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Abstract

Histological stains, such as hematoxylin and eosin (H&E), are routinely used in clinical diagnosis 

and research. While these labels offer a high degree of specificity, throughput is limited by the 

need for multiple samples. Traditional histology stains, such as immunohistochemical labels, also 

rely only on protein expression and cannot quantify small molecules and metabolites that may aid 

in diagnosis. Finally, chemical stains and dyes permanently alter the tissue, making downstream 

analysis impossible. Fourier transform infrared (FTIR) spectroscopic imaging has shown promise 

for label-free characterization of important tissue phenotypes, and can bypass the need for many 

chemical labels. FTIR classification commonly leverages supervised learning, requiring human 

annotation that is tedious and prone to errors. One alternative is digital staining, which leverages 

machine learning to map infrared spectra to a corresponding chemical stain. This replaces human 

annotation with computer-aided alignment. Previous work relies on alignment of adjacent serial 

tissue sections. Since the tissue samples are not identical at the cellular level, this technique cannot 

be applied to high-definition FTIR images. In this paper, we demonstrate that cellular-level 

mapping can be accomplished using identical samples for both FTIR and chemical labels. In 

addition, higher-resolution results can be achieved using a deep convolutional neural network that 

integrates spatial and spectral features.
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Introduction

Histology relies heavily on expert interpretation of staining patterns produced by chemical 

contrast agents. Tissue staining is a critical component of modern clinical practice, since it is 

extremely difficult to differentiate structure and morphology in unstained tissue. Accurate 

disease diagnosis, prognosis, and prediction therefore requires reliable labeling.

The most common clinical labels include hematoxylin and eosin (H&E),1–3 periodic acid-

Schiff (PAS), and Masson’s trichrome. Selecting the appropriate label largely depends on 

tissue type, and panels requiring 3+ labels of serial tissue sections is common clinical 
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practice.4,5 Although staining protocols have been widely adopted, variability makes 

automated analysis difficult.6–8 Clinical diagnosis therefore still relies on manual assessment 

by experts, increasing cost and reducing throughput.

Vibrational spectroscopy provides a label-free alternative for pathological assessment that is 

comparable to traditional histology for many applications.9–13 Raman and infrared (IR) 

spectroscopy are highly specific techniques for molecular identification. However, Raman 

spectroscopy is limited by the weak signal.14–17 Infrared (IR) absorbance spectroscopy has 

routinely demonstrated the ability to differentiate tissues relevant to disease18–22 without 

significantly perturbing the sample,23 providing the potential for augmenting traditional 

histology. IR spectroscopy can also probe changes associated with abnormal tissue that are 

difficult to determine using histology alone.24–28

Motivation

While chemical staining is the current standard, it is non-quantitative and prone to human 

error and inter-observer disagreement.16 Our goal is to leverage the quantitative infrared 

spectroscopy to provide consistent molecular maps that aid pathological inspection. The 

most common approach leverages annotated IR images to train supervised machine learning 

(ML) algorithms for automated classification.29–33 This approach would require additional 

training for experts to integrate quantitative IR maps with existing clinical practice. For 

example, immunohistochemical labels frequently rely on counterstains to label tissue 

landmarks that are currently difficult to identify in IR images. This landmark challenge also 

effects the annotated ground truth used for ML training, since experts are likely to limit 

annotations to pixels that have a high degree of certainty. Critically, this introduces a bias in 

validation, making classifiers appear more accurate than they actually are.

Related Work

Many research works have been conducted to classify tissues in IR images, including 

unsupervised techniques such as K-means clustering6,34 or hierarchical cluster analysis34 

and supervised techniques such as random forests,33,35 Bayesian,30,32 artificial neural 

network (ANN)32,36 and support vector machines (SVMs)32,37.

We have previously shown that many traditional stains and counterstains can be digitally 

applied using artificial neural networks (ANNs) to map molecular spectra to RGB values.36 

This technique limits spatial resolution based on two critical factors: First, training requires 

aligned input/target pairs. Previous work uses adjacent sections, making cellular-level 

mapping impossible because adjacent images are fundamentally different at this scale. 

Second, an ANN uses pixel-independent spectra to determine the output color. Since a large 

amount of molecular information is embedded within the fingerprint region (500 to 1500 cm
−1), the resulting digital stain is diffraction limited to this region (6.5 to 20µm).

In this paper, we demonstrate digital staining of high-definition FTIR images to provide 

cellular-level labeling that mimics traditional histology.38 Our proposed algorithm relies on 

improved standard protocols for imaging, labeling, and aligning the sample, allowing 

accurate generation of input/target training pairs that reflect micrometer-scale features. We 

use a convolutional neural network (CNN)39 to leverage both spatial and spectral image 
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features, allowing us to take advantage of scattering at higher wavenumbers to overcome 

limitations in chemical resolution.

Materials and methods

Sample preparation

Tissue samples, consisting of pig kidney, pig skin, mouse kidney and mouse brain, were 

fixed for 24 hours in 10% neutral buffered formalin. The tissue was then embedded in 

paraffin using standard clinical techniques, which include dehydration in graded ethanol 

baths, clearing with xylene, and finally infiltration with paraffin at 6°C. The tissue sections 

were cut into thin sections (2 to 5µm) and mounted on calcium fluoride (CaF2) substrates. 

The tissue was then deparaffinized with xylene and graded ethanol, followed by re-hydration 

using phosphate buffered saline.40

After imaging, samples were labeled with either hematoxylin and eosin (H&E) or 4,6-

diamidino-2-phenylindole (DAPI) to provide chemical contrast.

Data collection

Deparaffinized sections were imaged using a Cary 600 FTIR spectroscopic microscope 

(Agilent Technologies) in the range of 800 to 4000 cm−1 at 8 cm−1 spectral resolution and 

focal plane array with a size of 128 × 128 . Imaging was performed using a 15X 0.62NA 

Cassegrain objective with a projected pixel size of 1.1 µm for high magnification and 5.5 µm 

for standard magnification in transmission mode. A smaller projected pixel size allows 

diffraction-limited in high-wavenumber regions. After staining, samples were imaged using 

a Nikon optical microscope with a 10X 0.3NA objective. H&E stains were imaged in 

brightfield mode, while DAPI was imaged using a 390 ± 9nm excitation filter and 460 

± 30nm emission filter.

Data preprocessing

FTIR images were preprocessed using standard protocols,40 including piece-wise linear 

baseline correction and band normalization to Amide I (1650 cm−1). These methods help to 

mitigate spatial effects introduced by scattering within heterogeneous samples, however 

peak shifts introduced at interfaces with differing refractive index can still impact the 

positions of resonance peaks. Principle component analysis (PCA) was employed to reduce 

the number of bands to 60 components representing 97.7% of the overall variance. 

Dimension reduction was necessary in order to mitigate memory constraints when using a 

CNN.

Image alignment

In order to perform semantic (pixel-wise) segmentation, IR spectra must be assigned input 

and target values for training. The input was selected from the IR image at position p = [x, 
y]T and the target color is selected from the associated location in the stained image. While 

the tissue samples in both images are identical, the staining process introduces deformation 

and tearing. Both images must be aligned using an elastic deformation transform T such that 

the position x within the absorbance image A(p) maps to the stained image S(Tp) at a 
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transformed position Tp. This requires pixel-level alignment of both IR and brightfield 

images to extract the corresponding positions. Using the same tissue sample for both images 

facilitated alignment, however distortions were introduced through chemical staining, due to 

required rehydration and chemical manipulation of the sample. Alignment was performed 

manually using the GIMP open-source editing software (Figure 1) to apply affine 

transformations to sub-regions of the sample used for training and validation. Regions that 

had undergone significant distortion (e.g. tearing) were excluded.

Convolutional neural network architecture

Our CNN architecture is composed of alternating convolutional and pooling layers followed 

by a fully connected ANN.

Convolutional layer: Convolutional layers apply a kernel with a small receptive field41,42 

to extract spatial features. Required hyper-parameters for optimization include filter size, 

padding, and stride. The filter size is equivalent to the spatial region considered to contain a 

viable image feature. The output of a convolutional layer is always smaller than the input by 

the filter size. The input is therefore padded with zeros at the borders to preserve spatial 

extent (width and height). The stride hyper-parameter controls the shifting step size for the 

convolution filters.

A point-wise nonlinear activation function is applied to the output of each convolution layer. 

The activity of feature map j in layer l is given by:

X j
l = g ∑

i

Nl − 1
ki, j

l ∗ Xi
l − 1 + b j

l ,

where Nl−1 indicates the number of feature maps in layer (l − 1), Xi
l − 1 is the feature map i in 

layer (l − 1), ki, j
l ∈ ℝk × k is a convolutional kernel applied to Xi

l − 1, and b j
l  is a bias term that 

facilitates learning. The transfer function g( ) is a nonlinear activation function, such as a 

sigmoid, tanh, or a rectified linear unit (relu). The * denotes the discrete convolution.

Local response normalization: In case of using the relu activation function, local 

response normalization (LNR) is employed to mitigate problems introduced with an 

unbounded activation function by enforcing local competition among features in different 

feature maps at the same spatial location.43 The normalization response, bx, y
i , of a neuron 

activity at location (x, y) after applying kernel i and activation function g(.), denoted as ax, y
i

is computed as39

bx, y
i = ax, y

i / k + α ∑
j = max(0, i − n/2)

min(N − 1, i + n/2)
ax, y

j 2 β
,
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where n is the number of adjacent feature maps around that kernel i. k, n, α and β are 

constant hyper-parameters. They are chosen to be k = 1, n = 5, α = 1 and β = 0.5.

Pooling layer: The normalized output of each convolution layer is passed through a 

pooling layer to summarize local features.44 By using a stride (stepping size over input 

pixels) greater than 1, the pooling layer sub-samples the feature maps to merge semantically 

similar features to provide invariant representation.45,46 This further improves the 

computational time by reducing the number of parameters. The Pooling Layer operates 

independently on every depth slice of the input and resizes it spatially. The depth dimension 

remains unchanged. If the feature map volume size is m × n × d, The pooling layer with 

filter dimension of q and stride s produces output with volume size of m′ × n′ × d where:

m′ = 1
s (m − q) + 1

n′ = 1
s (n − q) + 1

Fully connected layer: Our CNN is followed by a fully connected layer composed of a 

traditional artificial neural network (ANN) to facilitate deep learning.47 The input of fully 

connected layer is the output of previous layer flatten into a feature vector (Xl−1).48 The 

output vector of the fully connected layer l is:

Xl = f (WlXl − 1 + bl)

Connections between neurons in the layer l − 1 and l are stored in the weight matrix Wl with 

bias vector bl.

Loss function: The resulting supervised optimization minimizes the difference between 

network predictions and target values provided through a training set. For regression with 

linear output, the mean square error is used as a loss function:

L = ∑ 1
2(t − p)2

where t is the expected output and p is the value predicted by the most recent model.

Training: Training the network model starts with weight initialization in convolutional and 

fully-connected layers. This step is important because bad initialization leads to a slow 

training or no convergence training.49 Then the network is fed with training set to determine 

the activation of each neuron(forward propagation). The loss function compares the network 

output with the actual value and is optimized to adjust the weights so that the loss 

decreases(back propagation). Different gradient descent based optimization algorithms, such 

as stochastic gradient descent, Adam,50 and Adadelta,51 have been proposed and employed 

for ANN optimization.52 Our method uses the Adam optimizer for back-propagation.
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Regularization: A regularization term with/without dropout prevents the model from over-

fitting on training data and provides better generalization on test data.53 We use ℓ1 

regularization without dropout.

Batch training: Most neural network training is based on mini-batch stochastic gradient 

optimization. In this optimization method, training data set is split into small batches to 

calculate the loss function and update the parameters (weights and biases). Small batch 

training provides more robust convergence by avoiding local minima and also facilitate 

training on system with small memory.

Implementation

The network’s input X ∈ ℝm × n × b is a hyperspectral image with a spatial size of m × n and 

b spectral bands, which in our case are composed of the 60 principle components chosen 

from PCA. The trained CNN takes an input image to create a chemical map. In order to 

satisfy CNN requirements, we crop an s × s area around each pixel of X to create a s × s × b 
patch volume centered at pi. We use a spatial crop size of 9 × 9 around each pixel. The 

intensity value Ii of pixel pi in the color image is assigned to this volume path.

The experimental design of our CNN consists of four convolution layers with 32, 32, 64, 64 

feature maps, respectively, and 3 × 3 kernel windows with a stride of 1 for all convolution 

layers. Every other convolution layer is followed by a pooling layer with a kernel size of 2 × 

2 to reduce the spatial dimension by the factor of 2. The network is followed by two fully 

connected layers: one with 128 neurons and the other with three neurons that provide the 

color channels for the output color image. An overview of the proposed CNN architecture 

used is shown in Figure 2.

This network requires the adjustment of many hyperparameters, including the choice of 

optimizer, learning rate, and regularization factor, which are tuned on a validation set. 

Training is carried out using batch optimization with a batch size of 128. We use the Adam50 

optimizer with a learning rate of 0.01 to minimize our mean squared error (MSE) 

performance metric.52 To reduce the generalization error, we add L2 regularization to the 

weights, with the parameter set to 0.001. We use the softplus activation function for each 

layer except the output, which is a smoother version of relu. If x is the output of a neuron, 

then softplus is defined as:

softplus(x) = ln(1 + ex) .

The output layer passes through the linear function that returns the incoming tensor without 

changes.

We initialized the weights in our model using a normal distribution with a 0 mean and 

standard deviation of 0.02.
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Results

Our network is used for pixel-level mapping of large high- resolution images of normal pig 

kidney. In order to mitigate over-fitting due to biological variation, random sampling was 

used to select training data from larger images without the need to use every pixel in the 

training data. We used 16000 samples, each with the tensor size of 9 × 9 × 60 data points. 

Training and testing were performed using a Tesla k40M GPU. The average training time for 

7 epochs was 33 seconds, and the CNN required 20 seconds to digitally stain a 512 × 512 × 

60 pixels hyperspectral image.

MSE was computed after each iteration (mini-batches) to evaluate model convergence on the 

training data (Figure 3a), and after each epoch for random samples on validation data 

(Figure 3b).

Model performance was evaluated using the coefficient of determination R2 ∈ [0, 1] to 

measure the goodness of fit on an independent validation set. This metric indicates better 

performance as R2 approaches 1:

R2 = 1 −
∑i = 1

N (yi − yi)
2

∑i = 1
N (yi − y)2

where y and y are target and predicted images respectively, y = 1
N ∑i = 1

N yi is mean value of 

target image over all pixels(N ). The parameter R2 is computed after each epoch for 

validation data (Figure 3c).

The network was tested on independent images and compared to previously published 

algorithms36 (Figure 4) using the same imaging system. Applying a pixel level ANN (1 

hidden layer with 7 nodes) to the high-magnification data does not provide a significant 

improvement in resolution, likely due to reliance on chemical information in the fingerprint 

region of the spectrum (900 to 1500cm−1) where the diffraction limited resolution is 

comparable to a standard-magnification optical path (Figures 4a and 4b). The introduction of 

spatial features available at higher wavenumbers using a CNN provides significantly better 

spatial resolution in the output image (Figure 4c) compared to the chemically stained tissue 

(Figure 4d).

We presented the result of the digital staining networks qualitatively. The generated images 

from proposed CNN simply resemble the ground truth images visually. Due to color 

variation and local deformation happening during physical staining (ground truth), the 

synthesized images cannot be fully overlapped with the ground truths and quantitative 

evaluation is challenging. We quantified the visibility of differences between the digitally 

generated staining patterns and the chemically stained images using structural similarity 

(SSIM) index (Table 1). The SSIM index measures the similarity in case of luminance, 

contrast and structure.54,55 SSIM between two images x and y is defined as:
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SSIM(x, y) =
(2μxμy + C1)(2σxy + C2)

(μx
2 + μy

2 + C1)(σx
2 + σy

2 + C2)
(1)

where µx, µy, σx, σy and σxy are the local means, standard deviation, and cross-covariance 

for images x and y. C1 and C2 are regularization constants to avoid division by zero where 

the local means or standard deviations are close to zero.

In addition, the proposed CNN was trained and tested on different mouse kidney, mouse 

brain, and pig skin tissue samples to digitally mimic DAPI staining (Figure 5) to 

demonstrate that high-magnification infrared can capture the morphological features of cell 

nuclei and often individual cell positions.

Conclusion

We propose a method to reproduce high-resolution staining patterns based on direct 

molecular imaging using mid- infrared spectroscopy. These digital stains can be applied 

without the use of chemical labels or dyes and provide results similar to those used in 

traditional histology. We have developed a tissue preparation protocol that can be used to 

acquire input/target pairs for training. Unlike previous methods, our approach relies on the 

same tissue sample as the source of both input and target data. While these protocols allow a 

more accurate mapping between IR spectra and the desired output, a large amount of the 

relevant lportion of the spectrum. When relying only on spectral features, the low spatial 

resolution of the fingerprint region in the absorbance spectrum limits the corresponding 

spatial resolution of the output image. This is likely due to the abundance of biological 

information encoded in wavenumbers below 1800 cm−1. CNNs are able to combine the 

chemistry within the fingerprint region with spatial features from higher wavenumbers that 

provide greater spatial resolution. This approach clearly produces a more accurate 

duplication of the desired staining patterns, based on a subjective assessment (Figure 4).

While we are able to capture broad features produced by clusters of nuclei, and often 

individual cells, the diffraction limit imposed by IR is not yet competitive with bright field 

or fluorescence imaging. Other spectroscopic contrast mechanisms that do not perturb the 

sample, such as second harmonic generation (SHG) may also be used to extract more 

accurate target values. In addition, our current analysis relies on subjective criteria to 

evaluate output quality. Clinical application will require extensive validation, potentially as a 

double-blind experiment coordinated with trained histologists. Given the increase in image 

acquisition time over brightfield microscopy, it will also be important to identify spectral 

characteristics provided by FTIR that are unavailable or inaccessible to standard clinical 

practice. Finally, the higher resolution output achieved in our experiments relies on high 

spatial frequencies encoded in bands collected at higher wavenumber. Therefore, the results 

described here are likely incompatible with imaging systems using quantum cascade laser 
(QCL) sources.
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Figure 1. 
Image alignment using GIMP. A single FTIR band was used for manual alignment. A 

transparency value was assigned to the H&E image in order to visualize the degree of 

misalignment (a), which was then corrected using affine transformations (b).
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Figure 2. 
Schematic presentation of our CNN model composed of convolution and pooling layers 

followed by two fully connected layers (a). The network is fed by a data cube of size 9 × 9 × 

60, which is a spatial crop around each pixel.
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Figure 3. 
MSE plot convergence (a) with respect to iteration numbers during training on training data 

(b) with respect to epoch numbers for validation data. (c) Coefficient of determination (R2) 

of validation data during training process computed after each epoch
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Figure 4. 
Molecular imaging reproduced by chemical imaging using different digital staining methods 

and varying spatial resolutions for two pig kidney tissue sections i and ii. Standard digital 

H&E staining is shown using an ANN36 on (a) standard-magnification (5.5 µm pixel size) 

and (b) high-magnification (1.1 µm pixel size) images. (c) Digital H&E using the proposed 

CNN framework on high-magnification data shows greater cellular-level detail when 

compared to the ground truth (d) chemically-stained H&E images collected with a bright-

field microscope. Improved spatial resolution provided by the CNN is clear in the magnified 

insets, as well as in the kidney glomerulus (black arrow), where boundries are more clearly 

defined. Note that some deformations were introduced between the FTIR (a-c) and bright-

field (d) images because chemical staining was performed between these two steps.
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Figure 5. 
Digital DAPI staining of (a) mouse kidney, (b) pig skin, and (c) mouse brain respectively 

using our CNN framework. Digitally stained FTIR images are shown on the right, with 

close-ups on the bottom. (d) FTIR absorbance image at 3300 cm−1 indicating the regions 

used to collect average spectra. (e) Mean spectra were extracted using SIproc56 from masks 

of the molecular layer (green), granular layer (purple), and white matter (blue) of the 

cerebellum. Spectra are baseline corrected, normalized to Amide I, and offset for clarity.
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Table 1.

SSIM index for the different digital staining method outputs shown in Figure 4.

SSMI Low mag. ANN High mag. ANN High mag. CNN

Test Image (i) 0.61 0.62 0.70

Test Image (ii) 0.58 0.63 0.71
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