We identified a total of 144,245 M6-
specific SNVs delimiting whole-chromosome-level residual het-
erozygosity for chromosomes 4, 7, 8, and 9, consistent with the
previous report (Figure 1) (Leisner et al. 2018). In addition, this
approach uncovered the presence of several short blocks of
recalcitrant heterozygosity that may have been previously
overlooked (Figure 1). To uncover the patterns of paternal
haplotype inheritance, we used the 144,245 M6-specific SNVs
as input for the LD-based haplotyping method, phaseLD
(Marand et al. 2017), resulting in a total of 650 uniquely seg-
regating haplotype bins (Supplemental Material, Figure S1).
Residual heterozygosity coincides with elevated gene
density, recombination rate, and functional annotations
suggestive of gametic selection

Thewidespread prevalence of residual heterozygosity inM6
may play a key role in distributing phenotypic variation in
our progeny. Because chromosomes 4, 7, 8, and 9 were
almost entirely heterozygous, we focused on characterizing
the shorter heterozygous blocks embedded within homozy-
gous regions on the remaining chromosomes. These hetero-
zygous blocks (n = 23) spanned �11% (76.8/725 Mb) of
the potato genome, with a median block length of 1300 kb
(range: 17–21,000 kb) (Table S1). Unlike chromosome-
level heterozygosity, these short regions overlapped regions
with increased recombination rates relative to the genome-wide
average (Wilcoxon rank sum test; P, 4.8e210), leading us to
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posit that recalcitrant heterozygosity over short blocks is
likely associated with selective forces rather than inefficient
purification mediated by the absence of recombination
(Figure 1).

Characterization of the genetic composition underlying het-
erozygous regions revealed a total of 6878 genes, providing a
meanof299genesperblock (range:0–1920).Comparisonwith
10,000 random permutations of the same number and length
(excluding assembly gaps) as heterozygous blocks uncovered a
significant association between recalcitrant heterozygosity and
elevated gene density (empirical; P , 1.0e24) (Figure 2A).
Considering a twofold overall enrichment of genes at hetero-
zygous blocks (heterozygous blocks=90 genesMb21, genome-
wide = 51 genes Mb21), we were interested to determine if
regions of residual heterozygosity harbor genes with distinct

functional annotations. Focusing on GO annotations for
blocks with sufficient power for discovery (number genes $
50), we found that terms related to peptidase, transferase,
and transcription factor activity were prevalent across multi-
ple heterozygous blocks (Figure 2B). Functional character-
ization of peptidases has highlighted roles in reproductive
development, including embryogenesis, pollen development,
and gametophyte survival [reviewed in van der Hoorn
(2008)], suggesting that persistent heterozygosity may be
associated with the production of functional gametes.

Patterns of gene expression and selection underlie
regions of recalcitrant heterozygosity

We further posited that genes within heterozygous
blocks may demonstrate patterns of tissue-specific expression.

Figure 1 Recalcitrant residual heterozygous SNVs in a seven-generation inbred. Genome-wide map of local LD based on the mean r2 centered on
windows of 100 SNVs (gray) and the coincidence of elevated recombination rates (relative recombination rates, purple overlay). Top y-axis, average r2

per marker. Bottom y-axis, genes per 100 kb (blue). Green blocks, regions with elevated LD, heterozygous blocks in M6. chr, chromosome; LD, linkage
disequilibrium; SNV, short nucleotide variant.
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Approximately 81% of genes (5594/6878) within heterozygous
blocks were expressed (TPM$ 1) in at least one tissue type
(tubers, stolons, leaves, fruit, floral buds, and open flowers)
derived from the paternal inbred parent M6. Generally,
genes underscoring heterozygous blocks were expressed
at greater levels in floral tissues (floral buds and open
flowers) (Figure 2, C and D and Figure S2). To gain insight
into tissue-specific expression, we estimated the average
log2 fold change for each gene across tissue types and de-
fined tissue specificity as genes with an average log2 fold
change . 4 in a single tissue (Figure S3A). Interestingly,
12% (685/5594) of expressed genes within heterozygous
blocks exhibited tissue-specific expression, 63% of which
were overrepresented within floral and fruit tissues consis-

tently across heterozygous blocks (Figure 2E and Figure S3,
B and C).

Positing a potential relationship between residual hetero-
zygosity and targets of selection, we scanned published
data sets of genes demonstrating signatures of selection in
potato (Hardigan et al. 2017). Remarkably, genes under
selection (20%, 509/2622) were highly enriched within
M6 heterozygous blocks (empirical, 10,000 permutations;
P , 1.0e24). Conditioning for tissue-specific expression
resulted in a total of 64 tissue-specific genes under selection
(Figure S3D). Nearly 75% (47/64) of tissue-specific genes
were expressed exclusively in floral tissues, substantially
greater than the genome-wide average (Figure 2F). Taken
together, residually heterozygous regions demonstrate a

Figure 2 Recalcitrant heterozygosity is associated with increased gene density and floral-specific gene expression in potato. (A) Permuted distribution
(10,0003) of gene density from random regions (gray) compared with gene density of heterozygous blocks (purple line). (B) Heatmap of significant GO
terms enriched within the heterozygous blocks in M6. Nonsignificant terms are colored as white squares, while significant terms [2log10 (FDR) . 1.3]
range in color from gray to dark purple. (C) Hierarchically clustered heatmap of centered gene expression values (log2 TPM) across six different tissues at
heterozygous blocks. (D) Distribution of gene expression values across six different tissues for genes underlying heterozygous blocks. (E) Distribution of
tissue-specific gene expression for genes transcribed in distinct tissue types for individual heterozygous blocks. (F) Average log2 (FC) for genes under
selection. The gray bar over each boxplot represents the average log2 (FC) for all genes. chr, chromosome; FC, fold change; FDR, false discovery rate;
GO, gene ontology; ID, identifier; TPM, transcripts per million.
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persistent relationship with genes under selection and floral
tissue specificity.

A high-resolution four-allele recombination bin map

To achieve maximal resolution and power for downstream
QTLmapping, wemerged the haplotype recombinationmaps
from US-W4 and M6 to create a comprehensive reference-
based recombination bin map composed of 1714 uniquely
segregating bins, representing distinct combinations of four
different alleles (Figure 3A). The outcrossed haplotype struc-
ture of this map resembles that of a four-way cross popula-
tion. Considering that this recombination bin map was

generated with a segregating F1 population, we found that
our map demonstrated exceptional resolution, revealed by a
median and average physical bin length of�146 and 423 kb,
respectively (Figure 3B). Additionally, . 80% of recombina-
tion bins spanned intervals, 500 kb in length. To determine
the resolution of this map for the identification of candidate
genes, we investigated the distribution of gene counts across
bins. This analysis revealed a median and mean of 11 and
22 genes per bin, respectively, with 80% of bins containing,
33 genes (Figure 3C). We also characterized bin lengths and
gene density across chromosomes, highlighting the applica-
bility of this map for QTL analysis (Figure 3, D and E).

Figure 3 Construction and analysis of a four-allele reference-based haplotype recombination bin map in diploid potato. (A) Haplotype distribution of a
four-allele reference-based haplotype recombination bin map in diploid potato. Orange and purple, US-W4 haplotypes 1 and 2, respectively. Green and
gray, M6 haplotypes, respectively. (B) Distribution of recombination bins based on the physical bin length. (C) Distribution of genes per bin genome-
wide. (D) Scatter plot depicting the density of genes as a function of bin length. (E) Proportion of chromosome recombination bins composed of
different physical bin lengths (split into quartiles). (F) Simulation estimates of precision across a range of heritability values (x-axis) and population sizes
(dark blue to light green lines). (G) Simulation estimates of power across a range of heritability values (x-axis) and population sizes (dark red to orange
lines). chr, chromosome.
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xWe were then interested to determine the power and
precision of ourmergedmap for QTL analysis. To this end, we
assessed the power (proportion of simulations detecting the
QTL) and precision (proportion of simulations capturing the
correct QTL position) of our bin map by simulating different
population sizes with variable phenotypic heritability associ-
ated with a QTL. We employed a single fixed additive QTL
model using broad-sense phenotypic heritability estimates
ranging from 0.05 to 0.95, and population sizes between
20 and 200 individuals. Analysis of these simulations indi-
cated that our map (population size = 90) can detect QTL
with . 90.4% power and 91.2% precision when the pheno-
typic heritability of an additive QTL is 0.5 (Figure 3, F and G).
Overall, this analysis indicates that our comprehensive re-
combination map provides exceptional resolution in an F1
potato population established by the low gene counts and
short physical lengths per bin, and the reliable detection
and localization of QTL for phenotypes of modest heritability.

Prevalent heterosis for yield component traits in a
diploid potato population

Outbred populations display remarkable phenotypic diversity
and occasionally substantial heterosis over parental geno-
types (Svenson et al. 2012). Both parents, US-W4 and M6,
produce small tubers (Figure 4A), typical of diploid potato
germplasm. Our initial evaluation of a few F1 progeny
revealed remarkable heterosis in tuber size, prompting an
evaluation of a larger F1 population. To assess the degree
of yield heterosis, clonally propagated tubers from the F1

population and four commercial tetraploid cultivars (Atlan-
tic, Red Norland, Superior, and Yukon) were planted in the
field for four consecutive years (2014–2017). We collected
data on yield, tuber number, and average tuber weight fol-
lowing harvest. We also measured plant height weekly for
individual plots throughout the growing seasons. Phenotypic
analysis indicated the presence of substantial variation for all
collected traits (Figure 4B). Because plant height was mea-
sured longitudinally within years, we used random regres-
sion models to fit growth curves. Visual inspection of these
models suggested two main growth habits, which we label as
“early” maturity for determinate growth and “late” maturity
for indeterminate growing clones (Figure 4C). We used un-
supervised k-means clustering to assign early and late matu-
rity labels to the F1 progeny, parental genotypes, and
commercial tetraploids using the clone-specific slope and in-
tercept estimates from the random regression models, high-
lighting the occurrence of two distinct groups based on
patterns of senescence (Figure 4D).

An extreme range of tuber sizes was observed across the F1
population, consistent with initial observations (Figure 5A).
To control for variation due to year and replication, we de-
rived breeding values for all phenotypes using BLUP models.
Ranking clones by yield BLUPs uncovered a proliferation of
extreme high-parent (HPH) and midparent heterosis (MPH),
as several F1 clones produced yields comparable to commer-
cial tetraploid cultivars (average MPH= 332%, average HPH
= 325%) (Figure 5B). We additionally observed heterosis for
tuber number (average MPH = 147%, average HPH = 71%)

Figure 4 Analysis of phenotypic
variance and maturity segregation
in potato. (A) Comparison of tuber
size between the maternal parent
US-W4 (left) and the paternal parent
M6 (right). Bar, 2.54 cm (1 inch). (B)
Distributions of scaled phenotypic
values for plant height, tuber num-
ber, average tuber weight, and over-
all yield. (C) Example of different
growth habits for two genotypes
demonstrating early (purple) and
late (orange) maturity. The purple
and orange lines were derived from
random regression models for each
clone. DAP, days after planting.
(D) K-means clustering of all F1 indi-
viduals, parental genotypes, and
commercial tetraploid cultivars.
Early-maturing clones are illustrated
in purple, while late-maturing clones
are labeled in orange.
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and average tuber weight phenotypes (average MPH= 50%,
average HPH = 37%). Furthermore, all tuber traits were
highly heritable, with broad-sense heritability values of
0.85, 0.89, and 0.9 for tuber number, average tuber weight,
and yield, respectively. These observations suggest that mul-
tiallelic states in tetraploids may not be responsible for the
yield barrier commonly associated with diploid potatoes. Be-
cause commercial tetraploid cultivars demonstrated early
maturation and senescence, we were interested to determine
if the yield, tuber number, and average tuber weight pheno-
types exhibit a statistical relationship with the maturity
parameters derived from the random regression model.
Pairwise correlation analysis across phenotypic data sets
revealed significant correlations for slope, intercept, and
group with overall yield (Pearson’s r = 0.4–0.6) and tuber
number (Pearson’s r=0.45–0.62), and while still significant,
less predictability for average tuber weight (Pearson’s r =
0.1–0.3) (Figure 5C). Interestingly, we did not find a corre-
lation between tuber number and average tuber weight, al-
though both traits were associated with overall yield. These
results imply genetic independence between average tuber
weight and maturity, and strong correlations between early
senescence, increased tuber number, and overall yield.

Identification of novel yield-associated QTL

To reveal the genetic constituents governing yield-related
traits in this population, we performed QTL mapping using
the BLUPs from yield, tuber number, average tuber weight,
and the three maturity components (slope, intercept, and
group) as response variables. Because of the four-allele struc-
ture of this population, we developed a mapping approach

that separately estimates the individual effects of each parent,
the interaction between parent haplotypes, and a full model
incorporating all terms (see Materials and Methods). Past re-
ports have suggested that yield increases may be driven by
interactions between parental genomes (overdominance)
(Lippman and Zamir 2007). However, in this study, modeling
of the parental haplotype interactions failed to uncover sig-
nificant effects (Figure S4). Although several loci were sug-
gestive (nearly significant) of haplotype interactions, these
results suggest that yield components in this diploid potato
population are instead likely associated with additive, dom-
inance, or epistatic effects.

Given the absence of significant interspecific parental
effects, we sought to characterize effects of the full model
in addition to parent-specific terms. This analysis uncovered
multiple significant QTL with varying positions on chromo-
some 05 for all traits (Figure S4). Significant QTL for
maturity components (PVE: 36.4–44.7%), tuber number
(PVE: 24.4%), and overall yield (PVE: 28.5%) mapped
to the same 256-kb recombination bin (chromosome
05: 4,344,170–4,599,697), which also contains the well-
characterized potato maturity locus gene StCDF1 (chromo-
some 05, �4.5 Mb) (Kloosterman et al. 2013), providing
further evidence supporting the accuracy and resolution of
our bin map. Visual assessment of the –log10 (P-value) pro-
files indicated that a second significant QTL peak from the
full model for tuber number (PVE: 25.4%) was located �1
Mb upstream of the maturity locus, separated by four cross-
over events (Figure S5A). For convenience, we denote this
genomic interval as the tuber number (tn1) locus (167 kb;
chromosome 05: 3,436,979–3,603,744). Furthermore, we

Figure 5 Persistent heterosis in tuber size
is independent of maturity in potato. (A)
Comparison of tuber size among a commer-
cial tetraploid cultivar (left), a high-yielding
diploid clone (middle), and a low-yielding
diploid clone (right). Bar, 2.54 cm (1 inch).
(B) Ordered yield BLUPs across the F1 pop-
ulation, the parental genotypes, and tetra-
ploid cultivars. Orange bars indicate the two
parental genotypes. Blue bars represent the
commercial tetraploid cultivars. Green bars
indicate clones with below-average yield
BLUP values. Purple bars represent clones
with above-average yield BLUP values. (C)
Pairwise correlations between maturity and
yield components. A linear regression model
is plotted as a red line in pairwise compar-
isons. Early- and late-growing labels are
assigned to clones as purple and orange
colors, respectively. Significance denoted
as * P , 5.0e210, ** P , 5.0e220, and
*** P, 5.0e250. BLUP, best linear unbiased
prediction.
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identified a significant QTL for average tuber weight (PVE:
18.6%) originating from US-W4 (184-kb; chromosome 05:
9,694,035–9,877,748) shifted downstream relative to the
bin containing StCDF1 and label this interval as the average
tuber weight (tw1) locus (Figure S5A). Analysis of marker
effects at tn1 and tw1 indicated that the same US-W4 allele is
the major contributor to increases in both average tuber
weight and number in this population (Figure S5B).

To evaluate the possibility that LD with the maturity
locus results in tn1 and tw1 QTL, we estimated pairwise LD
between all bins on chromosome 05 (Figure S5C). Analysis
of LD between the maturity locus and the tn1 and tw1 bins
revealed the presence of recombination among these loci,
and the maturity locus, indicated by r2 values of 0.9 and
0.7, for tn1 and tw1, respectively. The relatively high LD
between the maturity locus and these bins is expected
given the physical proximity of , 5 Mb in both cases.
The observation of 4 and 11 crossover events between
the maturity locus and tn1 and tw1, respectively, suggests
sufficient recombination for identification of independent
QTL.

Controlling for maturity reveals prevalent epistasis and
relative dominance over additive action overlapping
residual heterozygosity

To control for the correlated effects of maturity on yield-
associated traits, we performed additional one- (Figure
6A) and two-dimensional genome-wide scans (Figure
6B) using maturity group (early vs. late maturing) as a
covariate during QTL detection. This resulted in the iden-
tification of several significant (FDR, 0.1) QTL, with sub-
stantial contributions from epistatic interactions for all
traits (Figure 6C). Several QTL were consistent among
yield-associated traits, resulting in a total of 14 novel
QTL regions (including tn1 and tw1). Interestingly, we
found that 79% (11/14) of QTL regions were epistatic
(Table S2). To ensure that interacting QTL were not due
to misplaced scaffolds or translocations, we estimated LD
for all epistatic interactions, revealing r2 values , 0.1 for
all interactions (Figure S6 and Table S2). Multiple QTL
models controlling for maturity as a covariate explained
74.6, 58.3, and 88.6% of the total phenotypic variance for
tuber number, average tuber weight, and yield, respectively.

Figure 6 QTL detection accounting for maturity as a covariate in potato. (A) Single-marker regression scan for QTL associated with tuber number (left),
average tuber weight (middle), and yield (right). The red line indicates significance thresholds for a = 0.05. (B) Two-dimensional QTL scans for epistatic
interactions associated with tuber number (left), average tuber weight (middle), and overall yield (right). The top half of the matrix indicates LOD scores
from the full model (two QTL and their interaction). The bottom of the matrix represents LOD scores from the additive model of two QTL. (C) A summary
of all significant epistatic interactions among QTL for various traits. chr, chromosome.
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Visual inspection of QTL peaks suggested that these genomic
regions may preferentially colocalize with sites of residual
heterozygosity. Indeed, enrichment analysis indicated a near-
significant relationship between regions of residual heterozy-
gosity inM6 and epistatic yield-associatedQTL peaks (46%, 5/
11 overlap; empirical, 1 million permutations: P , 0.057).

To gain insight into the contribution of distinct haplotype
combinations toward phenotypic variation, we estimated the
additive and dominance values for each allelic combination
for each bin. We found widespread prevalence of elevated
dominance values relative to additive values for all traits
(defined as the average log2 transformed ratio between dom-

inance and additive values; see Materials and Methods), sug-
gesting that dominance action predominantly influences
yield and its components in this population (Figure S7–S9).
In addition, relative dominance values at yield (Wilcoxon
rank sum test; P , 1.0e24) and tuber number (Wilcoxon
rank sum test; P, 0.02) QTL were significantly greater than
genome-wide estimates, while average tuber weight QTL
were not (Wilcoxon rank sum test; P = 0.12). To determine
if residual heterozygosity contributes to dominance, we eval-
uate the relative dominance to additive value ratio at hetero-
zygous compared to the whole genome. Heterozygous blocks
were associated with significantly greater relative dominance

Figure 7 Fine-scale analysis of the genetic and expression regulation architecture of yield-associated QTL in potato. (A) Distribution of SNVs relative to
genes across all 14 QTL regions. (B) Normalized (0–1) counts of different SNV effects types (columns) across all 159 QTL genes (rows). (C) Normalized
(z-scores) expression values of all 159 QTL genes (rows) across 16 different tissue types (columns). (D) Coincidence of tuber- or stolon-specific QTL
genes (bottom plot) with various SNV effects (top bubble plot). Counts of SNV effects were scaled to range from 0 to 1. Tuber- and stolon-specific
QTL genes were determined by the tissue type with the greatest TPM average log2 (FC). FC, fold change; SNV, short nucleotide variant; TPM,
transcripts per million; TSS, transcription start site; TTS, transcription termination site.

328 A. P. Marand et al.



than the genome average for tuber number (Wilcoxon rank
sum test; P , 5.8e25) and yield (Wilcoxon rank sum test;
P, 0.001), but not for average tuber weight (Wilcoxon rank
sum test; P = 0.72) (Figure S10). Taken together, epistatic
QTL underlying yield-related traits contribute to a large pro-
portion of the phenotypic variance, are associated with ele-
vated relative dominance values, and overlap with regions of
residual heterozygosity.

Fine-scale genetic and transcriptional dissection of
yield-associated candidate genes

The high resolution of our genetic map affords the
opportunity to dissect thefine-scale genetic and transcriptional
architecture underlying yield-associated QTL. QTL intervals
ranged in length from 22.7 to 681 kb, contained between
0 and 44 annotated genes per bin, and harbored a total of
159 genes. Since QTL mapping was performed on large hap-
lotype bins and ignored fine-scale polymorphisms, we specu-
lated that sequence variation among haplotypeswithin coding,
splicing, or regulatory regions of key trait-related genes may
lead tophenotypicdifferences. To this end,we identifieda total
of 10,272 SNVs, ranging from 25 to 4001 SNVs per QTL
interval. Approximately one-half (46%) of these SNVs were
locatedwithin genes and their 1-kbflanking regions (Figure7A
and Figure S11). On average, each QTL-localized gene con-
tained�18 and 57 SNVs within the gene body and 1-kb flank-
ing regions, respectively. After accounting for variation in gene
length, we found that the level of genetic diversity both within
and surrounding yield-associated QTL genes was significantly
greater compared to all genes genome-wide (gene body: Wil-
coxon rank sum test; P, 0.009, 1-kb flanking: Wilcoxon rank
sum test; P, 2.2e24), suggesting that regions related to yield
may harbor significantly greater levels of genetic diversity
around genes. Focusing on SNVs with putative functional im-
plications revealed that of the 159 genes, 94% contained at
least one polymorphism predicted to potentially affect tran-
scription (up- and downstream SNVs), alter the cognate pep-
tide sequence, or impact RNA splicing, editing, or translation
(Figure 7B and Table S3). Approximately 60% (95/159) of
genes contained at least one SNV predicted to affect peptide
sequence, highlighting the abundance of potential functional
genetic diversity underlying yield-associated QTL.

Leveraging published RNA-seq data (Potato Genome
Sequencing Consortium et al. 2011), we profiled gene ex-
pression (TPM) for all genes contained within each QTL.
Of the 159 QTL-localized genes, 61% (97/159) were
expressed in at least one profiled tissue type (Figure 7C
and Table S4). Reasoning that candidate genes related to
tuber number or average tuber weight would be preferen-
tially expressed within tuber or stolon tissues, we searched
for genes demonstrating evidence of tuber or stolon-specific
gene expression. We estimate the degree of tissue specificity
for each gene by taking the average log2 fold change across
tissues. By considering genes where the greatest average log2
fold change occurredwithin tuber or stolon tissue types, a total
of 30 genes over 9 QTL regions were identified (tuber- and

stolon-specific expression = 19% of QTL genes; 30/159) (Fig-
ure S12 and Table S5). Yield-associated QTL contained a
greater proportion of genes with tuber- or stolon-specific ex-
pression compared to the genome average, but the enrichment
was not significant (Fisher’s exact test; QTL-localized genes =
19% vs. genome-wide genes = 12%, P = 0.066). To further
delineate potential candidate genes, we assessed SNV effects
for genes found in yield-associated QTL specifically expressed
in tuber and stolon tissues. A total of 28 tuber- or stolon-
specific expressed genes were associated with at least one
SNV with the potential to alter transcription regulation, pep-
tide sequence, or RNA splicing/translation (Figure 7D).
Taken together, this analysis has revealed numerous candi-
date genes expressed in tuber and stolon tissues that underly
genomic regions affiliated with yield QTL.

Discussion

It is commonly believed that tetraploidy is necessary for high
yield in potato due to the potential for complex genetic
interactions (Mendoza and Haynes 1973; Mendiburu and
Peloquin 1977; Hermsen 1984). Here, we report the pro-
duction of diploids that produce yields comparable to tetra-
ploid potato cultivars. It is important to note that, while this
study challenges the concept that competitive cultivars
must have four sets of chromosomes, it does support exten-
sive earlier literature suggesting that interlocus (epistasis)
and intralocus (dominance) interactions are important
for high yield in potato (Mendoza and Haynes 1973;
Mendiburu and Peloquin 1977; Ortiz et al. 1997). The dip-
loids in this study are interspecific hybrids between cultivated
potato and the wild potato relative S. chacoense. The produc-
tion of high-yielding individuals carrying a large proportion
of wild germplasm has important implications for the use of
this germplasm resource in potato. Notably, most of the
107 wild potato species are sexually compatible with the
cultivated potato (Jansky 2018). This provides breeders with
an expansive array of genetic variability for cultivar improve-
ment. Allele mining within the wild and cultivated diploid
germplasm has the potential to enhance yields and ease
breeding efforts.

We have identified and carried out a comprehensive anal-
ysis of 14 novel QTL underlying potato yield. Identification of
QTL was afforded by the construction of a high-resolution
reference-based haplotype recombination map of an out-
crossed population, maximizing the power of low-coverage
whole-genome resequencing. The haplotype structure of a
seventh-generation inbred paternal parent was revealed by
leveraging residual heterozygosity present at greater levels
than expected in most inbred genotypes (McMullen et al.
2009), enabling the identification of crossovers at high reso-
lution and precise demarcation of recombination bin coordi-
nates. The accuracy and precision of our reference-based
mapping approach was validated via simulations, and map-
ping, of the well-known potato maturity locus gene StCDF1
to the center of a discrete recombination bin �250 kb in
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length. These findings represent a substantial improve-
ment in terms of resolution over past QTL mapping stud-
ies in potato, which relied on relatively few (, 10,000)
markers resulting in large QTL intervals often containing
hundreds of genes (Lindqvist-Kreuze et al. 2015; Manrique-
Carpintero et al. 2015; Hara-Skrzypiec et al. 2018). In addi-
tion, identification of novel genomic loci associated with
yield has been impeded by the extreme proportion of vari-
ance harbored by the maturity locus on chromosome 05 -
(Manrique-Carpintero et al. 2015). By performing QTL
detection with maturity explicitly defined as a covariate, we
were able to uncover several novel QTL, including those in-
volved in epistatic interactions. Although much speculated,
only a handful of QTL studies in potato have identified epi-
static QTL, likely due to a lack of marker resolution, genotyp-
ing accuracy, and power necessary to capture such effects
(Mok and Peloquin 1975; van den Berg et al. 1996;
Manrique-Carpintero et al. 2015). In contrast to past studies,
most QTL regions in this population were associated with
epistatic interactions, while only three QTL were the result
of additive effects. Backward selection examining multiple
QTL models indicated that most of the phenotypic variation
could be explained by a modest number of large-effect QTL.
One of our initial hypotheses was that the interspecific nature
of this population might be a major contributor toward the
observed yield heterosis (Mendoza and Haynes 1974; Mok
and Peloquin 1975). Although we were unable to detect sig-
nificant interactions between parental haplotypes, we did
identify an increase in relative dominance across all yield-
associated traits localizing to regions of recalcitrant hetero-
zygosity in the inbred parent. Additional populations from
divergent genetic backgrounds will be necessary to deter-
mine if these observations are a unifying feature of the potato
genome.

The identification of recalcitrant heterozygosity in the
inbred parent has important implications for future map-
ping and breeding efforts. The occurrence of residual
heterozygosity has been largely attributed to a lack of
recombination (Gore et al. 2009; Leisner et al. 2018), not-
ing that recombination the enables purification of delete-
rious alleles and aids in selection efforts. However, other
reports have indicated that localized regions may be a re-
sult of other more complex population forces (Liu et al.
2018). We demonstrate that the persistence of residual
heterozygosity in discrete euchromatic regions does not
arise from the absence of recombination, but may be in
part due to gametic selection necessitating maintained
heterozygosity at specific loci. These conclusions, al-
though speculative, are supported by the enrichment of
genes carrying signatures of selection, of floral-specific
expression profiles, and GO annotations consistent with
gametic function and development. It is attractive to con-
sider these genes as potential players in the developmen-
tal transition from vegetative to reproductive stages, a
process that profoundly impacts metabolic resource alloca-
tion during tuber development (Martin et al. 2009). However,

future work characterizing the functional roles of such genes will
be necessary to determine their part in recalcitrant heterozygos-
ity.We also found that regionswith elevated heterozygositywere
affiliated with greater ratios of dominance to additive values for
yield and tuber number. Considering that secondary tubers are
equivalent to asexually propagated progeny, the number of tu-
bers produced per individual plant can be regarded as a general
proxy for fitness (Hardigan et al. 2017). This suggests that main-
tained heterozygosity may be important for overall fitness and is
consistent with severe inbreeding phenotypes in potato. Thema-
jority of epistatic QTL identified by two-dimensional QTL scans
overlapped regions of residual heterozygosity, which further
implicates a potential relationship between increased allelic
variation, epistatic contributions to yield, and overall fitness.

The short physical QTL bin lengths allowed for the exam-
ination of putative candidate genes at a fine scale. Among the
28 tuber- or stolon-specifically expressed genes underpinning
yieldQTL, several emerged as promising candidates for further
consideration. A gene underlying an epistatic QTL for both
yield and tuber number, annotated as a gibberellin-regulated
protein (PGSC0003DMT400083077), was expressed seven-
fold greater in stolon tissues and threefold greater in young
tubers compared to other tissue types. Gibberellin plays a well-
documented role in plant development and structural archi-
tecture, providing further support for a putative functionof this
gene in tuber initiation (Daviere and Achard 2013). Gibberel-
lin-regulated protein was coincident with 1-kb upstream, 1-kb
downstream, and missense SNVs, indicating that there are
multiple segregating alleles present in our population. A gene
(PGSC0003DMT400019845) located within the tw1 average
tuber weight QTLwas annotated as a starch granule-bound R1
protein (SGBR1). SGBR1 proteins, when bound to the surface
of granules, have been shown to elicit starch degradation in
potato leaves (Ritte et al. 2000b). However, SGBR1 proteins
are also speculated to be involved in starch synthesis when
encapsulated within granules, a case observed predomi-
nantly in tubers ((Ritte et al. 2000a,b). This gene is
expressed mainly within the tuber pith and cortex in the
genotype “RH” and demonstrates a threefold expression
increase in the tubers of M6 relative to other tissue types.
The abundance of putative cis-regulatory SNVs and 11 mis-
sense mutations highlights the genetic diversity in this gene.
These genes represent candidate genes based on a priori
annotations, patterns of transcription, and the presence of
more than one allele. Further experiments will be necessary
to validate the functional contributions of these genes to-
ward yield-related phenotypes.
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