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Abstract
Backgound  Theobromine, a component of cocoa, may favorably affect conventional lipid-related cardiovascular risk mark-
ers, but effects on flow-mediated dilation (FMD) and other vascular function markers are not known.
Objective  To evaluate the effects of 4-week theobromine consumption (500 mg/day) on fasting and postprandial vascular 
function markers.
Design  In a randomized, double-blind crossover study, 44 apparently healthy overweight (N = 30) and obese (N = 14) men 
and women with low HDL-C concentrations, consumed daily 500 mg theobromine or placebo for 4 weeks. After 4 weeks, 
FMD, peripheral arterial tonometry (PAT), augmentation index (AIx), pulse wave velocity (PWV), blood pressure (BP) and 
retinal microvasculature measurements were performed. These measurements were carried out under fasting conditions and 
2.5 h after a high-fat mixed meal challenge.
Results  4-week theobromine consumption did not change fasting vascular function markers, except for a decrease in central 
AIx (cAIx, − 1.7 pp, P = 0.037) and a trend towards smaller venular calibers (− 2 µm, P = 0.074). Consuming a high-fat 
mixed meal decreased FMD (0.89 pp, P = 0.002), reactive hyperemia index (RHI, − 0.30, P < 0.001), peripheral systolic BP 
(SBP, − 3 mmHg, P ≤ 0.001), peripheral diastolic BP (DBP, − 2 mmHg, P ≤ 0.001), central SBP (− 6 mmHg, P ≤ 0.001) and 
central DBP (− 2 mmHg, P ≤ 0.001), but increased heart rate (HR, 2 bpm, P < 0.001). Theobromine did not modify these 
postprandial effects, but increased postprandially the brachial artery diameter (0.03 cm, P = 0.015), and decreased the cAIx 
corrected for a HR of 75 (cAIx75, − 5.0 pp, P = 0.004) and peripheral AIx (pAIx, − 6.3 pp, P = 0.017).
Conclusion  Theobromine consumption did not improve fasting and postprandial endothelial function, but increased postpran-
dial peripheral arterial diameters and decreased the AIx. These findings do not suggest that theobromine alone contributes 
to the proposed cardioprotective effects of cocoa.
This trial was registered on clinicaltrials.gov under study number NCT02209025.
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pp	� Percentage point
pSBP	� Peripheral systolic blood pressure
PWV	� Pulse wave velocity
PWVcf	� Carotid-femoral PWV
PWVcr	� Carotid-radial PWV
RHI	� Reactive hyperemia index

Introduction

Chocolate consumption is associated with a lower risk for 
cardiovascular diseases (CVD) [1]. These effects are specifi-
cally evident for dark chocolate, which has been shown to 
improve serum lipid profiles [2, 3], to reduce blood pressure 
[2, 4], to increase insulin sensitivity, and to improve vascular 
endothelial function as measured with flow-mediated dila-
tion (FMD) [2]. The components from cocoa responsible 
for the potentially beneficial effects on FMD are unknown, 
but it can be argued that theobromine (500–700 mg/100 g 
dark chocolate) contributes to these effects. In fact, the acute 
consumption of low amounts of theobromine (111 mg) and 
caffeine (11 mg) potentiated the protective effect of cocoa 
flavanols on postprandial FMD [5]. Furthermore, a 4-week 
study showed that daily consumption of 500 or 850 mg theo-
bromine lowered fasting low-density lipoprotein cholesterol 
(LDL-C) and apolipoprotein B (apoB) concentrations, and 
increased those of serum HDL-C [6, 7] and apoA-I [6]. In 
contrast to these studies, we recently reported that we could 
not fully confirm the findings on apoA-I concentrations [7]. 
Moreover, we observed no effects of a daily theobromine 
consumption of 500 mg on postprandial lipid responses, 
while postprandial free fatty acid, glucose and insulin 
responses were increased [7]. It is known that both post-
prandial hyperlipidemia [8] and hyperglycemia [9] impair 
vascular function. Therefore, it is relevant to examine effects 
of theobromine, not only on fasting vascular function, but 
also on vascular resilience after a meal challenge.

FMD is a non-invasive vascular function marker to assess 
endothelial function and an accepted predictive biomarker 
for future CVD events [10]. Another method to evaluate 
endothelial function is peripheral arterial tonometry (PAT), 
which measures the reactive hyperaemia index (RHI) of the 
small arteries and is negatively correlated with the presence 
of CVD risk factors [11]. Furthermore, several non-invasive 
markers exist to assess arterial stiffness such as carotid-
femoral pulse wave velocity (PWVcf) and the augmentation 
index (AIx). PWVcf is associated with a higher frequency 
of stroke, CVD and total mortality [12], while the AIx is 
associated with higher CVD risk [13]. Finally, the micro-
vasculature can be studied by evaluating the caliber of the 
blood vessels in the retina. Cross-sectional wider venules 
and narrower arterioles predict an increased risk of CVD 
events in women, but not in men [14].

In agreement with effects on FMD [2], dark chocolate 
consumption also improved RHI [15]. However, effects on 
measures of arterial stiffness are conflicting. In one study, 
no effects were found on PWVcf [13], while in another study 
beneficial effects were found on Aix [16, 17]. Furthermore, 
Terai et al. showed no differences in arteriolar and venular 
width after short-term dark chocolate consumption [12].

So far, long-term effects of theobromine consumption on 
a wide panel of vascular function markers have never been 
studied. Therefore, we examined the effects of 4-week theo-
bromine consumption (500 mg/day) on FMD, RHI, pulse 
wave velocity (PWV), AIx, and retinal microvasculature in 
fasting conditions and after a high-fat meal challenge.

Materials and methods

Study population

Details of this study have been published before [7]. Briefly, 
44 healthy overweight (BMI 25–30 kg/m2; n = 30) or slightly 
obese (BMI 30–35 kg/m2; n = 14) men (45–70 years; n = 28) 
and women (50–70 years; n = 16) participated. During two 
screening visits, with an interval of ≥ 1-week, blood pres-
sure was measured in fourfold using an Omron M7 (Omron 
Healthycare Europe B.V., Hoofddorp, the Netherlands). The 
first measurement was discarded and the last three measure-
ments were averaged. Furthermore, a fasting blood sample 
was taken for analysis of serum total cholesterol, HDL-C, 
and plasma glucose concentrations. Inclusion criteria were: 
fasting serum HDL-C concentrations below the 50th per-
centile of the Dutch population (< 1.2 mmol/L for men and 
< 1.5 mmol/L for women) [18], fasting serum total choles-
terol concentrations < 8.0 mmol/L, fasting plasma glucose 
concentrations < 7.0 mmol/L, and no use of lipid-lowering, 
anti-diabetic or anti-hypertensive medication or a medically 
prescribed diet. All participants gave their written informed 
consent before entering the study. This study was conducted 
according to the guidelines laid down in the Declaration of 
Helsinki. The study protocol was approved by the Medical 
Ethical Committee of the University Hospital Maastricht. 
The trail was registered at clinicaltrials.gov under study 
number NCT02209025.

Study design and product

This study with a randomized, double-blind, cross-over 
design consisted of two intervention periods of 4-week 
separated by a 4-week washout period. Starting 2-week 
before the first intervention period and during the entire 
study, participants were instructed by a research dieti-
cian to avoid cocoa-containing products, for which they 
received a detailed list with products. Since theobromine is 
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a metabolite of caffeine, the consumption of caffeine-con-
taining drinks was restricted to a maximum of four cups 
a day and volunteers were instructed not to change their 
intake throughout the study. Subjects consumed in random 
order a drink (20 mL) enriched with theobromine (500 mg/
day) or placebo every day during breakfast (Supplemental 
Table 1). Theobromine was obtained from Fagron (Uit-
geest, the Netherlands) and drinks were produced and pro-
vided by Pharmavize (Mariakerke, Belgium).

Test day and test meal

At the end of the 4-week intervention and placebo peri-
ods, subjects visited the University in fasting condition 
(no food or drinks, except water, 12-h before the visit). 
To minimize effects of the previous meal, we provided 
all subjects with the same commercially available lasagne 
(638 kcal, 28.4 g protein, 44.0 g carbohydrates and 37.6 g 
fat) the evening before each of the two test days. Further-
more, subjects were asked to avoid alcohol consumptions 
and strenuous activities 48-h before a visit.

In the morning, volunteers arrived at the Department 
by public transport or car, to standardize measurements as 
much as possible. Upon arrival and after a 10 min rest in 
supine position, vascular function measurements were per-
formed in fasting conditions. Next, subjects were asked to 
consume a high-fat mixed meal (965 kcal, 17.9 g protein, 
86.7 g carbohydrates, 60.6 g fat and 341 mg cholesterol), 
which was actually a shake prepared with regular food 
items bought in the local supermarket, together with their 
experimental drink, within 10 min. For the next 2.5-h fol-
lowing the meal, participants were not allowed to eat or 
drink anything except water. After 2.5-h (T150), the same 
panel of vascular function measurements was performed 
in the same order, using the same protocols.

Vascular measurements

Investigators were blinded during the study and data analy-
ses. All vascular measurements were performed in a quiet 
and temperature-controlled (22 °C) room. Peripheral sys-
tolic blood pressure (pSBP), peripheral diastolic blood 
pressure (pDBP), FMD, RHI, PWVcf, AIx and retinal vas-
cular image measurements were determined as described 
before. Furthermore, carotid-radial PWV (PWVcr) was 
measured with the SphygmoCor, as described for the 
PWVcf [19]. Central systolic blood pressure (cSBP) 
and central diastolic blood pressure (cDBP) values were 
obtained from the SphygmoCor measurements.

Statistical analysis

Before the start of the study, it was calculated that the sta-
tistical power to detect a true difference of at least 1.20% 
points (pp) in FMD between the experimental and control 
period was over 80% (α = 0.05), when 43 subjects success-
fully completed the study. For these calculations, a within-
subject variability of 2.82 pp in FMD [20] was used. As the 
expected drop-out rate was 10%, the aim was to recruit 48 
men and women.

All data is presented as mean ± SD unless indicated oth-
erwise. All parameters were checked for normal distribu-
tions with the Shapiro–Wilk test. Fasting measurements 
after 4-week of placebo or theobromine intervention were 
compared with the general mixed model procedure with 
subject as random factor, and treatment and period as fixed 
factors. Differences in postprandial changes after 4 weeks 
of placebo or theobromine interventions were also evalu-
ated with general mixed models with subject as random 
factor and treatment and meal as fixed factors and a treat-
ment × meal interaction. If this treatment × meal interaction 
was not significant, it was omitted from the model. Results 
were considered statistically significant if P ≤ 0.05. All sta-
tistical analyses were performed using SPSS 20.0 for Mac 
(SPSS Inc., Chicago, IL, USA).

Results

Study participants

After screening, 48 subjects were eligible for participation 
and started the study. During the first intervention period, 
four participants (one male and three female) discontinued 
the study. Thus, 44 participants completed the study. The 
flow diagram and subject characteristic are presented in sup-
plemental Fig. 1 and supplemental Table 2. RHI data was 
missing for three persons, due to technical problems. For two 
subjects (one man, one woman), T0 values were missing and 
for one male participant, a T150 value was absent. For four 
persons CRAE and CRVE calibers were missing (one man 
and three women) and for two persons (one man and one 
woman) the T150 values were missing, because of a poor 
quality of the fundus photos.

Fasting vascular function

In the fasting condition, theobromine consumption did not 
change FMD, brachial artery diameter, and RHI. Further-
more, PWVcf, PWVcr, pAIx and cAIx75 did not change, but 
the cAIx was significantly lower after theobromine intake 
(− 1.7 pp, 95% CI − 6.1, − 0.2, P = 0.037). The CRAE and 
AVR also remained stable during the study, but theobromine 
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intake tended to decrease the CRVE (− 2 µm, 95% CI − 4, 
0, P = 0.074). Finally, fasting BP and HR were not affected 
(Table 1).

Postprandial vascular function

As expected, high-fat mixed meal intake significantly 
decreased FMD (− 0.89  pp, 95% CI − 1.43, − 0.35, 
P = 0.002) and RHI (− 0.30, 95% CI − 0.43, − 0.16, 
P < 0.001) responses, but these effects did not depend on the-
obromine consumption. However, the brachial artery diam-
eter increased when theobromine was part of the test meal 
(0.03 cm, 95% CI 1.23, 4.45, P = 0.015 for treatment × meal 
effects).

Test meal consumption did not affect arterial stiffness 
as measured via PWVcf and PWVcr. These effects were 
not changed by theobromine consumption. However, theo-
bromine consumption tended to decrease the postprandial 
cAIx (− 4.9 pp, 95% CI − 5.8, − 0.7, P = 0.080 for treat-
ment × meal effects) and decreased the pAIx (− 6.3 pp, 

95% CI − 9.2, − 2.4, P = 0.017 for treatment × meal effects) 
and cAIx75 (− 5.0 pp, 95% CI − 6.8, − 2.4, P = 0.004 for 
treatment × meal effects). Test meal consumption did not 
change retinal vascular calibers. Effects were not changed 
by theobromine consumption. Finally, the test meal sig-
nificantly decreased cSBP (− 5 mmHg, 95% CI − 8, − 4, 
P ≤ 0.001), cDBP (− 2 mmHg, 95% CI − 3, − 1, P ≤ 0.001), 
pSBP (− 3 mmHg, 95% CI − 5, − 1, P ≤ 0.001) and pDBP 
(− 2 mmHg, 95% CI − 3, − 1, P ≤ 0.001) and increased HR 
(2 bpm, 95% CI 1, 3, P ≤ 0.001). These effects were not 
modified by theobromine (Table 1).

Discussion

This randomized, double-blind, placebo-controlled interven-
tion study showed that a daily intake of 500 mg theobromine 
for 4 weeks did not affect FMD, RHI, PWV and the retinal 
microvasculature in fasting and postprandial conditions. 
However, theobromine consumption increased brachial 

Table 1   Brachial diameter, brachial artery FMD, RHI, PWVcf, PWVcr, cAIx, cAIx75, pAIx, CRAE, CRVE, AVR, pSBP, pDBP, cSBP, cDBP 
and HR in fasting (T0) and postprandial (T150) condition after 4 weeks of placebo or theobromine consumption

Values are mean ± SD. n = 44. Linear mixed models were conducted to find significant differences
FMD flow mediated dilation, RHI reactive hyperemia index, PWV pulse wave velocity, PWVcf PWV of the carotis-femoralis, PWVcr PWV of 
the carotis-radialis, cAIx central augmentation index, cAIx75 cAIx corrected for a heart rate of 75, pAIx peripheral augmentation index, CRAE 
mean arteriolar width, CRVE mean venular width, AVR arteriolar to venular ratio, p peripheral, c central, SBP systolic blood pressure, DBP dias-
tolic blood pressure, HR heart rate
# P < 0.05 for fasting differences from placebo
* P < 0.05 for treatment × meal effects
$ P < 0.05 for meal effects
1 n = 42 at T0, n = 41 at T150 due to missing values
2 n = 41 at T0, n = 39 at T150 due to missing values

Placebo Theobromine

T0 T150 Change T0 T150 Change

Brachial diameter (cm) 0.49 ± 0.06 0.50 ± 0.08 0.00 ± 0.04 0.49 ± 0.07 0.52 ± 0.08 0.03 ± 0.04*
Brachial artery FMD (%)$ 4.87 ± 2.54 3.87 ± 2.32 − 1.00 ± 2.97 4.43 ± 2.01 3.65 ± 2.25 − 0.78 ± 2.48
RHI1,$ 2.64 ± 0.68 2.38 ± 0.61 − 0.24 ± 0.65 2.58 ± 0.61 2.23 ± 0.47 − 0.35 ± 0.60
PWVcr (m/s) 7.1 ± 1.1 7.1 ± 1.1 − 0.1 ± 1.2 7.4 ± 1.3 7.1 ± 1.5 − 0.3 ± 1.6
PWVcf (m/s) 9.0 ± 1.4 9.0 ± 1.6 0.0 ± 1.3 8.8 ± 1.6 9.0 ± 1.5 0.2 ± 1.5
cAIx (%) 28.3 ± 9.9 21.9 ± 10.5 − 6.4 ± 6.2 26.6 ± 10.4# 15.2 ± 11.2 − 11.3 ± 8.4
pAIx (%) − 14.8 ± 14.9 − 24.1 ± 13.7 − 9.3 ± 10.6 − 16.8 ± 15.3 − 32.4 ± 13.8 − 15.6 ± 14.4*
cAIx75 (%) 21.6 ± 8.7 16.3 ± 9.6 − 5.3 ± 6.5 21.4 ± 9.3 11.2 ± 10.7 − 10.3 ± 8.2*
CRAE (µm)3 135 ± 19 135 ± 19 0 ± 9 134 ± 19 136 ± 19 2 ± 6
CRVE (µm)3 230 ± 14 231 ± 13 0 ± 5 228 ± 14 231 ± 13 2 ± 7
AVR3 0.59 ± 0.09 0.59 ± 0.09 0.00 ± 0.05 0.58 ± 0.09 0.59 ± 0.09 0.01 ± 0.04
pSBP (mmHg)$ 134 ± 14 132 ± 12 − 3 ± 9 134 ± 14 130 ± 13 − 4 ± 10
pDBP (mmHg)$ 85 ± 10 83 ± 8 − 2 ± 5 86 ± 10 83 ± 9 − 3 ± 6
cSBP (mmHg)$ 126 ± 13 121 ± 11 − 5 ± 8 125 ± 12 118 ± 13 − 7 ± 10
cDBP (mmHg)$ 86 ± 9 84 ± 9 − 2 ± 6 87 ± 9 84 ± 9 − 3 ± 5
HR (bpm)$ 62 ± 9 64 ± 10 2 ± 4 62 ± 8 65 ± 10 3 ± 7
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arterial diameters and decreased the AIx during the post-
prandial phase.

The amount of 500 mg theobromine provided corre-
sponds to approximately 67–100 g of dark chocolate [21]. It 
has been shown that consumption of 100 g dark chocolate 
for 15 days increased fasting FMD by 1.5 pp [22], which 
has been explained by an increase in nitric oxide (NO) 
concentrations due to a higher endothelial-derived NO 
synthase activity [23]. Our study was adequately powered 
to detect such a change. Moreover, the finding that fasting 
RHI—which is also NO-mediated but more related to the 
small arteries and the microvasculature—did not change 
after theobromine consumption was also opposite to the 
effects observed after consuming cocoa [15]. Furthermore, 
theobromine did not modify the effects of a meal challenge 
on vascular resilience. It is well known that a meal high 
in fat or high in carbohydrates impairs endothelial function 
[24, 25]. During postprandial hyperlipemia and hypergly-
cemia, the production of reactive oxygen species increases, 
which decreases NO bioavailability and thereby endothe-
lial function [24, 25]. Indeed, also our test meal stressed 
the endothelium, as evidenced by decreases in postprandial 
FMD and RHI values, which is in agreement with other stud-
ies [26–28]. In contrast to our results, flavanol-rich cocoa 
consumption ameliorated the decrease in FMD after intake 
of a fatty meal [29], while flavonoid-rich dark chocolate 
consumption even increased FMD values 1 h after intake 
[30]. Our data, therefore, suggests that the improvement in 
endothelial function after cocoa consumption is not solely 
due to the theobromine content of cocoa. Cocoa also con-
tains other bioactive compounds that may affect FMD, such 
as epicatechin [2]. Furthermore, it is possible that synergistic 
effects of the different bioactive components in cocoa have 
caused the beneficial effects on FMD and RHI. Indeed, San-
sone et al. have recently shown that a combination of theo-
bromine (111 mg) and caffeine (11 mg) did not change the 
FMD, while flavanol consumption (820 mg) alone increased 
the FMD. When the flavanols were consumed together with 
the mixture of theobromine and caffeine, circulating con-
centrations of flavanol metabolites were increased, while the 
FMD improved even more [5].

Although theobromine did not change the FMD, we 
observed an unexpected increase in brachial artery diam-
eters during the postprandial phase. Unfortunately, most 
studies investigating the effects of cocoa did not report 
effects on brachial artery diameters. However, one acute 
study showed an increase in the brachial artery diameter 
after flavonoid-rich dark chocolate consumption, but with 
a simultaneous increase in FMD values [30]. We can only 
speculate about the mechanism underlying the increase in 
brachial artery diameter. First, theobromine inhibits cyclic 
adenosinemonophosphate (cAMP)-phosphodiesterase [31, 
32], which increases cellular cAMP levels. As a response, 

intracellular calcium concentrations may decrease, followed 
by dilatation of the skeletal muscle vasculature [33]. A sec-
ond potential explanation relates to the increased postpran-
dial insulin responses after theobromine consumption, as we 
have already earlier reported [7]. Insulin is known to cause 
vasodilatation of the larger arteries [34], leading to enlarged 
artery diameters.However, it is also possible that the total-
ity of metabolic changes including elevated insulin, glucose 
and hsCRP in the postprandial phase after theobromine con-
sumption as reported earlier [7], is the reason underlying the 
observed effects on the vasculature during the postprandial 
phase.

Theobromine did not change fasting and postprandial 
PWV, but decreased fasting and postprandial AIx. This sug-
gests that effects on parameters reflecting arterial stiffness 
are divergent, as has also been reported in other studies [27, 
35]. Differences in PWV are frequently caused by changes in 
blood pressure [36]. In agreement with the lack of effect on 
PWV, theobromine did not change fasting and postprandial 
blood pressure parameters. Neufingerl et al. also observed 
no effects of 4-week of theobromine consumption on fast-
ing blood pressure [6]. Furthermore, cocoa consumption did 
not affect postprandial blood pressure [30, 37] and PWVcf 
values [30]. In contrast, the consumption of theobromine-
enriched flavonoid-rich cocoa drink for 3 weeks increased 
fasting blood pressure and postprandial PWVcf, while 
it decreased postprandial blood pressure in hypertensive 
patients [38]. Possibly, the difference in theobromine dose 
and drink composition can explain the discrepancy with our 
findings, since van den Bogaard et al. used a daily theobro-
mine intake of 979 mg, which was consumed in combination 
with flavonoids provided by the cocoa [38]. Structural char-
acteristics of the vascular wall also determine PWV [39]. 
However, as both blood pressure and PWV did not change, 
it can be deduced that these characteristics were also not 
changed.

Unrelated to theobromine intake, we observed a postpran-
dial decrease in blood pressure, but the anticipated decrease 
in postprandial PWV was not observed. However, effects 
of meal consumption on blood pressure as related to PWV 
are conflicting. One study has reported an increase in blood 
pressure and PWVcf after meal consumption [40]; another 
study a decrease in blood pressure, but no change in PWVcf 
[41], while no change in blood pressure but an increase in 
PWVcr has also been reported [42]. For now, it is not clear 
what causes the discrepancy between the different studies, 
but it may relate to differences in the amounts of fat in the 
test meals between the studies [40–42].

In our study, theobromine decreased fasting cAIx, but did 
not change fasting pAIx and cAIx75. This is in contrast with 
the effects of cocoa, since acute and 4-week dark chocolate 
consumption decreased fasting cAIx75 [16, 17]. Except for 
the effects on fasting AIx, the test meal with theobromine 
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decreased cAIx75 and pAIx. This decrease may be related to 
the postprandial increase in peripheral artery diameters, as a 
blood vessel with a larger diameter causes a lower reflection 
wave, leading to a lower AIx. It can, therefore, be argued that 
our findings suggest that the main effect of theobromine is 
dilation of the small and medium-sized peripheral arteries 
in the postprandial state. If true, then it is unclear why the 
PWVcr—a measure for peripheral vascular stiffness—did 
not decrease after theobromine with meal consumption. 
Finally, theobromine and meal consumption did not affect 
the arteriolar and venular diameters in the fundus vascula-
ture. Also, acute dark chocolate consumption had no effect 
on postprandial arteriolar and venular calibers [12].

In conclusion, theobromine consumption did not improve 
fasting and postprandial endothelial function, but increased 
postprandial peripheral arterial diameters and decreased the 
AIx. These findings do not suggest that theobromine alone 
contributes to the proposed cardioprotective effects of cocoa.
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