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Abstract
The aim of this research is to automatically detect lumbar vertebras in MRI images with bounding boxes and their classes, which
can assist clinicians with diagnoses based on large amounts of MRI slices. Vertebras are highly semblable in appearance, leading
to a challenging automatic recognition. A novel detection algorithm is proposed in this paper based on deep learning. We apply a
similarity function to train the convolutional network for lumbar spine detection. Instead of distinguishing vertebras using
annotated lumbar images, our method compares similarities between vertebras using a beforehand lumbar image. In the
convolutional neural network, a contrast object will not update during frames, which allows a fast speed and saves memory.
Due to its distinctive shape, S1 is firstly detected and a rough region around it is extracted for searching for L1–L5. The results are
evaluated with accuracy, precision, mean, and standard deviation (STD). Finally, our detection algorithm achieves the accuracy
of 98.6% and the precision of 98.9%. Most failed results are involved with wrong S1 locations or missed L5. The study
demonstrates that a lumbar detection network supported by deep learning can be trained successfully without annotated MRI
images. It can be believed that our detection method will assist clinicians to raise working efficiency.

Keywords Convolutional network . Deep learning . Lumbar detection . The similarity function

Introduction

Magnetic resonance imaging (MRI) is one of the main medi-
cal imaging methods to check lumbar diseases. Automatic
vertebra detection and location will play an important role in
medical image diagnoses, therapeutic schedule, and a follow-
up check. For example, lumbar disc herniation usually results
from the nerve damage generated by direct compression of the
spinal canal [1]. Clinicians often diagnose lumbar disc herni-
ation through physical signs in medical images, such as dis-
placement and transformation [2]. A radiologist works redun-
dantly to label every lumbar vertebra per patient for further
diagnoses. Automatic vertebra detection can assist clinicians
with etiological diagnoses, such as scoliosis, lumbar canal
stenosis, and vertebra degeneration. This will help radiologists
recognize each lumbar spine and relieve from duplicate works

to annotate each new medical image. However, it remains to
be a challenging task to detect automatically in a lumbar im-
age. Imaging mode and patient movement usually result in a
high variance or shadow in the image. It is difficult to auto-
matically label every vertebra because characteristics between
vertebras are in high resemblance.

Researches have been conducted to make medical images
easier to analyze. Several studies focus on special deformation
or injury in spine images [3, 4], and other studies aim to
automatically detect vertebras [5, 6]. In previous studies,
methods with support vector machine, classification forests,
and other feature extraction algorithm showed great perfor-
mance. Since Hilton et al. [7] proposed deep learning in
2006, deep learning has a rapid development in the medical
image area. Most recent researches require either fully seg-
mented training data or annotated vertebras in the form of
bounding boxes and vertebra positions. For example,
Masudur et al. [8] used fully segmented images to train the
convolutional neural network to segment cervical or lumbar
vertebras. Kim et al. [9] and Oktay et al. [10] trained networks
to detect lumbar vertebras on labeled images with bounding
boxes and object positions. Han et al. [11] andWang et al. [12]
trained networks to analyze lumbar neural foraminal stenosis
with fully segmented lumbar images. However, there exists no
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recognized lumbar dataset with segmented labels or bounding
boxes. Most deep learning tasks of detecting and locating ver-
tebras in medical images rely on an annotated dataset [13].
Making training datasets requires multiple manual works.
Moreover, training dataset labeled by their team impacts some-
what on the accuracy of detection and location [14]. Regarding
other network frameworks, we propose a new framework to
detect MRI lumbar spine via a transfer learning method [15]
without using annotated MRI training images.

This paper presents a convolutional neural network [16]
with transfer learning to locate the lumbar spine from L1 to
S1. The strength of our method is that it does not require
annotated vertebra training images. Firstly, the detection net-
work is trained on a recognized video dataset. It is trained to
learn to compare the similarity between the contrast image and
search images. We recognize the target position according to
the high similarity value in the score map. Secondly, we fine-
tune parameters when the network is tested on thousands of
MRI images. We detect each lumbar image twice. Vertebra S1
is firstly detected and a region based on it is used to search for
L1–L5. Thirdly, the contrast image will not update during
detection. The experiment shows that our method can receive
a better accuracy than others.

The organization of this paper is scheduled as follows. The
significance of our work and several successful medical image
detections are arranged in the BIntroduction^ section.
Convolutional neural network for detection and training de-
tails are introduced in the BMethods^ section. Experiment
results and evaluations tested on MRI dataset are arranged in
the BExperimental Results^ section. Finally, the discussion
and conclusion are proposed in the BDiscussion^ and
BConclusion^ sections.

Methods

A similarity function g(z, x) is proposed to compute the simi-
larity between a contrast image z and a search image x. If two

images describe the same object, the function will return a
high value, a low value otherwise. The z-crop out of a contrast
image is labeled with a bounding box. The search image is one
of the rest images where we search for L1–S1. The x-crop1 is
centered at the previous target position. As shown in Fig. 1,
we detect twice in the experiment, one for S1, another for L1–
L5. In the first detection, an x-crop1 from a search image and
the z-crop1 with a labeled S1 are inputted into the
convolutional network. Another x-crop2 including S1 will
generate immediately after S1 is found. In the second detec-
tion, a larger x-crop2 and a z-crop2 with another label are
inputted to the same network to search for L1–L5. Figure 1
demonstrates the flow of lumbar detection of L1–S1. The
contrast image with two bounding boxes is provided before-
hand, acting as a reference for vertebra detection. Six detected
vertebras are marked with rectangles. The x-crop1 and x-
crop2 are 255 × 255 and 431 × 431 pixels. Z-crops both are
127 × 127 pixels. The specific layer’s settings and training
details of the detection network will be discussed in the
BConvolutional Neural Architecture^ section.

Convolutional Neural Architecture

Model: Framework Design

We both input the contrast image z and a search region x to the
convolutional neural network, then obtain a score map which
indicates the similarities between the corresponding sub-win-
dows. To be more specific, Fig. 2 shows a straightforward
relationship between a contrast image z and a search region
x. The search region centered at the previous target is a rough
and large region. The z-crop is cut out from the first frame
with an annotated object position. The x-crop centers at the
previous object position, combined with three scales. The z-
crop is compared with three scaled x-crops. Since the object
will not deviate too much between frames, we believe the
object is still in the larger x-crop so we can find it. After
inputting three same z-crops and three scaled x-crops into

Fig. 1 The whole framework of
lumbar detection. The image with
two bounding boxes is the
contrast image provided in
advance. Instructions in red
indicate six target vertebras to be
detected
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the network, we will receive three responsemap1with 6 × 6 ×
96 pixels and three response map2 with 22 × 22 × 96 pixels.
The smaller response map acts as a convolutional kernel to
convolve the larger ones. The symbol * represents a convolu-
tion function between two response maps, affecting on the
size of the output map. A red pixel in the real-value map is
the maximum value position of three maps, which indicates
the object position. The green pixel in the center is the previ-
ous object position. The experiment demonstrates that ampli-
fying the real-value map with bicubic interpolation leads to a
more accurate object position. The final score map is interpo-
lated from 17 × 17 to 272 × 272. According to the red pixel
position in the final score map, we can calculate the target
position in the search region. Layer settings for the detection
convolutional neural network are provided in Fig. 3, including
batch normalization layers and ReLU non-linear layers.

Our network has five convolutional layers and two max-
pooling layers. Each convolutional layer is followed by a
batch normalization layer and a non-linear activation layer
excluding the final layer, conv5. The total stride of our net-
work is 8, which will be used to compute the final target
position in search images.

Convolutional layers extract high-level feature maps

through parameter w. Assuming that a lð Þ
i represents the output

of cell i in layer l, and z lð Þ
i represents the weighted sum of cell i

in layer l, including bias cell, for the given weight parameters
wi and biases bi, the function of convolutional layers can be
written as:

z lþ1ð Þ
i ¼ ∑

i

j¼1
w lð Þ
ij x j þ bll ð1Þ

a lð Þ
i ¼ f z lð Þ

i

� �
ð2Þ

where function f means a non-linear activation function. We
use rectified linear units (ReLU) here in activation layers,
which can be expressed as the following formula:

f zð Þ ¼ max 0; zð Þ ð3Þ

It extremely decreases the number of parameters in the
network and increases the running speed. Compared with oth-
er non-linear activation functions such as sigmoid and tanh
function, ReLU function requires lower calculation cost and
less training time. Max-pooling layers down-sample the size
of feature maps by a 3 × 3 neighboring window, which effec-
tively avoids overfitting. More specific parameters and feature
map sizes are listed in Table 1. The size of the convolutional
kernels resembles that of Krizhevsky et al. [17]. Channel and

Fig. 2 Convolutional neural
network for detection. The z-crop
is compared with 3 scaled x-
crops. The outputs are 3 final
score maps, where we search for
the highest similarity value. The
maximum pixel in red in the final
score map indicates the most
possible object position. The
green pixel is the center of a
search region

Fig. 3 A branch of the siamese
convolutional neural network.
The construction shows kernel
parameters of each layer, which is
viewed in different colors
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map represent the number of output and input feature maps in
convolutional layers.

Training Dataset

We train the network with the ImageNet Video dataset from
the 2015 edition of the ImageNet Large Scale Visual
Recognition Challenge (ILSVRC) [18]. All images were care-
fully annotated with a bounding box. In this paper, we ignore
the object classes. The dataset contains 4417 videos of 30
categories, including millions of labeled frames. The massive
size dataset can be successfully applied to object detection via
deep learning.

Model: Train

Considering that MRI lumbar images are grayscale images, we
extract the G channel of each training image. This change hap-
pens before the image inputting. The z-crop and x-crops are
127 × 127 and 255 × 255 pixels. The object position in the z-
crop is depicted in advance. A real-value map will be obtained
after a z-crop and an x-crop are inputted into the network. The
ground truth labels of positive and negative pairs are described
as + 1 and − 1. We employ the logistic regression loss to eval-
uate positive and negative pairs during training:

l y; vð Þ ¼ log 1þ exp −yvð Þð Þ ð4Þ
where y ∈ {+1, −1} is a true label of training pairs and v is a
valued score. This will generate a score map v : M→ℝ. The
logistic regression loss can be written as:

L y; vð Þ ¼ 1

Mj j ∑
u∈M

l yu; vuð Þ ð5Þ

To optimize the parametersw in the convolutional network,
we adopt stochastic gradient descent (SGD) to the problem:

argminθ E x;y;zð ÞL y; f z; x;wð Þð Þ ð6Þ

In detail, we set z-crops at 127 × 127 and x-crop at 255 ×
255 pixels. Target sizes in the original annotations are non-
uniform. Thus, the scale of targets in video frames needs to be
normalized. On this account, training crops need to be fixed
with a scale sz and contextual margin pz. If the size of a
bounding box is (w, h) and the fixed area is 127 × 127, we
can give the equation:

sz wþ 2pz
� �� sz hþ 2pz

� � ¼ 1272 ð7Þ

where pz is a quarter of the perimeter of a bounding box p-
z = (w + h)/4. We can also write it as

sz ¼ 127=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wþ wþ hð Þ=2ð Þ � hþ wþ hð Þ=2ð Þ

p
ð8Þ

We can get a z-crop with a fixed size according to sz and pz.
Considering the size of an x-crop is about twice bigger than

that of a z-crop, we need to add more contextual margin
px to resize it. The size x can be computed as the following
expressions:

z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wþ wþ hð Þ=2ð Þ � hþ wþ hð Þ=2ð Þ

p
ð9Þ

px ¼ 0:5� 255−127ð Þ=sz ð10Þ
x ¼ zþ 2� px ð11Þ

After adding three scales 1.0375{−1, 0, 1} to the G channel in
a search region, we can get three scaled x-crops. The z-crop is
compared with three x-crops.

Model: Test

In our network, the z-crop will not update after finding
a target position. Other image characteristics are not
extracted in this study, such as histogram and optical
flow. We only compare a contrast image with a larger
search image to find the target position. The real-value
map is a similarity metric of 17 × 17 pixels. As shown
in Fig. 2, the real-value map is relatively coarse and
vague. We found that the score map leads to a more
accurate position when the similarity metric is amplified
16 times with bicubic interpolation to 272 × 272. The
maximum value of three score maps indicates the object
position. Assuming that the coordinates of the maximum

value are T(rmax, cmax), we can give the distance TC
�!

from the maximum value position to the score map
center C.

TC
�! ¼ rmax; cmaxð Þ− 272; 272ð Þ=2 ð12Þ

The search region and x-crop are centered at the previous
object position. According to the total network stride 8 men-
tioned in the BModel: Framework^ section and the interpola-
tion size 16, we can calculate the relative position

Table 1 Architecture of the convolutional neural network except for
batch normalization layers and ReLU non-linear layers

Feature map size

Layer Support Stride Chan*Map For z-crop For x-crop

127 × 127 × 1 255 × 255 × 1

Conv1 11 × 11 2 48 × 1 59 × 59 × 48 123 × 123 × 48

Pool1 3 × 3 2 29 × 29 × 48 61 × 61 × 48

Conv2 5 × 5 1 128 × 48 25 × 25 × 128 57 × 57 × 128

Pool2 3 × 3 2 12 × 12 × 128 28 × 28 × 128

Conv3 3 × 3 1 96 × 128 10 × 10 × 96 26 × 26 × 96

Conv4 3 × 3 1 96 × 96 8 × 8 × 96 24 × 24 × 96

Conv5 3 × 3 1 64 × 96 6 × 6 × 64 22 × 22 × 64
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displacement OT
�!

from the previous target position to the cur-
rent position. It can be written as: OT

�! ¼ Oþ TC
�!

=16� 8 ð13Þ

Fig. 4 Lumbar detection results based on deep learning. Each lumbar
vertebra is outlined with bounding boxes in a–h together with their
classes. Successful locations are demonstrated in the first four examples

a–g, failed results in the h and k. i–k show detection and labeled positions
in MRI regions
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where O indicates the previous object position, also the center
position of the x-crop. Finally, we can describe the current

object position based on OT
�!

in the search region.

Experimental Results

MRI Dataset

In this section, our MRI dataset contains 1318 healthy and
unhealthy samples, about 2739 images, ranging from different
age groups. The dataset comes from the Department of
Orthopedics Traumatology of Hong Kong University. We
use the sagittal lumbar spine acquired through the T2-
weighted sequence slices.

Experimental Setup

As mentioned above, x-crops are scaled to deal with dimension
change in lumbar spines. We take advantages of the detection
network twice here. S1 and another vertebra in the contrast
image need to be labeled with rectangles. First, we detect S1
which is special and easy to be found. The z-crop1 with a
labeled S1 are 127 × 127 pixels and the x-crop1 are 255 × 255
pixels. Immediately, after the S1 is found in the first detection,
the x-crop2 containing several vertebras will be extracted. The
size of 255 × 255 pixels is too small to detect L1–L5 in the
network. Thus, the x-crop2 are 431 × 431 pixels. The z-crop2
with a labeled L3 still are 127 × 127 pixels. We will finally
obtain a real-value map with the size of 39 × 39 pixels.

The second score map is resized to 624 × 624 by bicubic
interpolation, where we can find five maximum values.
According to positions of a maximum value in the first detec-
tion and five maximum values in the second detection, we can
calculate positions of L1–S1 with Eq. 13. It should be noted
that our detection network is to compare the similarity

between a search image and a contrast image. If we just clear
the maximum point in the second time, the next maximum
value is probably beside it, leading to a wrong position.
Several high-value points around the maximum value are pos-
sible to exceed that of the rest object positions. The foresee-
able result is that two bounding boxes will find the same
position. Therefore, a small rectangle centered at the maxi-
mum value need to be cleared once finding a maximum value.
Only in this way can we find the rest maximum values around
the target position found.

Results and Evaluation

Several detection and identification results are exhibited in
Fig. 4. Six vertebra detection results are presented with
bounding boxes in different colors. From top to end, they
are called L1, L2, L3, L4, L5, and S1. Successful detections
are presented in Fig. 4a–g, while failed ones are in Fig. 4h and
k. Figure 4i–k shows corresponding positions of detection
results and manually annotated centers. Detection positions
in green Bo^ are the centers of bounding boxes. Manual an-
notations in yellow Bx^ are the annotated centers of vertebras
together with spine canals. The result in Fig. 4k misses L5 and
finds an extra vertebra.

A threshold is set to compare detection positions with la-
beled positions. Regions beyond the threshold are negative. If
the absolute distance of those two positions is below the thresh-
old, then it is a true positive (TP) sample, otherwise a false
positive (FP) or false negative (FN) sample. Our detection re-
sults are evaluated with every location accuracy of L1–S1 in
Table 2. False detection results are associated with wrong L5 or
S1 position to a large degree. General evaluation indexes and
comparative results are provided in Table 3. We define preci-
sion, specificity, sensitivity, and accuracy as follows:

precision ¼ TP= TP þ FPð Þ ð14Þ
specificity ¼ TN= FP þ TNð Þ ð15Þ
sensitivity ¼ TP= TP þ FNð Þ ð16Þ
accuracy ¼ TP þ TNð Þ= TP þ TN þ FP þ FNð Þ ð17Þ

Error mean and standard deviation (STD) in Table 3 are
calculated through the absolute distance of corresponding

Table 3 Comparative results
reported by other methods Detection (%) Precision Specificity Sensitivity Accuracy Mean STD

Ours 98.9 94.1 98.9 98.6 3.4 7.5

Suzaini [20] 94.4 95.0 97.2 96.0 18.2 11.4

Cai [19] 92.1 93.8 98.1

Kim [9] 97.6 7.36 8.29

Forsberg [14] 99.6 99.1 97.0

Table 2 Detection accuracy of the specific vertebra. Our method has a
better accuracy in most vertebras

Accuracy (%) L1 L2 L3 L4 L5 S1

Ours 99.0 99.2 99.0 98.9 98.5 98.6

Cai [19] 98.3 95.1 98.2 97.4 98.4 99.1
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annotation and detection position pairs. Other reported results
in Table 2 and Table 3 are tested on their dataset, while their
evaluation indexes have a difference. Compared with other
results, our method receives a better accuracy in most verte-
bras, and a high sensitivity (98.9%) and accuracy (98.6%).
Our error mean and STD are much smaller than other
methods. Although our network is not trained on annotated
lumbar spine images, detection results in this paper show a
better performance than some other methods.

In the experiment, we have 2739 lumbar MRI samples in
total, 2701 samples detected correctly and 38 samples detect-
ed mistakenly. We receive a lower precision and sensitivity
than Forsberg [14] in Table 3. However, Forsberg [14] tested
their network on about 700 MRI images, far less than the
number of ours. Positive results are successfully located and
classified on six vertebral bodies. Most failed results are relat-
ed to either a wrong S1 detection or a missed vertebra in MRI
images. We identify lumbar spines according to bounding
boxes. In some conditions, two bounding boxes will overlap
partly on a vertebra. Hence, a displacement rectification is
posed to it. However, mistaken recognition of S1 will result
in a subjective failure, for example, if L5 or S2 is erroneously
identified as S1.

Discussion

A novel detection method is presented in this paper based on
deep learning. Firstly, the detection network is trained on an
acknowledged video dataset instead of labeled MRI images.
Secondly, we fine-tune the parameters when the network is
tested on theMRI dataset. For example, we amplify the size of
input images as well as the final score map. The similarity
function will output six score values, according to which we
can locate lumbar positions. Thirdly, the object feature re-
mains unchanged in the first image. There is only one contrast
image with two bounding boxes in vertebra detection. It guar-
antees that our method can run at a high speed.

Different from most detection methods of learning to dis-
tinguish between vertebras, our network learns to compare the
similarity between vertebras. The characteristic merely con-
cerned about is target position. The detection result is com-
pared with that of Suzaini [20], Cai et al. [19], Kim [9], and
Forsberg et al. [14]. They trained and tested their
convolutional networks with their datasets. However, there
exists no recognized annotated lumbar dataset. Forsberg
et al. [14] trained on MRI dataset annotated by picture archiv-
ing and communication system (PACS). Cai et al. [19] trained
with several hundreds of images. They distinguished vertebras
based on annotations. Their performance is somewhat restrict-
ed by label precision. Our method reaches a quite or even
better accuracy and performs a better precision. Most methods
detect a vertebral body with a bounding box. In our method,

both vertebral body and spine canal are included in the
bounding box. Several lumbar diseases like lumbar interver-
tebral disc result from the compression of the spinal canal.
Further image analysis with one or several vertebras can build
on the detection result. However, our method cannot locate a
quite precise position. We only can know where it is and what
it is, rather than a specific size. In total, an accuracy of 98.6%
is received from the detection network.

Conclusion

In this paper, we realize the possibility of lumbar detection
based on the convolutional neural work. A similarity function
is successfully applied to the detection task. Deep learning
network in our work extracts lumbar spines instantly and ef-
ficiently. The network is successfully tested on more than two
thousand patient cases. We can identify vertebras with stable
locations and classifications in MRI slices. This method can
assist clinicians with repetitive and basic work.
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