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ABSTRACT Experiments show that evolutionary fitness landscapes can have a rich combinatorial structure due to epistasis. For some
landscapes, this structure can produce a computational constraint that prevents evolution from finding local fitness optima—thus
overturning the traditional assumption that local fitness peaks can always be reached quickly if no other evolutionary forces challenge
natural selection. Here, I introduce a distinction between easy landscapes of traditional theory where local fitness peaks can be found
in a moderate number of steps, and hard landscapes where finding local optima requires an infeasible amount of time. Hard examples
exist even among landscapes with no reciprocal sign epistasis; on these semismooth fitness landscapes, strong selection weak mutation
dynamics cannot find the unique peak in polynomial time. More generally, on hard rugged fitness landscapes that include reciprocal
sign epistasis, no evolutionary dynamics—even ones that do not follow adaptive paths—can find a local fitness optimum quickly.
Moreover, on hard landscapes, the fitness advantage of nearby mutants cannot drop off exponentially fast but has to follow a power-
law that long-term evolution experiments have associated with unbounded growth in fitness. Thus, the constraint of computational
complexity enables open-ended evolution on finite landscapes. Knowing this constraint allows us to use the tools of theoretical
computer science and combinatorial optimization to characterize the fitness landscapes that we expect to see in nature. I present
candidates for hard landscapes at scales from single genes, to microbes, to complex organisms with costly learning (Baldwin effect) or
maintained cooperation (Hankshaw effect). Just how ubiquitous hard landscapes (and the corresponding ultimate constraint on
evolution) are in nature becomes an open empirical question.
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GENOTYPE and fitness are two central concepts in evolu-
tionary biology. Through its production of phenotypes,

and those phenotypes’ interactions with the biotic and abiotic
environment, a given genotype has a certain fitness. A fitness
landscape summarizes this relationship between genotypes
(or phenotypes) and fitness. Formally, fitness landscapes
combine numeric fitnesses and a mutation-graph into a com-
binatorially structured space where each vertex is a possible
genotype (or phenotype). The numeric structure is given by a
function that maps each genotype to a fitness; typically rep-
resented as a non-negative real number and having different
physical operationalizations in different experimental sys-
tems. A given genotype is more similar to some rather than
other genotypes—giving us a notion of genetic distance or

mutation-graph. The mutation-graph specifies which geno-
types are similar, typically as edges between any two geno-
types that differ in a single mutation. This provides the
combinatorial structure. A genotype is a local fitness peak
(or local fitness optimum) if no adjacent genotype in the
mutation-graph has higher fitness.

We usually imagine fitness landscapes as hills or mountain
ranges, and continue to assume—asWright (1932) originally
did—that on an arbitrary landscape “selection will easily
carry the species to the nearest peak.” And we define a
constraint as anything that keeps a population from reaching
a local fitness peak. For those that view evolution as a sum of
forces, with natural selection being only one of them, it is
possible for other forces to act as a constraint when they
overpower natural selection and keep the population away
from a local fitness peak. Such cases are often associated
with maladaptation (Crespi 2000), and are usually attributed
to mechanisms like mutation meltdown, mutation bias, re-
combination, genetic constraints due to lack of variation, or
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explicit physical or developmental constraints of a particular
physiology. I will refer to such situations, where nonselection
forces (and/or aspects internal to the population) keep the
population from reaching a local fitness peak, as proximal
constraints on evolution. In contrast, I will refer to a con-
straint as ultimate if it is due exclusively to features of the
fitness landscape, and is present in the absence of other forces
or even holds regardless of the strength of other forces. All
constraints are either proximal, ultimate, or a mix of the two.
I introduce this terminology of proximal and ultimate
constraints by analogy to Mayr’s distinction between proxi-
mal and ultimate causes in biology (Mayr 1961). Mayr con-
sidered as ultimate only those evolutionary causes that are
due exclusively to the historic process of natural selection
(Ariew 2003), so I consider as ultimate only those evolution-
ary constraints that are due exclusively to the fitness land-
scape structure of natural selection.

The distinction that I am making between proximal and
ultimate constraints can be made clearer by reference to a
distinction in computer science between algorithms and prob-
lems. I will consider the population structure, update rules,
developmental processes, mutation operator, or bias, etc. as
together specifying the algorithm that is evolution. In con-
trast, the families of fitness landscapes are like problems to be
“solved” by evolution and specific fitness landscapes on
which populations evolve are problem-instances. A
proximal constraint is any feature of the evolutionary algo-
rithm that prevents the population from finding a local fitness
optimum in polynomial time. For a classic example, consider
a population with an extreme lack of genetic variation that
cannot proceed to an adjacent fitter genotype because the
allele that it differs in is simply not available in the popula-
tion. In this case, the proximal constraint of lack of variation
due to the details of this particular population’s evolutionary
algorithm prevents it from reaching a fitness peak. In con-
trast, an ultimate constraint is any feature of the problem (i.e.,
family of fitness landscapes) that prevents the population
from finding a local fitness optimum in polynomial time. It
is the goal of this paper to show a convincing example of such
a constraint.

One candidate for an ultimate constraint on evolution—
historicity or path-dependence—is already widely recog-
nized. A local peak might not be the tallest in the mountain
range, so reaching it can prevent us fromwalking uphill to the
tallest peak. This constraint has directed much of the work on
fitness landscapes toward how to avoid suboptimal peaks or
how a population might move from one peak to another
(Wright 1932; Obolski et al. 2018). Usually, these two ques-
tions are answered with appeals to the strength of other evo-
lutionary forces, although sometimes the second question is
sidestepped by postulating that local fitness peaks are part of
the same fitness plateau in a holey adaptive landscape, and,
thus, fitness valleys can be bypassed to move between differ-
ent local optima in the plateau (Gavrilets and Gravner 1997;
Gavrilets 2003). But both these types of questions implicitly
assume that local peaks (or plateaus) are easy to reach and

thus the norm for natural selection. When the constraint of
historicity is active, being at one local optimum prevents the
population from reaching other (higher) local optima. Thus,
this candidate for an ultimate constraint is only partial: it
prevents only certain—not all—local fitness optima from be-
ing found. In this case, it prevents evolution from finding the
highest local peak: the global optimum. But, we seldom con-
sider that even reaching any local optimum might be impos-
sible in a reasonable amount of time.

Here, I show that computational complexity is an ulti-
mate constraint on evolution: it can prevent evolution from
finding any local fitness peak—even low fitness ones. A
careful analysis—formal mathematical proofs for all state-
ments are available in the supplemental appendix (SA; for a
summary, see SA Table A1) and referenced throughout the
text—shows that the combinatorial structure of fitness
landscapes can prevent populations from reaching any local
fitness peaks. This suggests an alternative metaphor for
fitness landscapes: fitness landscapes as mazes with the
local fitness optima as exits. Natural selection cannot see
far in the maze, and must rely only on local information
from the limited genetic variation of nearby mutants. In
hard mazes, we can end up following exponentially long
winding paths to the exit because we cannot spot the short-
cuts. In such cases, even if natural selection is the only force
acting on the population, a fitness optimum cannot be
found. Worse yet, the hardest mazes might not have any
shortcuts and even the most clever and farsighted navigator
will not know how to reach an exit in a feasible amount of
time. In other words, even if the other evolutionary forces
“conspire to help” natural selection, a local fitness optimum
cannot be found.

To establish these results, I will introduce into biology new
techniques from theoretical computer science for managing
the complexity of fitness landscapes. The best current tech-
niques in biology come from the statistical mechanics of
disordered systems and rely on “[t]he idea that unmanage-
able complexity can be replaced by randomness” (Hwang
et al. 2018). This statistical approach uses randomness in
two places: (1) the random mutations, birth-death events,
and other physical and biological processes within the algo-
rithm of evolution; and (2) the theoretical distributions of
fitness landscapes themselves. For a computer scientist, the
first use of randomness corresponds to the analysis of ran-
domized algorithms—certainly a good decision when think-
ing about evolution. The second use of randomness
corresponds to average-case analysis over problem instances.
But when the real-world distribution of problem-instances in
unknown or hard to characterize, computer scientists are
hesitant to pick a specific simple distribution just to analyze
the algorithm. Instead, computer scientists usually specify a
formal, logically defined hypothesis class of conceivable
problem-instances, and then analyze their algorithm for ar-
bitrary distributions over these instances.

In this report, I embrace the randomness within the algo-
rithm (i.e., the randomness of evolution). But instead of
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introducing a convenient-to-analyze distribution of possible
fitness landscapes, I focus on worst-case analysis. In this way,
this report can be seen as a contribution to the small but
growing literature on population genetics and evolutionary
biology through the algorithmic lens (Livnat et al. 2008;
Valiant 2009; Wilf and Ewens 2010; Kanade 2012;
Kaznatcheev 2013; Chatterjee et al. 2014; Livnat and
Papadimitriou 2016; Heredia et al. 2017).

By focusing on worst-case analysis, I am constructing—
sometimes implicitly—families of fitness landscapes that
are consistent with the logical structure of our hypothesis
class of conceivable fitness landscapes. I then show that, in
these hard fitness landscapes, computational complexity is an
ultimate constraint. But this should not be interpreted as a
claim that hard landscapes are ubiquitous or that computa-
tional complexity is a major constraint. That would be an
empirical question that depends on which fitness landscapes
occur in nature. In this report, I suggest several candidates
that I suspect correspond to hard landscapes, but the general
empirical question of ubiquity is beyond the scope of this
theoretical work.

Epistasis and Semismooth Landscapes

What makes some fitness landscapes difficult to navigate is
that the effects ofmutations at different loci interactwith each
other. Epistasis is a measure of the kind and amount of inter-
locus interactions. If the fitness effect of a mutation a/A can
have a different sign depending on the genetic background b
or B of another locus, then these two loci are said to have sign
epistasis (Figure 1b and SA Definition 5). If both mutations
have one sign on their own, but the opposite sign together—
either bad + bad = good or good + good = bad—then the
landscape has reciprocal sign epistasis (Poelwijk et al. 2007,
2011; Crona et al. 2013; Figure 1c and SA Definition 6). A
classic example of reciprocal sign epistasis is a lock-and-key;
changing just one of the lock or the key breaks the mecha-
nism, but changing both can be beneficial. Finally, magnitude
epistasis (positive and negative; SA Definition 4) are inter-
locus interactions that deviate from additivity, but do not
change the sign of fitness effects. This type of epistasis does
not change the combinatorial structure of the landscape. As
such, I treat it simply as a lack of sign-epistasis.

A landscape without sign epistasis—like the Escherichia
coli b-lactamase fitness landscape measured by Chou et al.
(2011) in Figure 2a—is called smooth (Weinreich et al. 2005;
Crona et al. 2013; and SA B), so let us call a fitness landscape
semismooth if it has no reciprocal sign epistasis. The fitness
graphs (Crona et al. 2013; and SA A) of semismooth fitness
landscapes are equivalent to acyclic unique sink orientations
previously defined in a different context by Szabó and Welzl
(2001) for the analysis of simplex algorithms (SA Definition
12 and Proposition 13). Since reciprocal sign epistasis is a
necessary condition for multiple peaks (SA Corollary
11 and Poelwijk et al. (2011)), both smooth and semismooth
fitness landscapes have a single peak x*. Further, there are

short adaptive paths in both: from any genotype x there al-
ways exists some adaptive path to x* of length equal to the
number of loci onwhich x and x* differ (SATheorem14). This
means that an omniscient navigator that always picks the
“right” adaptive point-mutation can be guaranteed to find a
short adaptive path to the peak. But, unlike smooth land-
scapes, in a semismooth landscape not every shortest path
is adaptive and not every adaptive path is short. And since
evolution does not have the foresight of an omniscient nav-
igator, it is important to check which adaptive path myopic
evolutionary dynamics will follow.

Whenmutation isweak,we canassume that apopulation is
always monomorphic except for a brief moment of transition
as a newmutant fixes. Thus, we can represent the population
as a single point on the fitness landscapewith an evolutionary
step corresponding to a selective sweep that moves the pop-
ulation to a neighboring genotype. When selection is strong,
we can further assume that the evolutionary step takes us to a
neighboring genotype of higher fitness. The rule for selecting
which neighbor ends up fixing depends on the details of our
mutation operator andmodel of evolution; i.e., this rule spec-
ifies the algorithm. I will refer to the set of algorithms corre-
sponding to all such rules as strong-selection weak mutation
(SSWM) dynamics. A number of rules (or algorithms) have
been suggested for which fitter neighbor will take over the
population (Orr 2005)—such rules correspond to different
models of evolution. The two most common rules are to se-
lect a fitter mutant uniformly at random, or to select the
fittest mutant. These rules capture the intuition of evolution
proceeding solely by natural selection with other forces ab-
sent or negligible. All SSWM rules will quickly find the fitness
optimum in a smooth fitness landscape. But there exist semi-
smooth fitness landscapes such that when starting from a
random initial genotype, an exponential number of evolu-
tionary steps will be required for either the random fitter
mutant (Matoušek and Szabó 2006; SA Theorem 15) or fit-
test mutant (SA Theorems 20 and 24) dynamics to find the
unique fitness optimum. For a small example on six loci, see
Figure 3: the black arrows trace the evolutionary path that a
population would follow under fittest mutant SSWM

Figure 1 Three different kinds of epistasis possible in fitness graphs:
(a) no epistasis, (b) sign epistasis, and (c) reciprocal sign epistasis. Arrows
are directed from lower fitness genotypes toward mutationally adjacent
higher fitness genotypes. Genes a;A and b; B are labeled such that fitness
wðABÞ.wðabÞ. In the center of each graph is a marker for the type of
epistasis, the marker’s various rotations and reflections cover the cases
where AB does not have the highest fitness. For this more exhaustive
classification and discussion see SA Figure A.1 and SA A.1.

Computational Constraint on Evolution 247



dynamics. Although two step adaptive paths exist to the fit-
ness peak (like 000000/000001/000011), the myopic
navigator cannot notice these shortcuts, and ends up on a
long winding path. In other words, even when there is a
single peak and adaptive paths of minimal length to it, SSWM
dynamics can take exponential time to find that peak.

These results show that the computational complexity of
the combinatorial structure can be enough to stop evolution
from reaching a fitness optimum within a reasonable time-
scale, even in theabsenceof suboptimal local peaks.Computer
scientists have found ithelpful todistinguishbetweenprocess-
es that require a time that grows polynomially with the size of
the input—generally called tractable—and those that require
a time that increases faster than any polynomial (super-poly-
nomial)—intractable. If the winding fitness landscapes of
Figure 3 is generalized to 2n loci instead of just 6 (SA C.2)
then following fittest mutant SSWM dynamics to the peak is
an intractable process since it scales exponentially, requiring
2nþ1 2 2 mutational steps. Although evolutionary time is
long, it is not reasonable to think of it as exponentially long.
For example, the above winding process with a genotype on
just 120 loci, and, with new set of point-mutants and selective
sweep at a rate of one every second, would require more
seconds than the time since the Big Bang.

To capture this infeasibility of superpolynomial scaling in
time, I introduce a distinction between easy and hard families
of fitness landscapes. If we can guarantee for any landscape
in the family that a local fitness peak can be found by natural
selection in a time the scales as a polynomial in the number of
loci—as is the case for smooth fitness landscapes—then I will
call that an easy family of landscapes. I will call a family of
landscapes hard if we can show that the family contains land-
scapes where finding a local fitness optimum requires a
superpolynomial amount of time—as I showed above for
semismooth fitness landscapes. Given that even for moder-

ately sized genomes such large times are not realizable even
on cosmological timescales, I will use “impossible” as a short-
hand for “requiring an infeasible amount of time.”

Given their exponential size, it is impossible to completely
measure whole fitness landscapes on more than a few nucle-
otides. But with improvements in high-throughput second-
generation DNA sequencing, there is hope to measure local
fitness landscapes of a few mutations away from a wildtype.
Puchta et al. (2016) estimated the fitness of 981 single-
step mutations of a 333-nucleotide small nucleolar RNA
(snoRNA) gene in yeast. They found no neighbors fitter than
the wild-type gene; this suggests that this gene is already at a
fitness peak, and, hence, that the snoRNA gene’s fitness land-
scape is easy. In contrast, Li et al. (2016) estimated the fitness
of 207 single-step mutants of a 72-nucleotide transfer RNA
(tRNA) gene, also in yeast, finding two neighbors that are
significantly fitter than the wild type and a number that are
fitter but only within experimental noise. Thus, the wild-type
tRNA gene is apparently not at a local fitness peak, and sug-
gests this system as a candidate for hard fitness landscapes.
Both studies also looked at many 2- and 3-step mutants, and
the landscape of the tRNA gene was measured to have.160
cases of significant sign epistasis (Li et al. 2016), with none in
the snoRNA landscape (Puchta et al. 2016), mirroring the
difference between hard semismooth fitness landscapes and
easy smooth landscapes that I am proposing here.

Rugged Landscapes and Approximate Peaks

But there exist natural fitness landscapes that are even more
complicated than semismooth ones. For example, we know
that some landscapes can contain reciprocal sign epistasis like
the Lozovsky et al. (2009) Plasmodium falciparum dihydro-
folate reductase fitness landscape in Figure 2b. This is a rug-
ged fitness landscape with two distinct fitness peaks at

Figure 2 Two examples of empirical biallelic fitness landscapes on four loci. Arrows are directed from lower fitness genotypes to higher and fitness
optima are circled. Examples of adaptive dynamics are highlighted with thick black arrows. (a) The E. coli b-lactamase data of Chou et al. (2011) predict
a smooth landscape with no sign epistasis. Thus, it contains a single optimum (1111). (b) Prediction based on P. falciparum dihydrofolate reductase
growth rate data in the absence of pyrimethamine (Lozovsky et al. 2009). It has two peaks (0011 and 1111) and both single sign (an example in yellow;
) and reciprocal sign epistasis (example in red; ). Based on Figure 1 in Szendro et al. (2013).
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0011 and 1111. Although there is not enough data to justify
postulating probability distributions over large landscapes
(for discussion, see SA D.3), the standard biological intuition
is that natural landscapes are at least a bit rugged and have
multiple peaks. The NK-model is a family of fitness land-
scapes (Kauffman and Levin 1987; Kauffman and Wein-
berger 1989) that was introduced to study this ruggedness.
This model allows tuning the amount of epistasis: the fitness
contribution of each of the n loci depends not only on its
gene, but also on the genes at up toK other loci (SADefinition
25).

For K$ 2, the NK-model can generate hard fitness land-
scapes where from some initial genotypes, any adaptive walk
to any local peak is exponentially long (SA Corollary 28). On
such landscapes, any adaptive evolutionary dynamic—in-
cluding, but not limited to, all the SSWM dynamics we have
considered so far—generally requires an exponential number
of steps to reach a local fitness optimum. Even if an omni-
scient navigator could always choose the most clever adap-
tive single mutation to arise, the adaptive path would be
unbounded over polynomial timescales.

To better integrate the numeric structure of fitness, let us
consider a genotype x to be at an s-approximate peak (Orlin
et al. 2004) if each of x’s mutational neighbors y have fitness
wðyÞ# ð1þ sÞwðxÞ (SA Definition 31). On the hard rough
fitness landscapes described above, fittest mutant dynamics
will encounter an s-approximate peak with moderately small
s in a moderate number of mutational steps (polynomial in n
and 1=s; SA Theorem 33).

However, on hard fitness landscapes, it is not possible to
find an s-approximate peak for very small s in a feasible
amount of time (i.e., not possible in time polynomial in n
and ln 1=s; SA Theorem 35). This (un)reachability of

s-approximate fitness peaks is especially important to con-
sider in discussions of nearly neutral networks and approxi-
mate fitness plateaus (Ohta 1992; Gavrilets 2003). In an
idealized, unstructured population, we can expect random
drift to overcome selection when s drops below about 1=P
where P is the number of individuals in the population. But
certain structured populations can act as amplifiers of selec-
tion (Pavlogiannis et al. 2018) and prevent drift from domi-
nating until s is significantly closer to zero.

Given that the quantity s in the definition of an s-approx-
imate peak is defined in the same way as the selection co-
efficient of population genetics (Gillespie 2010), the above
approximation results allow us to link the distinction be-
tween easy and hard fitness landscapes to the rich empirical
literature on fitness traces and declining fitness gains in mi-
crobial evolution experiments (Couce and Tenaillon 2015).
On the hard rugged fitness landscapes described above—and
even on the winding semismooth landscape of Figure 3 and
SA C.2—this selective coefficient drops off at the slow rate of
sðtÞ � 1=t for fittest mutant dynamics. In general, on any
family of landscapes—even the hardest ones—sðtÞ can decay
as fast as a power law. On easy landscapes, it can decay faster.
But the power law decay in selection coefficient is the fastest
decay possible on hard fitness landscapes. In particular, the
selective coefficient, on hard landscapes, cannot decrease at
the exponential rate (i.e., sðtÞ � e2t; SA Corollary 36) that is
typical of equilibration in nonbiological systems. This slow
decay in selection coefficient is consistent with the rule of
declining adaptability observed in various microbial long-
term evolution experiments (Wiser et al. 2013; Couce and
Tenaillon 2015; Lenski et al. 2015), suggesting that at least
some naturally occurring microbial fitness landscapes might
be hard. Thus, a natural candidate for hard landscapes might

Figure 3 Fittest mutant adaptive path in a winding semismooth fitness landscape. An example on six loci of the winding semismooth fitness landscapes
from SA C.2 on which the length of the path followed by fittest-mutant SSWM dynamics scales exponentially with the number of loci. Here, the black
arrows are the fittest available mutation, and the adaptive path takes 14 steps to reach the fitness peak at 000011. For the generalization of this
landscape to 2n-loci, it would take 2nþ1 22 steps for fittest mutant dynamics to reach the fitness peak at ð00Þn2111 (SA Theorem 20). Inset is the
selection coefficient (sðtÞ ¼ maxy2Nðxt Þ[ fxtg

wðyÞ2wðxt Þ
wðxt Þ ; SA D.2) vs. mutation step number (t) for the fittest mutant adaptive path.
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be the landscapes with unbounded growth in fitness ob-
served in the E. coli long-term evolutionary experiment
(Wiser et al. 2013). Whereas when one sees a power-law in
allometry, one expects potential physical constraints; I pro-
pose that when one see a power-law in selection strength or
fitness, one should look for a computational constraint.

The existenceof hard landscapes allowsus to explain open-
ended evolution as a consequence of the ultimate constraints
of computational complexity. I amcertainlynot thefirst tonote
that populations might undergo unbounded increases in fit-
ness and open-ended evolution. In fact, there is an extensive
literature on the rate of adaptation (Gillespie 1983, 1984,
1991; Orr 2002, 2003; Wiser et al. 2013; Couce and Tenail-
lon 2015) that seems to assume (at least implicitly) that a
fitter mutation is always available. These models often di-
rectly built-in unbounded growth by treating mutations as
iid random samples from a distribution of fitness effects that
can always generate a higher fitness variant, albeit with low
probability. This approach corresponds to the implicit con-
struction of a fitness landscape as an infinite unbounded tree
that lacks the second-order and higher combinatorial struc-
ture that mutation-graphs provide. These unbounded tree
models are better suited to empirical operationalization than
(the exponentially large but) finite fitness landscapes, and
make good effective theories on shorter timescale (where
time—measured in the number of fixations—is significantly
less than the size of the genome). But these models assume
(often by reference to recent environmental change) that a
beneficial mutation is always possible, rather than explaining
why such a mutation is always possible.

This is in stark contrast to thework I present here. To avoid
building in the unbounded growth in fitness that I aim to
explain, I consider families of finite fitness landscapes. I
showed that these can be either easy or hard. In the hard
families of landscapes, there is a computational constraint on
evolution that ensures that beneficial mutations are available
effectively for ever. Thus, this work can be read as an explan-
atory compliment to the unbounded tree models. Of course,
given that I consider large but finite fitness landscapes, it is
conceivable that a population will be found at a local fitness
peak of a hard fitness landscape. This is conceivable in the
same way as—according to the Poincare recurrence theo-
rem—all the oxygen molecules in a large room will eventu-
ally return arbitrarily close to the corner they were released
from. But just as the Poincare recurrence theorem does not
invalidate the second law of thermodynamics (Boltzmann
1896), the existence of local peaks in finite static landscapes
does not invalidate open-ended evolution on hard fitness
landscapes.

Arbitrary Evolutionary Dynamics: Learning and
Cooperation

As we move from single genes (Li et al. 2016; Puchta et al.
2016), to microbes (Wiser et al. 2013; Couce and Tenaillon
2015), and on to large organisms, a richer space of possible

evolutionary dynamics opens up. To capture this rich space of
possibilities, we need to abstract beyond adaptive dynamics
by considering arbitrary mutation operators, demographies,
population structures, and selection functions—even ones
that can cross fitness valleys and distribute the population
over many genotypes. From the perspective of constraints
on evolution: I want to relax the selective constraint that
confines populations to an adaptive path (Barton and Par-
tridge 2000; SA Definition 1). By allowing nonadaptive
changes, I want to highlight the power of the constraint of
computational complexity, even in the absence of the selec-
tive constraint. From the perspective of evolutionary forces:
we have to allow for strong forces that can potentially over-
power or boost natural selection. To make sure that we have
considered all possibilities, I will model arbitrary evolution-
ary dynamics as all polynomial-time algorithms. This takes us
into the realm of the computational complexity class of poly-
nomial local search (PLS; Johnson et al. 1988; Roughgarden
2010; and SA D). But even for these most permissive popu-
lation-updating procedures, evolution will, in general, re-
quire an infeasible amount of time to find a local fitness
peak in the NK-model with K$ 2 (SA Theorem 27 and Cor-
ollary 29), or to find an s-approximate peak for very small s
(SA Theorem 35). Evolution will be trapped in the mazes of
hard fitness landscapes and not reach anywhere near the
“exit” of a local fitness optimum. No proximal cause can over-
power the ultimate constraint of computational complexity.

If one is accustomed to seeing results only for particular
evolutionary algorithms, then the generality of the above
results might seem fantastical. But these are exactly the kind
of general results that are typical in computational complexity
theory.

The strength of this ultimate constraint allows us to reason
rigorously from disequilibrium to establish positive results.
For instance, that costly learning [Baldwin effect (Baldwin
1896; Simpson 1953)] can remain adaptive, or that hitchhik-
ing can maintain cooperation [Hankshaw effect
(Hammarlund et al. 2016)] effectively forever. In the case
of costly learning, Simpson (1953) noted: “[c]haracters in-
dividually acquired by members of a group of organisms may
eventually, under the influence of selection, be reinforced or
replaced by similar hereditary character.” For Simpson
(1953), this possibility constituted a paradox: if learning does
not enhance individual fitness at a local peak, andwould thus
be replaced by simpler nonlearning strategies, then why do
we observe the costly mechanism and associated errors of
individual learning? A similar phenomenon is important for
the maintenance of cooperation. Hammarlund et al. (2016)
consider a metapopulation that is not sufficiently spatially
structured to maintain cooperation. They augment the meta-
population with a number of genes with nonfrequency de-
pendent fitness effects that constitute a static fitness
landscape. If adaptive mutations are available, then cooper-
ators are more likely to discover them due to the higher
carrying capacity of cooperative clusters. This allows cooper-
ation to be maintained by hitchhiking on the genes of the
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static fitness landscape. Hammarlund et al. (2016) call this
hitchhiking the Hankshaw effect and, for them, it constitutes
a transient: since cooperation does not enhance opportunities
for adaptive mutations at the fitness peak, then cooperators
will be outcompeted by defectors.

Currently, both the Baldwin and Hankshaw puzzles are
resolved in the sameway: just-in-time environmental change.
Most resolutions of the Baldwin paradox focus on nonstatic
fitness in rapidly fluctuating environments that are compat-
ible with the speed of learning but not with evolutionary
adaptation. Similarly, Hammarlund et al. (2016) suggest
making their transient permanent by focusing on dynami-
cally changing environments. But, these just-in-time dynamic
changes in the fitness landscape are not necessary if we ac-
knowledge the existence of hard static fitness landscapes.
Individual costly learning and higher densities of cooperative
clusters leading to more mutational opportunities are two
very different evolutionary mechanisms for increased adapt-
ability. But they are both just polynomial time algorithms.
Regardless of how much these mechanisms speed-up, slow-
down, guide, or hinder natural selection, the population will
still not be able to find a local fitness optimum in hard fitness
landscapes. Without arriving at a fitness optimum, the para-
dox of costly learning dissolves, and the Hankshaw effect can
allow for perpetual cooperation. This suggests that, if we
want a family of natural examples of evolution on hard fitness
landscapes among more complex organisms, then good can-
didates might be populations with costly learning or persis-
tent cooperation. More generally, the nonvanishing supply of
beneficial mutations on hard landscapes can allow selection
to act on various mechanisms for evolvability (Barton and
Partridge 2000) by letting the evolvability modifier alleles
hitchhike on the favorable alleles that they produce.

These examples can be seen as instances of a more general
observation on adaptationism. It is standard to frame adapta-
tionism as “the claim that natural selection is the only impor-
tant cause of the evolution of most nonmolecular traits and
that these traits are locally optimal” (Orzack and Sober
2001). Here, I showed that these are two independent
claims. Even if we assume that (1) natural selection is the
dominant cause of evolution then—on hard fitness land-
scapes—it does not follow that (2) traits will be locally opti-
mal. Given the popularity of equilibrium assumptions in
evolutionary biology, I expect that a number of other para-
doxes and effects in addition to the Baldwin and Hankshaw
could be eased by recognizing the independence of these two
claims.

For those biologists who have moved on from debates
about adaptationism and instead aim to explain the relative
contribution of various evolutionary forces to natural pat-
terns, I provide a new consideration: hard landscapes allow
the force of natural selection on its own to explain patterns
such as, for example, maladaptation. Prior accounts of mal-
adaption rely on forces like deleterious mutation pressure,
lack of genotypic variation, drift and inbreeding, and gene
flow acting opposite natural selection resulting in a net zero

force, and, thus, a maladaptive equilibrium away from a
fitness peak (Crespi 2000). The ultimate constraint of com-
putational complexity allows for perpetual maladaptive dis-
equilibrium even in the absence of (or working against) these
other forces.

Currently,finding a species away froma localfitness peak is
takenasmotivation for further questions onwhatmechanisms
or nonselective evolutionary forces cause this discrepancy. In
this context, my results provide a general answer: hard land-
scapes allow adaptationist accounts for the absence of evolu-
tionary equilibrium and maladaptation even in experimental
models with static environments—and/or the absence of
strong evolutionary forces working against natural selec-
tion—like the tRNA gene in yeast (Li et al. 2016; Domingo
et al. 2018) or the long-term evolutionary experiment in
E. coli (Wiser et al. 2013). By treating evolution as an algo-
rithm, we see that time can be a limiting resource even on
evolutionary timescales. These hard landscapes can be finite
and deceptively simple—having only limited local epistasis or
not having reciprocal sign-epistasis—and yet allow for un-
bounded fitness growth.

In contrast, a system found at a local fitness peak—like the
snoRNA gene in yeast (Puchta et al. 2016)—currently merits
no further questions. The results in this report show that
establishing evolutionary equilibrium should not be the end
of the story. We need to also explain what features of the
relevant fitness landscapes make them easy: i.e., explain
why these fitness landscapes do not produce a computational
constraint on evolution. For this, the tools of theoretical com-
puter science can be used to refine our logical characteriza-
tion of such fitness landscapes to guarantee that local peaks
can be found in polynomial time. For example, we could
consider limits on the topology of gene-interaction network
(SA D.1), or the type of interaction possible between genes
(Chapdelaine and Creignou 2005) to separate easy from hard
landscapes. This opens new avenues for both empirical and
theoretical work.

In this report, I provided mathematical constructions for
hard fitness landscapes and suggested some empirical candi-
dates. By doing this, I showed that computational complexity
is an ultimate constraint on (our models of) evolution. But I
did not establish that it is a major constraint in nature. Al-
though given the empirical candidates that I suggested, I
expect it to play a major role. However, after future empirical
investigations, it could be that we find no naturally occurring
hard fitness landscapes. This would not be a disappointment.
If our models of fitness landscapes allow for ultimate con-
straints, but we do not see those ultimate constraints in na-
ture, then we will know the direction in which to refine our
models.

Given the limited—albeit growing (Orr 2005; Poelwijk
et al. 2007; Kryazhimskiy et al. 2009; Lozovsky et al. 2009;
Chou et al. 2011; Szendro et al. 2013; Bank et al. 2016; Li
et al. 2016; Puchta et al. 2016; Domingo et al. 2018)—em-
pirical data available on the distribution of natural fitness
landscapes, it is tempting to turn to theoretical distributions
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of fitness landscapes. But we should be cautious here. The
popular uniform distributions over gene-interaction net-
works and interaction components was introduced for ease
of analysis rather than some foundational reason or empirical
justification. With this distribution, I would expect hard in-
stances to be scarce based on arguments similar to Tovey
(1986) and Hwang et al. (2018). However, instead of choos-
ing a distribution for ease of analysis, we could instead
choose one by Occam’s razor: i.e., the Kolmogorov universal
distribution (sampling landscapes with negative log proba-
bility proportional to their minimum description length). In
the Occam case, I would expect the fraction of fitness land-
scapes that are hard to be significant based on results similar
to Li and Vitányi (1992). I leave it as an open question for
future work to determine what choices of distribution of fit-
ness landscapes are most appropriate, and how average case
analysis over those particular distributions compares to the
distribution-free analysis that I presented here (see SA D.3
for more discussion).

On easy landscapes, it is reasonable to assume that evolu-
tion finds locally-well-adapted genotypes or phenotypes. We
can continue to reason from fitness peaks, debate questions of
crossing fitness valleys, and seek solutions toWright (1932)’s
problem of “a mechanism by which the species may continu-
ally find its way from lower to higher [local] peaks.” But with
hard landscapes, it is better to think of evolution as open
ended and unbounded. We will have to switch to a language
of “adapting” rather than “adapted.” We will have to stop
reasoning from equilibrium—as I did in the discussion of
maintaining costly learning and cooperation. Finally, we will
have to stop asking about the basins of attraction for local
peaks and instead seek mechanisms that select which un-
bounded adaptive path evolution will follow. It is tempting
to read this language of disequilibrium and negation of “lo-
cally adapted” as saying that organismal traits are not well
honed to their environment. But we must resist this mistake,
and we must not let better be the enemy of good. Finding
local optima in the hardest landscapes is a hard problem for
any algorithm, not just biological evolution. In particular, it is
also hard for scientists: on hard landscapes we cannot find
optimal solutions either, and so the adapting answers of evo-
lution can still seem marvelously well honed to us. And al-
though I have focused on biological evolution, we can also
look for hard landscapes in other fields. For example, these
results translate directly to areas like business operation and
innovation theory, where the NK-model is used explicitly
(Levinthal 1997; Rivkin and Siggelkow 2007). In physics,
the correspondence between spin-glasses and the NK-model
can let us look at energy minimization landscapes. In econom-
ics, classes of hard fixed-point problems similar to PLS are a
lens on markets (Roughgarden 2010). In all these cases, the-
oretical computer science and combinatorial optimization of-
fer us the tools to make rigorous the distinction between easy
and hard landscapes. They allow us to imagine hard land-
scapes not as low-dimensional mountain ranges but as high-
dimensional mazes that we can search effectively for ever.
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Appendices

In the main text, I focused on the biological importance, interpretation, and implication of these results. In these appendices, I
provide the formal proof of the results. Below, I formally define the concepts introducedwithin the body of the report, and prove
the theorems on which the conclusions are based. Some of this was first presented in the Kaznatcheev (2013) preprint. The
structure of the appendices is below:

A Formal definitions of fitness functions, fitness landscapes, fitness graphs, and adaptive paths. I focus specific attention on
epistasis (A.1) because it can be used to define broad families of landscapes, such as:

B Smooth fitness landscapes: these are the source of a lot of intuition and early models of fitness landscapes. So, I briefly
remind the reader of important properties of smooth landscapes.

C Semismooth fitness landscapes: these share many properties in common with smooth fitness landscapes, and I prove a charac-
terization, Theorem 14, that is structured in a similar way to smooth landscapes. However, computationally, semismooth
landscapes, unlike smooth ones, can be hard. In subsection C.1, I use the equivalence of semismooth fitness landscapes and
acyclic unique-sink orientations of hyper-cubes to adapt hardness results from the analysis of simplex algorithms. This provides
hard landscapes for fitter mutant SSWM dynamics. In the subsequent subsections, I show how to construct hard fitness
landscapes for fittest mutant SSWM dynamics from specific start position (C.2) and random start position (C.3).

D NK-model of fitness landscapes: this is a tunable rugged fitness landscape model that—unlike the previous two—can have
many peaks. To analyze this model of landscapes, I review the complexity class PLS, show that the NK-model is PLS
complete for K$ 2, and discuss the generality of the results. In subsection D.1, I focus on easy instances of the NK-model,
and, in subsection D.3, provide an intuition for why the assumption of simple distributions of fitness landscapes in prior
work might have made the existence of hard families more difficult to spot earlier. In subsection D.2, I discuss nearly
neutral networks and the hardness of s-approximate peaks (Definition 31).

To recap, I argue that local fitness optima may not be reachable in a reasonable amount of time even when allowing
progressively more general and abstract evolutionary dynamics. For this generality, we pay with increasing complication in the
corresponding fitness landscapes. This progression of results is summarized in Table A1 (which also serves as a guide for
navigating the appendix). If we restrict our evolutionary dynamics to fitter or fittest mutant SSWM, then just sign epistasis is
sufficient to ensure the existence of hard landscapes. If we allow any adaptive evolutionary dynamics, then reciprocal sign
epistasis in the NK model with K$2 is sufficient for hard landscapes. If we want to show that arbitrary evolutionary dynamics
cannot find local fitness optima, then we need K$ 2 and the standard conjecture from computational complexity that
FP 6¼ PLS.

A. Fitness Landscapes, Graphs, and Adaptive Paths

In 1932, Wright introduced the metaphor of a fitness landscape (Wright 1932). The landscape is a genetic space where each
vertex is a possible genotype, and an edge exists between two vertices if a single mutation transforms the genotype of one
vertex into the other. In the case of a biallelic system, we have n loci (positions), at each of which it is possible to have one of two
alleles, thus our space is the n-bit binary strings f0; 1gn. We could also look at spaces over larger alphabets; for example,
4 letters for sequence space of DNA, or 20 letters for amino acids; but the biallelic system is sufficiently general for us. A
mutation can flip any locus from one allele to the other, thus two strings x; y 2 f0; 1gn are adjacent if they differ in exactly one
bit. Thus, the landscape is an n-dimensional hypercube with genotypes as vertices. The last ingredient, fitness, is given by a
function that maps each string to a non-negative real number. For the majority of this report—with the exception of subsection
D.2—the exact fitness values or their physical interpretations do not matter. Only their rank-ordering matters.

Table A1 Summary of main results

Landscape type
Max allowed
epistasis type Hardness of reaching local optima Proved in...

Smooth magnitude ([) Easy for all strong-selection weak-mutation (SSWM) dynamics Section B
Semismooth sign ( , ) Hard for SSWM with random fitter mutant Theorems 15,

or fittest mutant dynamics 20, and 24
Rugged reciprocal sign

( )
Hard for all SSWM dynamics: initial genotypes with all adaptive
paths of exponential length

Corollary 28

Hard for all evolutionary dynamics (if FP 6¼ PLS) Theorem 27
Easy for finding approximate local peaks with moderate optimality
gap: selection coefficients can drop-off as power law

Theorem 33

Hard for approximate local peaks with small optimality gap: Theorem 35
selection coefficient cannot drop-off exponentially Corollary 36

Each landscape type (column 1) is characterized by the most complicated permitted type of epistasis (column 2; see A.1). Based on this, there are families of this landscape
type that are easy or hard under progressively more general dynamics (column 3), which is proved in the corresponding part of the appendix (column 4).
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Individual organisms can be thought of as inhabiting the vertices of the landscape corresponding to their genotype. And we
imagine evolution as generally trying to “climb uphill” on the landscape by moving to vertices of higher fitness.

Definition 1. In a fitness landscape with fitness f, a path v1 . . . vt is called adaptive if each viþ1 differs from vi by one bit and
f ðviþ1Þ. f ðviÞ.

These are sometimes also called accessible paths, but I will avoid this terminology because for the most general evolutionary
dynamics, the paths taken do not have to be strictly increasing in fitness; i.e. they do not have to necessarily be adaptive. In
other words, for arbitrary evolutionary dynamics, evolution can follow (or access) nonadaptive paths. So, nonadaptive paths
are accessible to arbitrary evolutionary dynamics; it would be awkward to say that nonaccessible paths are accessible to
arbitrary evolutionary dynamics. If some particular evolutionary dynamic produces only adaptive paths, though, then it is
called an adaptive dynamic. In general, adaptive paths can continue until they reach a local fitness optimum.

Definition 2. A genotype u is a local fitness optimum (sometimes also called a (local) fitness peak) if for all adjacent genotypes v,
we have fðvÞ# fðuÞ.

Note the above definition of a genotype as a localfitness optimumallows for adjacent genotypes of equal (or lesser)fitness. In
particular, this means that points within a fitness plateau can be local fitness optima. At times, I will assume for simplicity that no
two adjacent genotypes have exactly the same fitness to avoid considering fitness plateaus; but this is not an important
restriction and all the hardness results can be reproved without it. A local fitness optimum is a global fitness optimum if all
other genotypes in the whole of the genetic space (not just neighbors) have the same or lower fitness; i.e. if no other local
fitness optimum in the whole of the genetic space has a higher fitness.

Sometimes it is useful to represent a fitness landscape as a fitness graph by replacing the fitness function by a flow: for
adjacent genotypes in the mutation-graph, direct the edges from the lower to the higher fitness genotype. This results in a
characterization of fitness landscapes of a biallelic system as directed acyclic graphs on f0; 1gn. Fitness peakswould correspond
to sinks, and adaptive paths would correspond to paths that follow the edge directions of the DAG. I will consider a population
at evolutionary equilibrium if it finds a local peak in the fitness landscape; i.e. a sink in the fitness graph. Crona et al. (2013)
introduced this representation into theoretical biology, but fitness graphs have been used implicitly in earlier empirical studies
of fitness landscapes (de Visser et al. 2009; Franke et al. 2011; Goulart et al. 2013; Szendro et al. 2013). Using fitness graphs is
particularly useful empirically because it is difficult to quantitatively compare fitnesses across experiments. However, if
pairwise competitions are used to build an empirical fitness graph, it is important to verify that the graph is transitive (acyclic)
(de Visser and Lenski 2002). In theoretical work, the fitness graph approach has made the proofs of some classical theorems
relating local structure to global properties easier and shifts our attention to global algorithmic properties of evolution instead
of specific numeric properties.

Throughout the report and these appendices, I consider individual genotypes or phenotypes as the domain of the fitness
landscapes. Thus, I am focusing on microevolutionary processes. Given the extremely long time scales that I am considering in
this report, it is also natural to consider generalizations where the vertices in the fitness landscape are interpreted as whole
species and mutations as speciation events. For simplicity, I will not explicitly discuss such macroevolutionary processes.

A.1 Epistasis
Epistasis is a measure of the kind and amount of interlocus interactions. Consider two loci with the first having alleles a or A,

and the second b or B. Assume that the uppercase combination is more fit: i.e. f ðabÞ, f ðABÞ.
Definition 3. Two alleles are noninteracting if the fitness effects are additive and independent of background:
f ðABÞ2 f ðaBÞ ¼ f ðAbÞ2 fðabÞ, f ðABÞ2 f ðAbÞ ¼ f ðaBÞ2 f ðabÞ.

In magnitude epistasis this additivity is broken, but the signs remain: f ðABÞ. f ðaBÞ. f ðabÞ and f ðABÞ. fðAbÞ. fðabÞ. The
difference between noninteracting alleles andmagnitude epistasis is not invariant under rank-order preserving transformation
of the fitness function, thus I will not distinguish between the two types. Throughout the paper, I will use “no epistasis” to mean
both noninteracting alleles and magnitude epistasis, as the following definition makes explicit.

Definition 4. If fðABÞ. f ðaBÞ. f ðabÞ and f ðABÞ. f ðAbÞ. f ðabÞ then we will say that there is no epistasis between those
alleles.

A systemhas sign epistasis if it violates one of the two conditions formagnitude epistasis. For example, if the second locus is b
then the mutation from a to A is not adaptive, but if the second locus is B then the mutation from a to A is adaptive.

Definition 5. Given two loci, if f ðABÞ. f ðaBÞ. fðabÞ. f ðAbÞ; then there is sign epistasis at the first locus.

Finally, a system has reciprocal sign epistasis if both conditions of magnitude epistasis are broken, or if we have sign epistasis
on both loci (Poelwijk et al. 2007, 2011; Crona et al. 2013).

Definition 6. Given two loci, if fðABÞ$ f ðabÞ but f ðabÞ. f ðAbÞ and f ðabÞ. f ðaBÞ then there is reciprocal sign epistasis between
those two loci.
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Figure A.1 visualizes all the fitness graphs on two loci and categorizes the type of epistasis present.

B. Smooth Fitness Landscapes

If a fitness landscape has no sign epistasis then it is a smooth landscape and has a single peak x* (Weinreich et al. 2005; Crona
et al. 2013). Every shortest path from an arbitrary x to x* in the mutation-graph is an adaptive path—a flow in the fitness
graph—and every adaptive path in the fitness graph is a shortest path in the mutation graph (Crona et al. 2013). Thus,
evolution can quickly find the global optimum in a smooth fitness landscape, with an adaptive path taking at most n steps: that
is, all smooth fitness landscapes are easy landscapes. For an example, see the smooth Escherichia coli b-lactamase fitness
landscape measured by Chou et al. (2011) in Figure 2a.

Proposition 7 (Weinreich et al. 2005; Crona et al. 2013). If there is no sign epistasis in a fitness landscape, then it is called a
smooth landscape and has a single peak x*. Every shortest path (ignoring edge directions) from an arbitrary genotype x to x* is
an adaptive path, and every adaptive path from x to x* is a shortest path (ignoring edge directions).

Where by “shortest path (ignoring edge directions),” I mean any shortest path in the mutation-graph, irrespective of if the
fitness along the edges of that path increases (“up arrow”) or decreases (“down arrow”). In other words, an arbitrary shortest
path between x and x* corresponds to an arbitrary swapping of genes at the loci on which x and x* from the value they have in x
to the value in x*. This means, for example, that if x and x* differ on d loci, then there are d!many shortest paths between them,
and, by Proposition 7, those are also the d! adaptive paths between them.

C. Semismooth Fitness Landscapes

Sinceasmoothlandscapeisalwayseasy,letusintroducetheminimalamountofepistasis:signepistasis,withoutanyreciprocalsignepistasis.

Definition 8. A semismooth fitness landscape on f0; 1gn with fitness function f is a fitness landscape that has no reciprocal sign
epistasis. Such a fitness function f is also called semismooth.

For some of the following proofs, it will be useful to define sublandscapes.

Definition 9. Given a landscape on n bits, a sublandscape spanned by S4½n� is a landscape on f0; 1gS where the alleles at the
loci (indices) in S can vary but the indices in ½n�2 S are fixed according to some string u 2 f0; 1g½n�2S.

Note that thewhole landscape is a sublandscape of itself (taking S ¼ ½n�). For any S⊂½n�, there are 2n2jSj many sublandscapes
on S corresponding to the possible u 2 f0; 1g½n�2S. Reciprocal sign epistasis between bits i and j corresponds to a sublandscape
on fi; jg that has two distinct peaks.

Now, I can note a couple of important properties of semismooth landscapes:

Proposition 10. If a fitness landscape on f0; 1gn has some sublandscape with.1 distinct peak, then it has reciprocal sign epistasis.

The proof will show that a minimal multipeak sublandscape must have size 2. I will do this by considering longest walks in a
sublandscape. The proposition is similar to the one proved by Poelwijk et al. (2011), although my proof is distinct.

Figure A.1 Three different kinds of epistasis possi-
ble in fitness graphs: no epistasis ([), sign epistasis
( , ), and reciprocal sign epistasis ( ). Arrows in
the fitness graph are directed from lower fitness
genotypes toward mutationally adjacent higher fit-
ness genotypes. In the middle of each fitness graph
is a symbol showing the kind (and orientation) of
epistasis. Note that the bottom left (↺) and top right
(↻) fitness graphs violate transitivity.

Computational Constraint on Evolution 257



Proof. Let us consider a minimal sublandscape L that has more than one distinct peak: that means that if this sublandscape is
spanned by S (i.e. f0; 1gS) then no sublandscape spanned by T⊂S has multiple peaks.

Since L is minimal, its peaks must differ from each other on each bit in S, for if there was a bit i 2 S on which two peaks
agreed, then that bit could be fixed to that value and eliminated from S tomake a smaller sublandscape spanned by S2 figwith
two peaks. Thus, the minimal multipeak sublandscape has precisely two peaks. Call these peaks x* and y*.

Claim: In a minimal multipeak sublandscape, from each nonpeak vertex, there must be a path to each peak.
Let us prove the claim by contradiction: Consider an arbitrary nonpeak vertex x, and suppose it has no path to the x* peak.

Since any path from x in Lmust terminate at some peak, take the longest path from x to the peak y* that it reaches, and let y be
the last step in that path before the peak. Notice that ymust only have one beneficial mutation (on bit i), the one to the peak.
For if it had more than one beneficial mutation, it could take the nonpeak step to y9 and then proceed from y9 to y* (x* is not an
option by assumption, and there are only two peaks in L) and thus provide a longer path to the peak. Now consider the
landscape on S2 fig, with the ith bit fixed to yi. Since yi is the same as x*i (both are opposite of y*i ), x* is still a peak over S2 fig,
but so is y (since its only beneficial mutationwas eliminated by fixing i to yi). But this contradicts minimality, so no such x exists.

Now thatwe know thatwe can reach each peak from any vertex x, let us again consider the longest path from x to y* with y as the
last step in that path before the peak, and i as the position of the last beneficial mutation. Since all nonpeak verticesmust reach both
peaks, there must be some other beneficial mutation j from y to x9 that eventually leads to x*. But if x9 is not a peak then it must also
have a way to reach y*, but then we could make a longer path, contradicting the construction of y. Thus x9 must be the peak x*:

This means that x* and y* differ in only the two bits i and j. But, in a minimal multipeaked sublandscape, they must differ in
all bits, so S ¼ fi; jg; i.e. this sublandscape is an example of reciprocal sign epistasis. h

Corollary 11. A fitness landscape without reciprocal sign epistasis has a unique single peak.

Proof. This follows from the contrapositive of Proposition 10, since the whole landscape is a sublandscape of itself. h

The above results can also be restated in the terminology used to analyze simplex algorithms(Szabó and Welzl 2001;
Matoušek and Szabó 2006).

Definition 12. A directed acyclic orientation of a hypercube f0; 1gn is called an acyclic unique sink orientation (AUSO) if every
subcube (face; including the whole cube) has a unique sink.

This makes the contrapositive of Proposition 10 into the following proposition:

Proposition 13. A semismooth fitness landscape is an AUSO.

Now, if we let x4ymean XOR between x and y, and let
����z��j1 mean the number of 1s in z, thenwe can state themain theorem

about semismooth fitness landscapes:

Theorem 14. A semismooth fitness landscape has a unique fitness peak x*; and, for any vertex x in the landscape, there exists a path
of length

����x*4x
��j1 (Hamming distance to peak) from x to the peak.

Proof. The unique peak x* is just a restatement of Corollary 11. To show that there is always a path of Hamming distance to
the peak, I will show that, given an arbitrary x, we can always pick amutation k that decreases theHamming distance to x* by 1.

Let S be the set of indices that x and x* disagree on,
��S�� ¼ ����x*4x

��j1. Consider the sublandscape on Swith the other bits fixed
to what x and x* agree on. In this sublandscape, x* is a peak, thus, by Proposition 10, x is not a peak and must have some
beneficial mutation k 2 S. This is the k we were looking for. h

Note that this proof specifies an algorithm for constructing a short adaptive walk to the fitness peak x*. However, this
algorithm requires knowing x* ahead of time – i.e. seeing the peak in the distance. But evolution does not know ahead of time
where peaks are, and so cannot carry out this algorithm. Even though a short path to the peak always exists, evolutionary
dynamics might not follow it.

C.1. Hard landscapes for random fitter SSWM
The simplest evolutionary rule to consider is picking a mutation uniformly at random among ones that increase fitness. This

can be restated as picking and following one of the out-edges in thefitness graph at random; i.e. this is equivalent to the random-
edge simplex pivot rule (Matoušek and Szabó 2006). Proposition 13 allowsme to use the hard AUSOs constructed byMatoušek
and Szabó (2006) as a family of hard semismooth landscapes.

Theorem 15 (Matoušek and Szabó 2006 in biological terminology). There exist semismooth fitness landscapes on f0; 1gn such
that random fitter mutant SSWM dynamics starting from a random vertex, with probability at least 12 e2Vðn1=3Þ follows an
adaptive path of at least eVðn1=3Þ steps to evolutionary equilibrium.

In other words, multiple peaks—or even reciprocal sign-epistasis—are not required to make a complex fitness landscape. In
fact, AUSOs were developed to capture the idea of a linear function on a polytope (although AUSOs are a slightly bigger class).
It is not surprising to find the simplex algorithm in the context of semismooth landscapes, since we can regard it as a local
search algorithm for linear programming where local optimality coincides with global optimality. Linear fitness functions are
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usually considered to be some of the simplest landscapes by theoretical biologists; showing that adaptation is hard on these
landscapes (or ones like them) is a surprising result.

C.2 Construction of hard semismooth landscapes for fittest SSWM
One might object to taking random fitter mutants because sometimes the selected mutations are only marginally fitter than

the wildtype. It might seem natural to speed-up evolution by always selecting the fittest possible mutant. Here, I show that, in
general, this does not help.

Consider a fitness landscape on f0; 1gm with semismooth fitness function f that if started at 0m will take k steps to reach its
evolutionary equilibrium at x*. I will show how to grow this into a fitness landscape on f0; 1gmþ2 with semismooth fitness
function f 9 that, if started at 0mþ2; will take 2ðkþ 1Þ steps to reach its evolutionary equilibrium at 0m11.

For simplicity of analysis, let us define the following functions and variables for all points in f0; 1gm that are not an
evolutionary equilibrium under f; i.e. all except x*. Let

sþðxÞ ¼ max
y2NðxÞ s:t: f ðyÞ. f ðxÞ

fðyÞ2 f ðxÞ (1)

and

s2ðxÞ ¼ min
y2NðxÞ s:t: f ðxÞþsþðxÞ. fðyÞ. f ðxÞ

fðyÞ2 f ðxÞ; (2)

where NðxÞ are the neighbors of x in the mutation graphs; i.e. genotypes that differ from x in one bit.
Now, overload these into constants, as follows: define sþ ¼ minxsþðxÞ and s2 ¼ minxs2ðxÞ. Suppose that f is such that

s2 , sþ; otherwise set s2 ¼ sþ=2 [do this also, if NðxÞ s:t: f ðxÞ þ sþðxÞ. fðyÞ. f ðxÞ is empty for some nonequilibrium x].
Let x4ymean the XOR between x and y. Consider the “reflected” function f ðx4x*Þ. I call this function reflected because we

could visualize f ðx4x*Þ as the same function as f ðxÞ, except it is mirrored (swapping the fitness effects of the 0 and 1 allele)
along each locus iwhere x*i ¼ 1. Note that if f ðxÞ is semismooth then so is f ðx4x*Þ, since it just relabels the directions of some
dimensions. The reflected function preserves all the important structure. In particular, if under f ðxÞ it took k steps to go from 0m

to x*; then, under f ðx4x*Þ; it will take k steps to from x* to 0m.
Now define f 9 : f0; 1gmþ2/ℝ as:

f 9ðxabÞ ¼

f ðxÞ                                                                                         if a ¼ b ¼ 0     
f ðxÞ þ s2                                                                       if a 6¼ b and x 6¼ x*            
f
�
x*
�
þ s2                                                                   if a ¼ 0; b ¼ 1 and x ¼ x*                    

f
�
x*
�
þ sþ                                                                   if a ¼ 1; b ¼ 0 and x ¼ x*    

f
�
x4x*

�
þ f

�
x*
�
þ 2sþ         if a ¼ b ¼ 1                                   

8>>>>>>><
>>>>>>>:

(3)

Basically, the x00 subcube is the original landscape, the x10 and x01 subcubes serve as “buffers” to make sure that the walk
does not leave the first subcube before reaching x*00, and the x11 is the original landscape reflected around x* that takes us
from x*11 to 0m11.

Notice that f 9 has the same sþ and s2 as f.
Now we just need to establish some properties:

Proposition 16. Fittest mutant SSWM dynamics will not leave the f0; 1gm00 subcube until reaching x*00.

Proof. By definition, the fittest mutant (i.e. neighbor over f0; 1gm) from each genotype x 2 f0; 1gm that is not x* in f, has a
fitness advantage of sþ or higher. Hence, adding two extra edges from x00 to x10 and x01, each with fitness advantage s2 , sþ

will not change the edge that fittest-mutant SSWM picks. h

Proposition 17. SSWM dynamics will not leave the f0; 1gm11 subcube after entering it.

Proof. This is because f 9 has strictly greater fitness on the f0; 1gm11 subcube than on the other three subcubes. Confirming
this, note that, for every x 2 f0; 1gm:

f
�
x4x*

�
þ f

�
x*
�
þ 2sþ $ f

�
x*
�
þ 2sþ   since f is non-negative (4)

$ f
�
x*
�
þ sþ   since sþ . 0 (5)

$ f
�
x*
�
þ s2   since sþ . s2 (6)
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$ fðxÞ þ s2   since x* is fitness peak of f (7)

$ fðxÞ since s2 .0 (8)

h

Proposition 18. If f on f0; 1gm has no reciprocal sign-epistasis, then f 9 on f0; 1gmþ2 has no reciprocal sign-epistasis.

Proof. Consider any pair of genes i; j 2 ½m�. Among these first m genes, depending the last two bits, we are looking at
landscapes on f0; 1gm00, f0; 1gm01, f0; 1gm10, or f0; 1gm11, with the fitness given by fðxÞ, fðxÞ þ s2, fðxÞ þ s2, or
f ðx4x*Þ þ f ðx*Þ þ 2sþ (respectively). All these landscapes have isomorphic combinatorial structure to f, and, thus, the same
kinds of epistasis. Since f has no reciprocal sign-epistasis, all these subcubes lack it, too.

Now, let us look at the case of where the gene pair goes outside the first m genes. Consider an arbitrary gene i 2 ½m�, let
u 2 f0; 1gi21, v 2 f0; 1gm2i be arbitrary. Label a;A 2 f0; 1g such that f ðuavÞ, fðuAvÞ: Look at the subcube uf0; 1gvf0; 1g2:

The solid black edges have their directions from the definition of a and A. The red edges have their direction because
sþ . s2 . 0. The green edges have their direction because of Proposition 17. The direction of the dotted black edge will depend
on if x* contains 0 (point up) or 1 (point down) at position i, but, regardless of the direction, no reciprocal sign epistasis is
introduced. h

Corollary 19. Given f 9 on f0; 1gmþ2, the fittest mutant SSWM dynamics starting at 0mþ2 will take 2ðkþ 1Þ steps to reach its
unique fitness peak at 0m11.

Proof. By Proposition 16, thewalk will first proceed to x*00 taking k steps. From x*00, there are only two adaptivemutations
x*10 or x*01, and the first is fitter. From x*10 there is only a single adaptive mutation (to x*11), taking us to kþ 2 steps. From
x*11, by Proposition 17, it will take us k more steps to reach 0m11; totaling 2ðkþ 1Þ steps. h

Theorem 20. There exist semismooth fitness landscapes on 2n loci that take 2nþ1 22 fittest mutant steps to reach their unique
fitness peak at 02ðn21Þ11 when starting from 02n.

Proof. We will build the family of landscapes inductively using our construction, starting from an initial landscape:

The resulting path length Tn will be given by the recurrence equation: Tnþ1 ¼ 2Tn þ 2with T1 ¼ 2. This recurrence is solved
by Tn ¼ 2nþ1 22. h

Call the landscapes constructed as in the above proof, a winding landscapes. A visual example of the winding
landscape construction on six loci (n ¼ 3 in Theorem 20) is given in Figure 3. The winding landscapes construction is similar
to Horn et al. (1994)’s Root2path construction, except their approach introduced reciprocal sign epistasis despite having a
single peak.

Of course, this is an arbitrary initial fitness landscape and any semismooth landscape can be used as a starting point; thewalk
would still scale exponentially, but there would be a different initial condition. Further, this winding product construction I
showed above is just one example for building families. Many more could be considered.

In particular, ifwe are interested in largermutation operators, like k-pointmutations instead of just 1-pointmutations, then it
is relatively straightforward to modify the winding landscape construction. As written, Equation 3 uses a buffer of 2 bits in
f 9ðxabÞ to transition from fðxÞ to its reflection fðx4x*Þ. In the more general setting, we would pad the buffer to be kþ 1 bits:
define f 9ðxyÞwhere jyj ¼ kþ 1with a smooth landscape on the y portion of the input taking us from fðxÞ to its reflection, which
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leaves most of the above arguments unchanged, modifying only Theorem 20 to have the landscape to be on kn loci and the
recurrence relation at the end of the proof to be Tnþ1 ¼ 2Tn þ kþ 1.

C.3 Hard landscapes from random start
Unfortunately, one might not be impressed by a result that requires starting from a specific genotype like 0m and ask for the

expected length of the walk starting from a random vertex. Of course, if a genotype on this long walk is chosen as a starting
point then the walk will still be long in most cases. However, there are only 2nþ1 2 2 vertices in the walk, among 22n vertices
total, so the probability of landing on the walk is exponentially small. Instead, I will rely on direct sums of landscapes and
Proposition 16 to get long expected walks.

Proposition 21.With probability 1=4, a winding landscape on 2n loci will take 2n or more fittest mutant steps to reach the fitness
peak from a starting genotype sampled uniformly at random.

Proof. With probability 1=4, the randomly sampled starting vertex has the form x00 (i.e. its last two bits are 0s). By
Proposition 16, the walk cannot leave the f0; 1g2ðn21Þ00 landscape until reaching its peak at 02ðn22Þ1100. This might happen
quickly, or it might even already be at that peak. But afterwards, it has to follow the two steps to 02ðn22Þ1111 and then, due to
Proposition 17, it will have to follow the normal long path, taking 2n 2 2 more steps. h

Because of the constant probability of an exponentially long walk, we can get a big lower bound on the expected walk time:

Corollary 22. Fittest mutant dynamics starting from a uniformly random genotype will have an expected walk length.2n22 on a
2n-loci winding landscape.

Proof. With probability 1=4, the walk takes 2n or more steps, and with probability 3=4 it takes 0 or more steps. Thus, the
expected walk length is $ð1=4Þ*2n þ ð3=4Þ*0 ¼ 2n22. h

However, 75% of the time, we cannot make a guarantee of long dynamics. We can overcome this limitation by taking direct
sums of landscapes.

Definition 23. Given two fitness landscapes, one with fitness f1 on f0; 1gn1 and the other with fitness f2 on f0; 1gn2 , the direct
sum ðf14f2Þ is a landscape with fitness f on f0; 1gn1þn2 where f ðxyÞ ¼ f1ðxÞ þ f2ðyÞ.

Now, for any probability of failure 0, d, 1, let md ¼ log 1
d

22 log  3 (where log is base 2).

Theorem 24. There exist semismooth fitness landscapes on 2nmd loci that with probability 12 d, take 2n or more fittest mutant
steps to reach their fitness peak from a starting genotype sampled uniformly at random.

Proof. Consider a landscape that is the direct sum of md separate 2n-loci winding landscapes. Since each constituent is
semismooth, and, since sums do not introduce epistasis, the resulting “tensor sum” landscape is also semismooth. Further, to
reach its single peak, the walk has to reach the peak of each of the md independent winding sublandscapes. But as long as at
least one sublandscape has a long walk, we are happy. By Proposition 21, we know that, for each sublandscape, we will have a
short-walk starting genotype with probability,3=4. The probability that none of them get a long walk then is,ð3=4Þmd # d.h

D. NK Model with K‡2 is PLS-Complete

Definition 25 (Kauffman and Levin 1987; Kauffman and Weinberger 1989; Kauffman 1993). The NK model is a fitness
landscape on f0; 1gn. The n loci are arranged in a gene-interaction network where each locus xi is linked to K other loci
xi1; . . . ; x

i
K and has an associated fitness contribution function fi : f0; 1gKþ1/ℝþ Given a vertex x 2 f0; 1gn, we define the

fitness f ðxÞ ¼ P n
i¼1fiðxixi1 . . . xiKÞ.

By varyingKwe can control the amount of epistasis in the landscape. Themodel also provides an upper bound of n
�
K þ 1
2

�

on the number of gene pairs that have epistatic interactions. Typically in the biology and statistical physics literature, the fitness
contributions fi and sometimes the gene-interaction network are chosen uniformly at random from some convenient proba-
bility distribution. In contrast, the approach of theoretical computer scientists is to consider arbitrary rather than random
choices for each fi and sometimes the gene-interaction network. This is an important cultural difference in methodology
between statistical physics and computer science that I discuss in more detail in subsection D.3.

Weinberger (1996) showed that checking if the global optimum in an NK model is greater than some input value V is
NP-complete for K$ 3. Although this implies that finding a global optimum is difficult, it says nothing about local optima. As
such, it has generated little interest among biologists, although it spurred interest as a model in the evolutionary algorithms
literature, leading to a refined proof of NP-completeness for K$ 2 (Wright et al. 2000).

Tounderstand thedifficulty offinding itemswith some local property like being an equilibrium, Johnson et al. (1988)defined
the complexity class of polynomial local search (PLS). A problem is in PLS if it can be specified by three polynomial time
algorithms (Roughgarden 2010):
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1. An algorithm I that accepts an instance (like a description of a fitness landscape) and outputs a first candidate to consider
(the initial genotype).

2. An algorithm F that accepts an instance and a candidate and returns a objective function value (i.e., computes the fitness).
3. An algorithm M that accepts an instance and a candidate and returns an output with a strictly higher objective function

value, or says that the candidate is a local maximum.

Weconsider aPLSproblemsolved if analgorithmcanoutput a locally optimal solution for every instance. This algorithmdoes
not necessarily have to use I, F, or M or follow adaptive paths. For instance, it can try to uncover hidden structure from the
description of the landscape. A classical example would be the ellipsoid method for linear programming. The hardest problems
in PLS, i.e. ones for which a polynomial time solution could be converted to a solution for any other PLS problem, are called
PLS-complete. It is believed that PLS-complete problems are not solvable in polynomial time (i.e. FP 6¼ PLS; where FP stands
for the set of function problems solvable in polynomial time), but, much like the famous P 6¼ NP question, this conjecture
remains open. Note that finding local optima on fitness landscapes is an example of a PLS problem, where I is your method for
choosing the initial genotype, F is the fitness function, and M computes an individual adaptive step.

Definition 26 (Weighted 2SAT). Consider n variables x ¼ x1 . . . xn 2 f0; 1gn andm clauses C1; . . . ;Cm and associated positive
integer weights c1; . . . cm. Each clause Ck contains two literals (a literal is a variable xi or its negation xi), and contributes ck to
the fitness if at least one of the literals is satisfied, and nothing if neither literal is satisfied. The total fitness cðxÞ is the sum of the
individual contributions of them clauses. Two assignments x and x9 are adjacent if there is exactly one index i such that xi 6¼ x9i.
We want to maximize fitness.

The Weighted 2SAT problem is PLS-complete (Schäffer and Yannakakis 1991). To show that the NK model is also PLS-
complete, I will show how to reduce any instance of Weighted 2SAT to an instance of the NK model.

Theorem 27. Finding a local optimum in the NK fitness landscape with K$ 2 is PLS-complete.

Proof. Consider an instance of Weighted 2SAT with variables x1; . . . ; xn, clauses C1; . . . ;Cm and positive integer costs
c1; . . . ; cm. We will build a landscape with mþ n loci, with the first m labeled b1; . . . ; bm and the next n labeled x1; . . . ; xn.
Each bk will correspond to a clause Ck that uses the variables xi and xj (i.e., the first literal is either xi or xi and the second is xj or
xj; set i, j to avoid ambiguity). Define the corresponding fitness effect of the locus as:

fk
�
0xixj

� ¼
	
ck if   Ck   is  satisfied
0 otherwise

(9)

fk
�
1xixj

� ¼ fk
�
0xixj

�þ 1 (10)

Link the xi arbitrarily (say to xði mod  nÞþ1 and xðiþ1 mod  nÞþ1, or to nothing at all) with a fitness effect of zero, regardless of the
values.

In any local maximum bx, we have b ¼ 11::1 and f ðxÞ ¼ mþ cðxÞ. On the subcube with b ¼ 11::1;Weighted 2SAT and this
NK model have the same exact fitness graph structure, and so there is a bijection between their local maxima. h

Assuming—as most computer scientists do—that there exists some problem in PLS not solvable in polynomial time (i.e.
FP 6¼ PLS), then Theorem 27 implies that, no matter what mechanistic rule evolution follows (even ones we have not
discovered, yet), be it as simple as SSWM or as complicated as any polynomial time algorithm, there will be NK landscapes
with K ¼ 2 such that evolution will not be able to find a fitness peak efficiently. But if we focus only on rules that follow
adaptive paths then we can strengthen the result:

Corollary 28. There is a constant c. 0 such that, for infinitely many n, there are instances of NK models (with K$ 2) on f0; 1gn
and initial genotype v such that any adaptive path from v will have to take at least 2cn steps before finding a fitness peak.

Proof. If the initial vertex has s ¼ 11:::1 then there is a bijection between adaptive paths in the fitness landscape and anyweight-
increasing path for optimizing the weighted 2SAT problem. Thus, Schäffer and Yannakakis (1991)’s Theorem 5.15 applies. h

This result holds independent of any complexity theoretic assumptions about the relationship between polynomial-time and
PLS. Hence, there are some landscapes and initial genotypes, such that any rule we use for adaptation that only considers fitter
single-gene mutants will take an exponential number of steps to find the local optimum.

If we turn to larger mutational neighborhoods than singe-gene mutants then—due to the large class of possible adaptive
dynamics—a variant of Corollary 28 will have to be reproved (often using a buffer padding argument similar to the end of
section C.2) but Theorem 27 is unaffected:

Corollary 29. For any definition of local equilibrium with respect to a mutation neighborhood that contains point-mutations as a
subset (i.e. if "x   fy  ��  ����y2 x

����
1 ¼ 1g4NðxÞ), the NK model with K$ 2 is PLS-hard.
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Proof. Any mutation operator that is a superset of point-mutations will only decrease the number of evolutionary equilibria
without introducing new ones. Thus, it will only make the task of finding that equilibrium (just as, or) more difficult. However,
since the algorithms studied by PLS do not have to use the mutation operator during their execution, changing it does not give
them any more computational resources. h

Finally, it is important to see theNK-model as anexamplemodel, albeit a simple andnatural one. Ifwe considermore complex
models of fitness landscapes—say dynamic fitness landscapes—it is often the case that there is some parameter or limit that
produces the special case of a static fitness landscape like the NK-model. In particular, static landscapes are often a submodel of
dynamic fitness landscapes, and, thus, solving dynamic fitness landscapes can only be more difficult that static ones.

D.1 Easy instances of NK- model
Note that this doesnotmean that all instances of theNK-model arehard. In fact, there arenatural subfamilies of theNK-model

that are easy.
The simplest easy family is K ¼ 0. In that case, the genes are noninteracting and we have a smooth fitness landscapes. And

all smooth landscapes are easy. For K ¼ 1, Wright et al. (2000) presented a dynamic programming approach that can find the
global fitness peak in polynomial time. Since we could use this as our algorithm I to pick the initial genotype, this means the
model cannot be PLS-complete for K# 1 (unless PLS = P, in which case all local search problems are easy). This means that
Theorem 27 is as tight as possible in terms of K.

Alternatively, instead of restrictingK, we can restrict how the gene-interaction network is connected. It will come in useful to
visualize these gene-interaction networks by drawing an edge directed from a focal locus to the K loci that affect its fitness
contribution. For example, if the genes can be arranged in a circle and a focal gene can interact with only the nextK genes in the
circle, then there is a polynomial time dynamic programming algorithm to find an evolutionary equilibrium (Wright et al.
2000). Thus, this restricted model cannot be PLS complete for any constant K.

It is an open question if SSWM dynamics—or some other reasonable evolutionary dynamics—is sufficient in the cases of
K ¼ 1 and circular arrangements. I conjecture that adaptive dynamics are sufficient in these cases, but proof of this is left for
future work.

Some of the most common kinds of easy instances of the NK-model come from “simplifying” restrictions put in place by the
modeler. In particular, restriction on the range of the fitness function.

Proposition 30. If the number of distinct fitness values that fitness functions map to is bounded by a polynomial then the
corresponding fitness landscapes are easy.

Proof. Any adaptive step increases the fitness value, and by transitivity, a fitness value is never repeated in an adaptive path.
Thus, all adaptive paths are at most polynomially long: more specifically, bounded by one less than the number of distinct
fitness values in the range of the fitness function. h

Note that the above theoremdoes not put any constraints onwhat those fitness values are and thus depends only on the rank
ordering (i.e. on the existence of very large rank equivalence classes). For variants that looks at the exact numeric values, see
SA D.2 and Proposition 32.

The most notable application of Proposition 30 might be to the original Gavrilets and Gravner (1997) formulation of
holey adaptive landscapes. Gavrilets and Gravner (1997) decided to divide the range of fitness values into just two
components: 1 for viable and 0 for nonviable. An adaptive path in such a landscape can be at most one step long: if
you start at a nonviable point right next to a viable one. Thus, all viability landscapes (like the original holey ones) are
easy. Note that this does not mean fitness plateaus or neutral networks are easy to reach. If we remove the modeling
restriction of just 0 or 1 fitness values and allow a large range of values then that does not eliminate the possibility of large
fitness plateaus. In other words, fitness landscapes could have large plateaus of fitness but still be hard: i.e. it will be
difficult to reach the plateau. Of course, more work should be done in the future on the topic of hardness of large neutral
networks.

D.2 Approximate peaks
If we are to discuss neutral plateaus or networks then it is also important to consider nearly-neutral networks. For this, we

need to use the whole numeric structure of the fitness function f, and not just the rank-ordering that was sufficient until this
point. Thus, let us consider relaxations of equilibrium, and being “close” to a peak instead of exactly at one. The following
definitions and proofs are based on combinatorial optimization results by Orlin et al. (2004).

Definition 31. A genotype x is at an s-approximate peak if "y 2 NðxÞ  f ðyÞ# ð1þ sÞf ðxÞ.
The question becomes how big does s have to be for evolution to find an s-approximate peak. But, since there is no absolute

units of fitness, we will need to define fd ¼ minxminy2NðxÞ s:t: fðyÞ. f ðxÞðf ðyÞ2 fðxÞÞ and fmax ¼ maxx f ðxÞ.
First, it is important to note that all landscapes where fd is not small compared to fmax are easy.
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Proposition 32. If fmax=fd 2 OðnkÞ for some constant k then an exact peak can be found in a polynomial in n number of mutations
by any adaptive dynamic.

Proof. Since each adaptive step increases fitness by at least fd then, after t adaptive steps, we have f ðxtÞ$ fdt. Combine this
with f ðxtÞ# fmax to get that t# fmax=fd. h

So, we need to focus on bigger gaps between fd and fmax. If the gap is exponential, then we can find approximate peak for
moderate sized s on any landscape.

Theorem 33. If logðfmax=fdÞ 2 OðnkÞ; then fittest mutant SSWM dynamics can find a local s-approximate peak in time poly-
nomial in n and 1

s.

Proof. Let x0 be the initial genotype, if it is an exact peak then we are done. Otherwise, let x1 be the next adaptive step, by
definition of fd, we have that f ðx1Þ$ f ðx0Þ þ fd $ fd. Now, consider an adaptive path x1 . . . xt that has not encountered an
s-approximate peak; i.e. a mutation was always available such that f ðxiþ1Þ. ð1þ sÞf ðxiÞ. Thus, we have that f ðxtÞ# fmax and
that fðxtÞ$ ð1þ sÞtf1 $ ð1þ sÞtfd. Putting these two together:

ð1þ sÞt   fd# fmax (11)

t  lnð1þ sÞ# ln 
fmax

fd
(12)

t#
�
ln 

fmax

fd

�
=  lnð1þ sÞ# ð1þ 1=sÞ  ln  fmax

fd
(13)

Where I used lnð1þ sÞ$ s
1þs in the last step. Combining with the conditions on logfmax=fd, we get: t 2 O

�
nk
s

�
.

But for very small s, finding an approximate peak is as hard as finding an exact peak. h

Proposition 34. If s# fd=fmax then any s-approximate peak is a (exact) local peak.

Proof. If an s-approximate peak at x is not an exact peak then there exists a y 2 NðxÞ such that fðyÞ2 f ðxÞ$ fd but
f ðyÞ, ð1þ sÞf ðxÞ. Combining this with fðxÞ# fmax, we get that s. fd=fmax. h

Thus, it is not possible to find an s-approximate peak for very small s on hard fitness landscapes:

Theorem 35. If PLS 6¼ P and logðfmax=fdÞ 2 OðnkÞ then (for NK-model with K$ 2) a local s-approximate peak cannot be found in
time polynomial in n and log 1

s.
Proof. If such an algorithm existed then we would run it with s ¼ fd=fmax; and—by Proposition 34—the approximate peak it

finds would be exact. Further, in this case log 1
s ¼ logðfmax=fdÞ 2 OðnkÞ; and, thus, the runtime would be polynomial in n. This is

not possible for the NK-model with K$ 2 by Theorem 27 (unless PLS ¼ P). h

This also means that the selective coefficient of the fittest mutant sðtÞ ¼ maxy2NðxtÞ[ fxtgðf ðyÞ2 fðxtÞÞ=fðxtÞ cannot decay
exponentially quickly.

Corollary 36. If PLS 6¼ P then there are no evolutionary dynamics such that sðtÞ# e2mt for all instances of the NK-model with
K$ 2.

Contrast this with the always achievable power-law decrease in sðtÞ.
D.3 Distributions and random fitness landscapes

The NK model is frequently studied through simulation, or statistical mechanics approaches. In a typical biological treat-
ment, the gene-interaction network is assumed to be something simple like a generalized cycle (where xi is linked to
xiþ1; . . . xiþK) or a random K-regular graph. The fitness contributions fi are usually sampled from some choice of distribution.
As such, we can think of biologists as doing average case analysis of these fitness landscapes. Given that randomly sampling
landscapes can introduce structure like short paths (Tovey 1986), I suspect that the structure of this simple sampling led prior
research to miss the possibility of exponentially long walks. The independent sampling of fitness components from the same
distributions is especially apt to realize the conditions of Proposition 32, since it makes it unlikely to create an exponential gap
between the smallest positive fitness gap fd and themaximum achievable fitness fmax. Future work could provide amore careful
analysis of this conjecture.

Given a historical disconnect between theory and data (Orr 2005; Kryazhimskiy et al. 2009), the choice for distributions was
usually made out of analytic convenience or (occasionally) out of the belief that a uniform distribution is akin to no assumption
Since there is no strong empirical or theoretically sound justification for the choice of particular distributions of large fitness
landscapes, I avoid relying on a simple generating distribution and instead reason from only the logical description of the
model. This can be thought of as worst-case analysis, or as analysis for arbitrary distributions of landscapes. By following this
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approach, we know that our results are features of the logic that characterizes a particular family of fitness landscapes and not
artifacts of a particular simple sampling distribution. This is a standard method in theoretical computer science, but it is not as
common in statistical physics or biology.

Although there is evidence for simple distributions on small fitness landscapes [on up to eight genes; see Franke et al. (2011)
and Szendro et al. (2013)], there is little to no data on the distribution of large (i.e. on many loci) fitness landscapes in nature.
And, as discussed in the main text, given the exponential size of fitness landscapes, it is unlikely that such data could be
collected. However, if a single sampling distribution is required, then it is tempting to turn to Occam’s razor and consider
simpler landscapes as more likely. This can be done by sampling landscapes with negative log probability proportional to
their minimum description length, i.e. according to the Kolmogorov universal distribution. If landscapes are sampled in this
way, then I would expect all the orders of magnitude for hardness results established herein to hold (Li and Vitányi 1992).
However, I leave it as an open question for future work to prove this formally, and to contrast the ubiquity of hardness in fitness
landscapes sampled under different theoretical distributions. As outlined above, it would be especially interesting to analyze
the uniform distribution (that is popular in statistical physics) vs. the Kolmogorov universal distribution (that is used in
theoretical computer science).
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