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Abstract

Radiomics is a fast-growing research area based on converting standard-of-care imaging into 

quantitative minable data and building subsequent predictive models to personalize treatment. It 

has been proposed as a study objective in clinical trial concepts and a potential biomarker for 

stratifying patients across interventional treatment arms. In recognizing the growing importance of 

radiomics in oncology a group of medical physicists and clinicians from NRG Oncology reviewed 

the current status of the field and identified critical issues, providing general assessment and early 

recommendations for incorporation in oncology studies.
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Radiomics and Applications

Radiomics introduction

The concept of relating imaging information to predicting prognosis and therapeutic 

response traces its root to the early days of robotics and computer vision in the 1960s, but its 

systemic application to quantitative imaging analysis dates to the beginning of the 1980s in 

areas such as computer-aided detection or diagnosis (CAD) 1. The application of this 

approach to biological markers and therapeutic endpoints only started in the past decade, 

when the concept of personalized medicine arose following the increasing use of genomics. 

Some early examples include the investigation of correlations between hepatocellular 

carcinoma imaging phenotypes with gene expression 2, and between PET-based features and 

radiotherapy response 3.

When initial studies to investigate whether MRI-based measurements of breast cancer 

volume could accurately assess the response to neoadjuvant chemotherapy proved promising 
4, they were used as a springboard for a series of American College of Radiology Imaging 

Network (ACRIN) trials. The ACRIN trials investigated using serial MRI studies to predict 

therapeutic response to chemotherapy; this was called the ‘I-SPY TRIAL’ for ‘Investigation 

of Serial Studies to Predict Your Therapeutic Response with Imaging And moLecular 

Analysis’ 5.

Since 2010, this field has been formalized with the term “radiomics”6. The term originates 

from the word “radio”, which refers to radiology, the science of acquiring medical images 

through the use of radiation (e.g., CT, PET, MRI). The suffix “omics” follows from the 

wholesome notion, which was firstly used in the term genomics to indicate the whole 

mapping of human genetics7. Currently, this process of extraction of massive quantitative 

information from anatomical/molecular images and relating them to corresponding 
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biological information and clinical endpoints is an emerging field referred to as 

‘radiomics’8.

Radiomics applications

With the recent advances of imaging techniques, imaging has extended its role to the whole 

spectrum of cancer management, from detection and diagnosis, to treatment response 

monitoring, and further risk surveillance. The clinical application of radiomics is expected to 

play important roles in every aspect of cancer management.

Tumor detection and diagnosis—One of the earliest applications for radiomics-driven 

method is in tumor detection, with the greatest success in lung and breast imaging. US Food 

and Drug Administration (FDA)-approved systems are currently being used in the clinic. A 

recent study utilizing commercially-available clinical tools identified many lung cancers that 

were initially missed by radiologists in the International Early Lung Cancer Action Program 

(I-ELCAP) trial 9.

Currently the trend moves to a direction called discovery radiomics 10,11. Instead of using 

pre-defined radiomics feature set, the image data are directly fed into the discovery engine, 

where a customized radiomics sequencer is constructed using deep learning architecture 

such as convolutional neural network (CNN), and then the descriptive radiomics sequencer 

can be applied to identify normal or abnormal tissues. Besides tumor detection, radiomics 

features have also been demonstrated helpful to identify various types of lesions. For 

example, Li et al. suggested that mammographic images contain computer-extractable 

information, which may distinguish between BRCA1/2 mutation carriers and non-carriers 
12. Grimm et al. also observed that imaging features from DCE-MRI were strongly 

associated with Luminal A and Luminal B hormonal receptor positive molecular subtypes 
13. Overall, early detection and identification of tumors could be useful for better 

stratification of patients and identification of subsequent treatment options.

Treatment outcome prediction for decision making support—Recently, 

significant interest in utilizing radiomics for early prediction of treatment response has 

emerged. In predicting pathological complete response (pCR) following neoadjuvant 

chemoradiation for locally advanced rectal cancer, Nie et al. showed improved prognostic 

values could be achieved using a voxelized radiomics analysis approach over conventional 

imaging metrics 14. Zhang et al., identified MRI-based radiomics as prognostic factor for 

progression-free survival in patients with nasopharyngeal carcinoma (NPC). The prediction 

power significantly outweighed than traditional TNM (tumor-node-metastasis) staging 15. 

Although the TNM staging is the cornerstone for treatment decision making. It is typically 

assessed based on gross anatomy information, not reflecting the intra-tumor heterogeneity. 

While the radiomics approach can characterize the intra-tumor heterogeneity noninvasively 

thus can add incremental value to the clinical information in assessing the treatment 

outcome.

Radiomics features from CT, PET/CT and CBCT have also shown predictive value for 

response to treatment 16–24. Investigators analyzed the daily non-contrast CTs, acquired 

during routine IGRT using an in-room CT, from patients with head and neck 25, lung 26 and 

Nie et al. Page 3

Int J Radiat Oncol Biol Phys. Author manuscript; available in PMC 2020 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



pancreatic cancers 27,40. They reported that radiation can induce patient specific changes in 

CT texture features, and that these changes can be detected in the early phase of radiation 

therapy. Ohri et al., showed pre-treatment metabolic tumor volume (MTV) and 

heterogeneity textural metrics on PET/CT can be good prognostic factors for locally 

advanced non-small cell lung cancer (NSCLC) patients treated with chemo-radiotherapy 

based on data from ACRIN 6668/RTOG 0235 28. Buizza et al., in addition, showed the 

longitudinal temporal and spatial changes from PET/CT image could improve the early 

survival prediction for chemoradiation treatment29. Radiomics has also been used to predict 

radiation induced normal tissue toxicities, such as radiation pneumonitis 21 or xerostomia 
30,31. These results suggest that a radiomics-based signature may emerge as an accepted 

imaging biomarker for predicting therapeutic outcome and for improving decision support in 

cancer treatment.

Risk assessment—Radiomics has also been extended to risk surveillance in several 

cancers. Liu et al., investigated the association between imaging features and low-grade 

gliomas (LGG) related epilepsy, and proposed a radiomics-based model for the prediction of 

associated risk32. Similarly, it is well known that mammographic density is an independent 

risk factor, and radiomics may provide much more information than breast density. 33–35. Li 

et al. investigated breast parenchymal patterns in mammographic images in 456 patients (53 

with BRCA1/2 gene carrier, 75 with unilateral cancer and 328 with low-risk) 12. They 

demonstrated that women at high risk tend to have dense breasts with coarse and low-

contrast texture patterns. Haberle et al. performed a case-control study with 864 cases vs. 

418 controls 36. Of the 470 radiomics features explored, 46 remained in the final risk model; 

the radiomics model outperformed than the conventional risk model with mammographic 

density. These studies may promote future breast cancer prevention trials to investigate the 

role of radiomics to measure breast tissue composition in individual woman for personalized 

risk management.

Radiogenomics—In radiogenomics, the radiomics phenotype is correlated with a 

genomic profile. The hypothesis is that imaging may provide insight into tumor phenotypes 

which are driven by the heterogeneity of the genetic evolution. Radiogenomics is a very 

young field due to the lack of data consisting of both imaging and genomic measurements 

on the same set of tumors 37,38.

Recent studies in brain tumors 37,39,40, lung cancer 40–42 and breast cancer 13,43 suggest 

value for radiogenomics. National shared databases, such as the Cancer Imaging Archive 

(TCIA) and the Cancer Genome Atlas (TCGA), provide researchers opportunities to explore 

this field. Using MRI images from TCIA and clinical, histopathologic, and genomic data 

from TCGA, Li et al. investigated the relationship between MRI imaging phenotypes and 

multi-gene assays including Oncotype Dx, MammoPrint and PAM50 43. Multiple linear 

regression analyses demonstrated significant associations between radiomics signatures and 

multigene assay recurrence scores. Zinn et al. identified an association between high T2 

FLAIR volumes, upregulation of periostin (POSTN), and downregulation of miR-219 using 

data from TCGA39. They noted high levels of POSTN were associated with mesenchymal 

Nie et al. Page 4

Int J Radiat Oncol Biol Phys. Author manuscript; available in PMC 2020 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



tumors and shorter survival and further concluded that this approach may be valuable for 

identifying new targets for molecular inhibition or future therapies.

Although numerous radiomics features can be extracted from medical images, the method 

by which tumor pathophysiological processes give rise to imaging phenotypes remain 

unclear. More studies are required to confirm these associations to further elucidate the 

biological meaning of the radiomics features.

Radiomics Processes and Components

One goal of radiomics is to convert images into data that can be mined using high 

throughput computing. The process follows several general steps, as shown in Figure 1: (a) 

image acquisition, (b) region of interest (ROI) identification and segmentation, (c) 

quantitative image feature extraction, (d) data mining and informatics analysis.

Image acquisition

The first step of image-based radiomics phenotyping involves image acquisition. Different 

image acquisitions will provide different, and often complementary information. For 

example, size or volume-based analysis can be obtained using anatomical MRI or CT. 

Measurements of perfusion can be determined from a series of dynamic-contrast-enhanced 

(DCE) MRI or CT acquisitions. Functional MRI, such as diffusion-weighted-imaging (DWI) 

can be used for tissue microcirculation and cellularity evaluation 14. Metabolic changes, 

such as rate of glucose metabolism, can be measured using fluorodeoxyglucose (FDG)-PET 
44. Emerging functional and molecular imaging methods that are increasingly used in 

clinical trials may offer additional biomarkers. Human experts can help guide the choice of 

the imaging modalities tailored to the disease site of interest, clinical endpoints and potential 

treatment options.

Historically, imaging devices are designed for subjective interpretation of images, allowing 

clinicians to identify, for example, the presence and the location of a lesion. Subsequent 

technical innovation has largely focused on improving imaging quality, shortening scanning 

time, or integrating with treatment machines. Conversely, they are not primarily to provide 

quantitative measurements in a reproducible manner. The standardization of imaging 

acquisition protocols is typically lacking, and wide variations in reconstruction or 

acquisition parameters can exist. Zhao et al. studied repeat computed tomography (CT) data 

set from lung cancer patients and concluded that smooth and sharp reconstruction algorithms 

should not be used interchangeably 45. Galavis et al. assessed the variability of radiomics 

features extracted from PET due to different acquisition modes, reconstruction algorithms, 

post-filtering, and iteration numbers. 40 out of 50 features were shown to have substantial 

variability, up to 30%46. Due to the gradient strength of the scanner, pulse sequence used, 

method of contrast agent administration, k-space trajectory sampling, and other factors, 

results from MRI can vary more significantly 47–49. Because the quality of the radiomics 

data depends on the reliability of the acquisition protocols used in clinical centers, the 

impact of these variations on the stability of radiomics features needs to be thoroughly 

investigated and understood in future studies.
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Region of interest (ROI) identification and segmentation

Defining regions of interest is a fundamental task within the practice of oncology. In 

radiology, human experts identify the presence, location and size of the suspicious areas, for 

diagnosis, staging or response assessment. In radiation oncology, the human experts must 

identify the tumor extent for treatment and organ-at-risks (OARs) for radiation sparing. 

Manual outlining by experienced radiologists or radiation oncologists is often treated as the 

gold standard. Yet it is labor intensive and suffers from high inter-operator or even intra-

operator variabilities. ROIs may be contoured more consistently using semi- or fully 

automated methods such as thresholding, region growing, classifiers, clustering, Markov 

random field models, artificial neural networks, deformable models and atlas-guided 

approaches 50,51. Although full automation may present a new opportunity for standardized 

segmentation method, challenges related to complex anatomy or areas with low soft tissue 

contrast persist, and manual correction of contours by an experienced physician is often 

required. A rather new idea to avoid segmentation pitfalls is the use of a “digital biopsy”, 

which samples rather than segmenting the region of interest. This approach has been 

recently applied to sampling CT lung nodules 52. More recently, advanced machine learning 

based algorithms has been applied for image segmentation or sampling 53,54. There are also 

several large initiatives aimed at developing automatic segmentation solutions using deep 

learning. These include Google’s DeepMind 55, Microsoft’s InnerEye 56, Mirada’s 

DLCExpert 57, and the Grand Challenges in Biomedical Image Analysis 58. These 

automated segmentation tools have been shown to improve efficiency of structure set 

generation, particularly for organs-at-risk (OARs). In the near future, deep-learning-based 

segmentation tools may be robust enough for routine radiomics applications.

Radiomics features

The core of radiomics is the extraction of high-dimensional feature sets to quantify images. 

The features extracted from images can be divided into static (i.e., a snapshot of 

enhancement at one point in time) or dynamic (i.e., time variant) features according to the 

acquisition protocol used at the time of scanning 59.

Static image features—Several types of static image features can be applied to radiomics 

studies, including: (a) morphology-based features which are used to capture three-

dimensional (3D) shape characteristics, such as volume and surface area, and sphericity 

which quantifies how close a 3D volume is to a sphere 60. A higher sphericity indicates a 

round shape while a lower value indicates an irregular or elongated shape, (b) intensity-

based features which are used to quantify the gray-level distribution inside the ROI. 

Examples of first-order intensity-based features include mean, standard deviation, 

percentiles, kurtosis, and skewness. They are used to characterize the overall intensity 

variability. While second-order intensity-based features, also referred to as texture features, 

look into the local distribution. Example metrics include the gray-level co-occurrence 

matrices (GLCM) 61, gray-level run length matrices (GLRLM) 62, and gray-level size zone 

matrices (GLSZM) 63. GLCM gives the probability of observing a pair of values in voxels at 

a given distance in a given direction 61. GLRLM measures the number of consecutive voxels 

with the same value aligned in a given direction 62 and GLSZM reflects the number of 

neighboring voxels with the same value 63. Higher-order intensity values may be achieved 
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using image transformations (e.g., Laplacian or Gaussian) 64,65 with different filter grids 

(e.g. Laws’ filters) 66, which highlight edge structures, or by using wavelet composition 67, 

which characterize sharp transitions in the intensity frequency spectrum.

Dynamic image features—In order to quantify the dynamic behavior of a contrast agent 

or other tracer within a region (which can be one or more voxels), pharmacokinetic 

modeling is typically used. In general, pharmacokinetic model considers tissue 

concentration as a convolution between the arterial input function (AIF) and the residual 

function for the decay of contrast agent inside the region of interest. The intravascular and 

interstitial space can be modeled under different assumptions. The most widely used kinetic 

model, Toft’s model, for example, assumes instantaneous mixing of contrast upon the arrival 

in the intravascular and interstitial space, while the extended Toft’s model considers a delay 

effect of the tissue concentration transferred from the artery 68. The adiabatic tissue 

homogeneity model (AATH) is motivated by the fact that the concentration of contrast agent 

in the extravascular distribution volume changes slowly relative to that in the intravascular 

space 69. Thus, it assumes that there exists a finite transit time for contrast solutes to travel 

from the arterial to the venous phase. The Patlak model is a linearization of irreversible 

compartment models in an equilibrium state where the tracers flow into the tissue without 

leaving 70. The Logan model is also a linearization of reversible compartment model in the 

equilibrium states where the tracers can move freely back into the plasma 70. Another 

approach is to directly fit the residual function using deconvolution without making any 

additional model assumptions 71. Typically-derived dynamic image features include regional 

blood flow (rBF), regional blood volume (rBV), mean transit time (MTT), extraction 

fraction, permeability surface area product, and most frequently volume transfer constant 

(Ktrans), and extravascular extracellular volume (ve). With an increasing emphasis on 

imaging of the tumor microenvironment, DCE-CT/MRI and FDG-PET have evolved as 

important functional techniques in this setting.

Overall, the current radiomics pipeline typically incorporates thousands of extracted 

radiomics features and these are still expected to further widen as the field continues to 

evolve.

Analytical tools

As in many other “-omics” fields, the number of input variables often far exceeds the 

number of patients. To reduce the probability of false positives, feature selection as 

dimension reduction is often needed, and filter-based score-ranking approaches, such as 

Wilcoxon, Chi-square, principle-component-analysis (PCA) are typically used 72. This can 

be carried out either using univariate methods, as the scoring criterion only depends on the 

feature relevancy, or multivariate methods using a weighted sum to maximize relevancy and 

minimize redundancy 72,73. Feature selection can also be combined with feature 

classification into a single model; examples include least-absolute-shrinkage-and-selection-

operator (LASSO) 74 and Elastic Net 75.

Once a feature set is obtained, a data-driven model can be constructed. These include 

supervised and non-supervised approaches 76. Unsupervised analysis does not provide an 
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outcome variable, but summary information of the data. The most frequently used graphical 

display is a heat map, which simultaneously reveals cluster structures in a data matrix 77. 

Supervised analysis, in contrast, creates models that attempt to separate the data with respect 

to a treatment outcome, such as responders vs. non-responders. Typical classification 

methods include conventional logistic regression or more advanced machine learning 

techniques 78,79.

Outcome modeling by logistic regression—Logistic regression is a common tool for 

multi-metric modeling. A logit transformation is used:

f (xi) = e
g(xi)

1 + e
g(xi)

, i = 1, …, n, (a)

where n is the number of cases (patients), xi is a vector of the input variable values 

(i.e.,image features) used to predict f (xi ) for outcome yi (e.g., tumor control or toxicity) of 

the ith patient,

g(xi) = β0 +
j = 1

d
β jxi ji = 1, …, n, j = 1, …, d, (b)

where d is the number of model variables and the β’s are the set of model coefficients 

determined by maximizing the probability that the data gave rise to the observations. This 

gives a linear combination of selected features with coefficients of respective weightings to 

the outcome, providing an intuitive tool for clinicians to interpret the associations between 

selected variables and the outcome.

Outcome modeling by machine learning—There are a wide class of AI techniques 

(e.g., neural networks, decision trees, support vector machine), which are able to provide a 

non-linear association of input variables to the outcome 80,81. Indeed, prognostic biomarkers 

developed using these machine-learning methods have increased performance when 

compared with conventional statistical methods 78,82,83. Recently, deep learning algorithms 

such as convolutional neural networks (CNN) have achieved breakthrough prediction power 

in a variety of medical studies, including detection of lung nodules on CT 84,85,86, and 

detection of breast cancer on mammogram 87,88. A comparison in mortality prediction from 

chest CT between a deep-learning framework and a standard framework with radiomics 

features, showed increased accuracy with CNN based classification 89. It is anticipated that 

multi-task learning will help to provide a degree of interpretation for deep learning 

approaches 76,81–90. Given enough high-quality data (text and images), it is expected that the 

role of CNNs will continue to expand in medicine and quantitative imaging. Despite these 

advances, however, concerted efforts are needed to promote detailed understanding of these 

approaches, including the relationship between dataset sizes, possible confounders and 

performance of outcome prediction.
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Quality Assurance of the Images and Methodologies

Despite the promise that radiomics may hold for precision medicine, there are significant 

concerns regarding the lack of reproducibility in results within and across modalities and 

among multiple institutions. In this section, the challenges associated with the clinical 

translation of radiomics are highlighted, and recommendations are provided for application 

in NCTN clinical trials.

Standardization of image acquisition parameters

In recent years, the field has strived to improve standardization by defining standard 

acquisition protocols. National efforts have been led by the Quantitative Imaging Network 

(QIN) initiated by the National Cancer Institute (NCI) 91,92, by Radiological Society of 

North of America (RSNA) Quantitative Imaging Biomarker Alliance (QIBA) 93,94, and 

others 95–96. The NCI-Quantitative Image Excellence (CQIE) project was initiated in 2010 

and the NCTN is a key focus for this effort 96,97. The CQIE provides PET/CT and MRI 

phantoms and protocols for site qualification, while QIBA provides consensus ‘profiles’ on 

the measurement accuracy of quantitative imaging biomarkers and the requirement/

procedures needed to achieve this level of accuracy 98.

Despite the progress made by these groups, there still no universal acquisition protocols for 

any imaging modality in clinical practice. For studies involved with radiomics in NTCN 

trials, therefore, we recommend:

a. a comprehensive description of the image acquisition parameters should be 

documented, including manufacture, model, types of images (e.g., CT, MRI, 

contrast-enhanced), contrast agents, image acquisition parameters (e.g., slice-by-

slice or three-dimensional acquisition, MRI magnetic field/TR/TE/flip angle, CT 

tube current/voltage, axial or helical mode), reconstruction package, software 

version, image resolution, signal-to-noise ratio, management of motion artifact;

b. If clinical trial is being conducted in institutes with the same scanners, the same 

scanning protocols should be strictly followed. Comparison across institutions 

with different scanners may be difficult. So it is suggested, when possible, to use 

each patient as his/her own control and the delta changes instead of the absolute 

value, or other corrections means for such variability including accounting for 

contrast;

c. direct measurement from scans with contrast should be used cautiously since 

uptake and the time from injection to imaging will differ and cause large 

variability. A practical strategy is to control the normal tissue ROIs as a baseline. 

For instance, on an individual basis, the average background of parenchyma or 

muscle can be used to normalize breast scans 99,100;

d. using radiomics feature(s) that are less dependent to variations in image 

acquisition protocol and/or platform into the final model.
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Standardization of image pre-/post-processing

Following image acquisition, there can still be a large range of voxel intensities and image 

noise, therefore, filtering procedures may be needed to enhance the signal and reduce the 

unwanted noise 101. Fave et al. tested the effect of different image pre-processing filters, 

such as bit-depth resampling and smoothing filters, on radiomics features, concluding that 

the correlation of extracted radiomics features with clinical outcome changes with different 

filters 102. The impact of noise, which directly impacts intensity and GLCM features, has 

also been studied 103. In addition, images obtained on two different scanners may result in 

different pixel values due to different detector materials, image resolution or acquisition 

techniques 76. A very recent study by Reuze et al., showed GLCM-entropy values were 

higher on a scanner equipped with time-of-flight capabilities, leading to very different cutoff 

values for predicting recurrence 76. Therefore, some post-image acquisition processing as 

filtering and normalization is necessary.

To reduce the impact of noise, the SNR from all acquired images should be well-controlled. 

Some smoothing filtering procedure maybe used so that all images come close to a target 

spatial resolution value 104–106. A consequence of this approach is that images with the 

highest initial resolution will be degraded, which is especially adverse for analysis of image 

texture. CT images without contrast may be used directly if geometry distortions are 

calibrated properly and consistency in terms of HU can be obtained. MR images in general 

are susceptible to different distortions. A typical correction procedure would follow 

normalization prior to radiomics analysis 107. PET images tend to have more noise than 

other imaging modalities used in radiomics analysis, a typical pre-processing procedure to 

correction procedure has been to use Poisson-to-Gaussian conversion (a root-squared 

transform) 108.

Additional procedures include the discretization signal intensities into finite intervals for 

intensity-based feature analysis, using either absolute (fixed bin size) or relative (fixed 

number of bins) discretization 109. The choice of method is important, as the extracted 

features will vary. It has demonstrated that absolute discretization shows better repeatability, 

lower sensitivities to changes, and is not volume dependent 10976. Thus, absolute 

discretization with fixed bin size should be adopted for intensity-based radiomics analysis. 

Each discretization method, however, has advantages and drawbacks and can lead to 

substantially different results 76.

Overall, effects of these pre-/post-processing techniques on variations in radiomics analysis 

remain as an open area. Although specific recommendations are being worked out by the 

IBSI group 110 and other, more general pitfalls to avoid including:

• to include a detailed description of filtering technique, noise reduction technique, 

intensity-correction, intensity discretization and bit-depth resampling, should be 

provided; and

• to apply radiomics feature(s) that are less dependent to variations in image pre-/

post-processing techniques into the final model.
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Reproducibility of radiomics features

Differences in segmentation methods are likely to bias the stability of shape metrics and 

intensity-based features. Parmar et al., performed a stability analysis based on an inter-

observer study 111. Fifty-six radiomics features, quantifying shape, intensity and texture 

were extracted from lung CT images. They showed for manual delineation among 5 

experienced operators, only 52% of these features had high reproducibility compared to 88% 

based on semi-automatic segmentation.

Moreover, contours of regions-of-interest (ROIs) are typically stored into two image 

formats: directly as voxels (e.g., NIfTI), or as (x,y,z) coordinates (e.g., DICOM-RT 

STRUCT). We need to determine which voxel centers lie within the space enclosed by the 

contour polygon. Thus different interpolation and partial-volume fraction threshold would 

also affect the contour-based feature calculation. Researchers showed contour data-rendered 

volumes exhibited large variations across the commercialized stereotactic radiosurgery 

(SRS) platforms using both the phantom and patient cases by up to 20% 112.

The methodologies to calculate radiomics feature can vary as well. Radiomics features can 

be obtained from either a 2D image slice 113,13 or from a reconstructed 3D volume 114. As 

another example, GLCM texture analysis can be calculated either by averaging the values of 

the matrices computed for 13 distinct directions or a single matrix that accounts for tumor 

co-occurrence information in all 13 directions 102,115. In addition, features computed from 

different matrices can have the same name 116. For example, entropy can be computed either 

from a histogram of intensities or from the GLCM matrix accounting for spatial similarity 
117. Thus the impact of different feature identification methods used in radiomics also needs 

to be carefully studied.

Furthermore, the variability of radiomics indices has been found to be highly feature 

dependent. Recent studies on mammography datasets reported that robust features were 

those that described spatial patterns rather than directionality or image intensity118. 

Deformable registration of CT lung data was shown to alter underlying texture but certain 

features could still be identified that were robust to registration effects 21. Consensus has 

been reached that first-order and shape features in both CT and CBCT are generally more 

repeatable than texture or higher-order features 119–120,121. First-order statistically-derived 

features from a standard uptake value (SUV) histogram are generally robust with respect to 

segmentation, while texture features consistently showed greater sensitivity to segmentation 

differences 111,119,122.

Regarding the computation of radiomics features, we recommend:

a. unambiguous definitions of each radiomics feature should be provided and 

evaluated;

b. if contouring is involved, describe how ROIs are delineated in the image. Specify 

if segmentation is performed manually, semi-automatically or automatically, by 

how many users/experts and how consensus has been formed. The 

reproducibility of the radiomics features based on segmentations by multiple 

observers needs to be assessed;
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c. the stability and the accuracy of features should be confirmed in terms of 

calculation algorithms, such as interpolation, criteria to include or exclude voxels 

from an ROI mask, 2D/3D calculations; or use features that do not require 

accurate segmentation;

d. additional suggestions include through the use of test-retest scan during the 

developmental phase (i.e., scanned on the same scanner but repositioned in 

between scans) with physical phantom and/or patient studies, to compare the 

means and standard deviations of these results as well as their correlations. 

Within the radiation oncology work flow, there are instances that could mimic 

the test-retest scenario. One example is a 4DCT scan if each phase is treated as a 

separate CT scan. A good practice policy is to eliminate features that prove to be 

unreliable in the test-retest. To this end, several datasets are public available. Of 

note, the RIDER dataset allows validation of results in the same set of patients 

with two scans taken 15mins apart 123. Investigators are encouraged to develop 

and share additional shared test-retest datasets;

e. again, using radiomics feature(s) that are less dependent to above variabilities to 

build the final model.

Radiomics phantoms

To help in addressing some of the challenges described above, the design of radiomics 

specific phantoms is now an active area of research 124–126. One example is the Credence 

Cartridge Radiomics (CCR) phantom, which was designed for use in studies of texture 

feature robustness 125. Using the CCR phantom, Mackin et al. investigated the inter-scanner 

variability of the calculated texture features, looking for clustering effects due to the scanner 

manufacturer and CT acquisitions parameters 127. They subsequently developed a correction 

technique to reduce or eliminate the variability in radiomics features due to differences in 

image pixel size based on CT images using the physical CCR phantom 128.

Digital phantoms such as the the Zobel and NCAT phantoms have long been used in image 

processing applications 129. It is unclear, however, whether these phantoms are suited for 

radiomics, and particularly for texture analysis. An alternative approach is to use 

standardized patterns such as the Brodatz Textures, 130 though the accompanying signatures 

are not necessarily clinically relevant. Alternately, simulated images can be used to 

determine optimal parameters for feature analysis. McGurk et al. augmented PET images 

from 30 soft tissue sarcoma patients by varying the extent of axial data combined per slice 

(‘span’) 131. Simulated T1-weighted and T2-weighted MR images were acquired by varying 

the repetition time and echo time in a spin-echo pulse sequence, respectively. The impact of 

PET and MR image acquisition parameter variation on individual textures was investigated 

to assess the global response and the predictive properties of a texture-based model. The 

results suggested that such a process is feasible for identifying an optimal set of image 

acquisition parameters to improve prediction performance 131.

Overall, those radiomics phantoms may be helpful in assessing the inter-/intra-scanner 

variabilities, and thus protocols for regular phantom QA may be worth of being developed, 

similar to dosimetric study in current radiotherapy QA program, to monitor inter-scan and 
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inter-vendor variability of image-derived features. In addition, phantom studies will also be 

useful in optimizing imaging protocols and image pre-/post-processing techniques that allow 

for reliable radiomics characterization. Ultimately, specific acquisition protocols optimized 

to generate superior radiomics measurements for a given clinical problem should be 

developed and standardized and thereafter validated using clinical scanners.

Robustness of modeling with radiomics

In the current iteration of radiomics, image features have to be extracted with high 

throughput, putting a premium on statistical modeling and machine learning algorithm 

development. Currently there is no consensus on which feature selection or learning 

methods should be used. Parmar et al. carried out a comparative study using 12 machine-

learning algorithms combined with 14 feature selection methods, for radiomics-based 

prediction of 2-year survival of lung cancer patients treated with radical radiotherapy alone 

or with chemotherapy 78. They concluded the 30% variation was observed for different 

classification method but not the feature selection algorithm. Given the state of the art, an 

analysis of the impact of different learning approaches on the stability and robustness of the 

proposed models is needed.

The general understanding is that simpler models involving few radiomics features are more 

robust. To avoid over-fitting, a reasonable rule of thumb with feature selection or dimension 

reduction is that 10 positive samples (patients) are needed for each feature selected for 

binary classification according to the Harrell’s guidelines 132,133. For example, radiomics 

analysis can be performed for 100 positive events, which will result no more than 10 features 

selected for the final prediction model.

Recently, deep learning has emerged as a productive force across many healthcare 

disciplines, especially in diagnostic radiology and pathology. However, there is a significant 

mismatch between the perceived capabilities of AI compared to their actual capabilities in 

present imaging studies 134,135. The scarce availability of high quality data, as well as the 

lack of standardized processes among institutions are the key-barriers. In addition, 

interpretation of non-linear relationship between input variables vs. outcome, as given by 

many current “black box” machine learning models, requires high-level expertise in this 

field. Additional complementary information such as patient demographics, genomics, 

histology, and biomarkers may be helpful in interpreting the results.

Nevertheless, robust models:

a. need to assess the over-fitting risk by using cross-validation methods during the 

classification step and controlled by dimension reduction methods.

b. need to be built upon rigorous training, testing and validation. Estimation of 

predictive performance in single-institution cohorts should include multiple-

folded repeated cross validation to minimize the risk of overfitting, while 

validation with external dataset is highly recommended; and
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c. may need to consider to accommodate clinical information, and with covariates 

of genomic profiles, histology, biomarkers, patient histories etc., to generate 

clinically understandable and acceptable decisions.

Overview of Commercial and Open-Source Radiomics Systems

Commercial systems

Several commercial applications providing radiomics capabilities applicable to cancer 

clinical trials have been created, including HealthMyne.com 136, Texrad.com 137, and 

Oncoradiomics.com 138. The commercial entities offer platforms that automate image 

analysis and clinical interpretation for radiologists and oncologists. Radiomic feature 

extraction is included as part of image analysis functionality, and intensity, shape and texture 

metrics, along with conventional size measurements used in routine image interpretation as 

RECIST (Response Evaluation Criteria In Solid Tumors), therapy response monitoring, and 

cancer screening, are generated on approval of structure segmentation. Along with imaging 

data (CT, MR and PET), these systems can import and display electronic health record 

(EHR) information via an HL7 interface, and imported and generated data is stored in a 

minable patient database that can be examined.

Open source systems

There are several open source software packages capable of performing radiomics analysis. 

Examples include: IBEX 139, MaZda 140, CGITA 141, pyradiomics 142,143, CERR144. 

Because there is no official index of the various open source radiomics packages, this list is 

not necessarily exhaustive. These open-source packages are typically capable of calculating 

first-order texture, GLCM, and GLRLM features, but not necessarily more sophisticated 

ones such as fractal features. Certain packages can calculate texture features in 2D and 3D 

(IBEX, CGITA, pyradiomics) while others are limited to 2D datasets (MaZda). Furthermore, 

the ability to alter calculation parameters, such as the number of gray-levels and directions 

for GLCMs, is not available in all open-source packages (e.g., MaZda). Some packages were 

tailored for certain imaging modalities. For example, IBEX was initially developed for CT 

data whereas MaZda was initially developed for MRI studies. As a result, both IBEX and 

MaZda rescale pixel values in an image to remove any non-negative pixel values 145. 

Algorithmic implementation of features in each package could also vary. Some efforts have 

been made, such as the image biomarker standardization initiative (IBSI) 110, to standardize 

feature definitions. Some packages such as pyradiomics attempt to adhere to IBSI 

definitions. Beyond open-source software tools, a number of groups have also developed in-

house tools for radiomics analyses. One such example is an open source Matlab that 

calculates different texture matrices in addition to global metrics. It also supports 

multivariate model building using a logistic regression model with bootstrapping for order 

selection 146. Overall, when selecting an open-source package, the user should verify that it 

meets their task-specific need and provides expected results.

It is recommended that:
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a. investigators provide access to code and datasets to ensure results can be 

reproduced. The datasets should include images, segmentations and clinical 

information if available and compliant with HIPAA regulations.

b. investigators promote an open source approach to radiomics software as an 

important step toward independent validation and to general dissemination of the 

approach.

Implementation in Clinical Trials and Recommendations

In order for radiomics to gain broad acceptance in clinical medicine, the value that the 

technology brings to clinical assessment and decision making must be affirmed in the 

context of clinical trials. Ideally, clinical trials that are conducted across diverse institutional 

environments and that are agnostic to vendor or technological platform will provide the most 

robust validation of the significance of radiomics. High quality clinical research is resource 

intensive and consumes time, energy and resources of physicians, research staff, and patients 

alike. The recently published roadmap for imaging biomarkers is a notable advancement, 

showcasing key recommendations for clinical translation of radiomics 147. These 

considerations being applied to the role of genomics in clinical trials may also apply to 

radiomics. Due to the expense of clinical trials, it is crucial that any prospective trials 

involving radiomics are carefully designed.

a. An important clinical question is what type of studies will be best suitable to test 

the value of radiomics. Strategies must be defined, mitigate and/or quantify 

uncertainties, risk and cost associated with any potential biomarker in making 

research or clinical.

b. Trials need to be carefully designed considering both the initial and any 

secondary analyses to ensure that the proper data has been collected to support 

the study questions. Whether there is and how much value of radiomics would 

add into the current gold standard clinical measurement needs to be verified. It is 

also prudent to incorporate radiomics studies as exploratory aims in the initial 

phase of the implementation into clinical trials. It should be clearly specified 

whether radiomics input will be used to stratify or determine patient eligibility or 

integrated within the trial to assess the quality of the test.

c. For clinical trials, a standard radiomics data format, similar to the needs defined 

by the Advanced Technology Consortium to support clinical trials, one of the 

main proponents for the DICOM-RT standard, may be necessary. Such a 

standard would need to be developed by researchers, clinicians, and 

manufacturers together to address the competing needs for robust quantitative 

evaluation of data. In addition, a guideline for reporting results from radiomics 

studies should established. A concept of radiomics quality score (RQS) has been 

proposed as possible evaluation criteria for radiomics studies 148. The RQS 

contains sixteen key components that intend to minimize bias and enhance the 

usefulness of the radiomics models. These recommendations may establish a 

reporting guidelines for future radiomics studies.
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d. For a given trial, being able to share a standard acquisition protocol in support of 

the trial across participating institutions would establish a strong foundation for 

meaningful radiomics data and analysis.

Summary

Radiomics is an evolving field that is growing at a rapid pace with great potential to impact 

the design of future clinical trials in oncology. As was noted in a 2009 report, however, 

many genomics-based studies have been published that contained significant analytical 

errors 110, and scientists reported that they failed to replicate 47 out of 53 landmark studies 
149. These findings raise similar concerns regarding the accountability of the statistical 

analysis, the transparency of the raw data accessibility and validation of results in radiomics 

studies. As the ultimate goal of radiomics is to build reliable imaging biomarkers to assist 

clinical decision-making, a prospective investigation must be trained, tested and validated 

against a completely independent data set, with a systematic study design with uniform 

treatment delivery, complete reporting of results, and robust statistical analysis. Protocols for 

standardizing image acquisition, feature extraction, and analysis will help to streamline the 

process for clinical trials. This can build on already existing expertise in the community in 

credentialing and evaluation of other metrics (e.g., treatment plan delivery, imaging QA,) to 

accelerate the process.

Nevertheless, the promise of radiomics is still quite positive. Medical imaging is redefining 

its role as a valuable data source for precision medicine in the guise of image-based 

phenotyping. Further, it could characterize tumor heterogeneity at a macroscopic level, a 

critical limitation of biopsy-based or current genomic approaches, which could potentially 

provide important complementary information for precision medicine. The successful 

introduction of these methods into clinical care will require much additional research to 

determine how underlying driving biologic phenomena are related to the tumor imaging 

phenotypes. In the foreseeable future, we expect that the data gleaned from oncology 

examinations will be converted into quantitative data which will be interfaced with 

knowledge databases to improve the diagnostic and prognostic power for clinical decision 

support.
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Figure 1. 
The general radiomics study workflow. Step I: Image acquisition; step II: region of interest 

identification and segmentation; step III: quantitative image feature extraction and Step IV: 

data mining and informatics analysis.
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