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Abstract
Automatic segmentation of the retinal vasculature and the optic disc is a crucial task for accurate geometric analysis and
reliable automated diagnosis. In recent years, Convolutional Neural Networks (CNN) have shown outstanding performance
compared to the conventional approaches in the segmentation tasks. In this paper, we experimentally measure the
performance gain for Generative Adversarial Networks (GAN) framework when applied to the segmentation tasks. We show
that GAN achieves statistically significant improvement in area under the receiver operating characteristic (AU-ROC) and
area under the precision and recall curve (AU-PR) on two public datasets (DRIVE, STARE) by segmenting fine vessels.
Also, we found a model that surpassed the current state-of-the-art method by 0.2−1.0% in AU-ROC and 0.8−1.2% in AU-
PR and 0.5−0.7% in dice coefficient. In contrast, significant improvements were not observed in the optic disc segmentation
task on DRIONS-DB, RIM-ONE (r3) and Drishti-GS datasets in AU-ROC and AU-PR.

Keywords Retinal vessel segmentation · Optic disc segmentation · Convolutional neural network ·
Generative adversarial networks

Abbreviations
Convolutional Neural Networks (CNN)
Generative Adversarial Networks (GAN)

Introduction

Analysis of anatomical structures in fundoscopic images
such as retinal vessels and the optic disc provides rich
information about the condition of the eyes and even
helps estimate general health status. From abnormality in
vascular structures, ophthalmologists can detect early signs
of increased systemic vascular burden from hypertension

and diabetes mellitus as well as vision threatening retinal
vascular diseases such as retinal vein occlusion and retinal
artery occlusion. Also, evaluation of the optic disc is
essential for diagnosing glaucoma and for monitoring
patients with glaucoma.

Specifically, the geometric parameters for the retinal
vascular structure, such as diameter, curvature tortuosity,
and branching angles, are reported to be highly correlated
with coronary artery disease [1] and diabetes mellitus [2],
and even cognitive ability [3, 4], dementia [5], and body
mass [6] in older population. Furthermore, it is widely
accepted that the diameters of the retinal vessel can even
predict the risk of cardiovascular diseases in the future [7, 8].

In general, the geometric parameters are estimated with
computer software to guarantee systemic and coherent
estimations. Computer software such as VAMPIRE [9] and
Singapore “I” Vessel Assessment automatically segments
retinal vessels and the optic disc from fundoscopic images
from which various measures regarding vascular structure
are computed. Needless to say, the precise segmentation,
as a preliminary step, is imperative to accurate and reliable
estimations of the geometric parameters.

Furthermore, the precise localization of retinal landmarks
including retinal vessels and the optic disc is an essential
prerequisite step for automatic diagnosis systems for
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fundoscopic images. For instance, when automatically
detecting anomalies in the retinal vasculature, reliable
localization of retinal vasculature should precede the
process of decision making for reliable results so that the
decision should only be made based on vascular structures.

For many years, automatic segmentation methods have
been extensively developed. Many early attempts tackled
the segmentation problems from a signal processing
perspective based on empirical evidence about visual
characteristics for each structure. In the case of vessel
segmentation, many approaches are designed to detect lines
in image patches from the observation that vessels stretch
linearly in small scale [10–15]. Even though these methods
tend to be intuitive to humans, however, they would not
perform as expected when heuristics do not apply. Also,
the fact that the optic disc is brighter than the surroundings
is well exploited in heuristic methods [16, 17]; however,
the performance was not reliable. With the advances in
machine learning, more improved results were obtained
with extracted features using non-linear classifiers such as
SVM [18], Bayesian classifier [19] and boosted decision
trees [20]. Still, the performance was not commensurate to
human experts.

In recent years, Convolutional Neural Networks (CNN)
have shown outstanding performance in various computer
vision tasks including classification [21–23], detection
[24, 25], and segmentation [26–28]. Several studies have
already demonstrated that CNN could achieve the unprece-
dented performance in segmenting retinal vessels [29–32]
and the optic discs [29], even surpassing the ability of
human observers in several publicly available datasets.
However, segmented vessels with CNN are rather blurry
around minuscule and faint branches where distinction is
unclear between vessel walls and retinal background. This

is because convolution operations basically respond to local
structures and the conventional objective functions only
rely on pixel-wise comparison between the output and gold
standard. It would be desirable if natural constraints on
anatomical structures are actively accommodated in to gain
more realistic segmentations.

In fact, the segmentation tasks can be considered as
an image translation task where a probability map for
segmentation is generated from an input fundoscopic
image. If the outputs are constrained to resemble the
human observer’s annotation, more realistic and accurate
probability maps can be obtained. In this paper, we
experiment the effect of GAN framework when applied
to the segmentation of retinal vasculature and the optic
disc. Experimental results suggest that GAN helps improve
the performance in vessel segmentation by segmenting
fine vessels. In contrast, significant improvement was not
observed in segmenting the optic disc. We suspect that the
optic disc is a noticeable blob that CNN can readily segment
with high precision.

Methods

Overall Framework

Generative Adversarial Networks (GAN) are a framework
that enables us to create and utilize realistic outputs as
the gold standard [33]. GAN consists of two sub-networks:
a discriminator and a generator. While the discriminator
tries to distinguish the gold standard from outputs from
the generator, the generator tries to generate outputs which
are as realistic as possible so that the discriminator cannot
differentiate from the gold standard.

Fig. 1 RetinaGAN framework in the case of vessel segmentation. A
fundus image constitutes a real pair with a manual vessel segmenta-
tion, and a fake pair with a vessel segmentation generated from the

generator. A discriminator is trained to output a probability map for the
vessel segmentation being real. Varying sizes of the probability map
were experimented from pixel level to image level
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In principle, our framework is similar to conditional-
GAN [34], which is suitable for segmentation tasks1. In
our case, the generator is given a fundoscopic image and
generates probability maps of retinal vessels and the optic
disc that have the same size as the input image. Values
in the probability maps range from 0 to 1, indicating the
probability of being a pixel of an anatomical structure. Then,
the discriminator takes a pair of a fundoscopic image and
the probability map and determines whether the probability
map is the gold standard from the human annotator or
output of the generator. The objective of the generator is
to output a probability map that the discriminator cannot
discern from the gold standard. In such a way, the generator
is constrained to produce more realistic outputs. The overall
framework, which we call RetinaGAN, is depicted in Fig. 1
for the case of vessel segmentation. As the generator
network, we utilized U-Net style network whose details are
provided in Appendix A. For the discriminator network,
4 networks with different receptive fields for the decision
were experimented (Pixel GAN, Patch GAN-1, Patch GAN-
2, Image GAN). Details of discriminators are described
in Appendix B. We applied the identical networks to the
optic disc segmentation. Also, detailed explanation about
objective function for our GAN framework is described in
Appendix C.

Datasets

Vessel Segmentation

Our methods were evaluated on 2 public datasets, namely
DRIVE [14] and STARE [35]. DRIVE dataset consists of
fundoscopic images with the corresponding FOV masks
and manual segmentation of the vessels. A total of 40 sets
of images are split into 20/20 sets for training and test
sets. In the training set, a single manual segmentation was
provided for each fundoscopic image. In the test set, each
fundoscopic image was given two manual segmentation
annotated by two independent human observers who were
trained by an experienced ophthalmologist. For training
and testing, we regarded the first annotator’s vessel
segmentation as the gold standard and compared the results
with the segmentation of the second annotator.

The STARE dataset includes 20 sets of fundoscopic
images and vessel segmentation from two independent
annotators, Adam Hoover (AH) and Valentina Kouznetsova
(VK). We regarded the annotation of AH as the gold
standard and used that of VK as a reference point for a

1Our source code is available at https://bitbucket.org/woalsdnd/
retinagan

human observer. Since masks for Field of View (FOV) are
not given in the STARE dataset, we generated them. In our
experiments, we retained the first 10 images for training and
tested on the rest as was done in the previous literature [29]
to compare the performance.

Optic Disc Segmentation

Our methods were tested on 3 datasets - DRIONS-DB [36],
RIM-ONE [37] and Drishti-GS [38]. DRIONS-DB dataset
consists of 110 sets of fundoscopic images and two manual
annotations of the optic disc. Annotations were given
by coordinates of vertices for polygons in an orderly
manner. In the experiment, the first 100 images were used
as training/validation sets and the last 10 images were
evaluated for testing the models. The results in the test set
were compared with DRIU [29].

RIM-ONE (r3) dataset contains 159 fundoscopic images
and two manual segmentations for each fundoscopic image.
Images were cropped and magnified around the optic disc
as the dataset was dedicated to the segmentation of the optic
disc and optic cup. We split the data into 145/14 for training
and test sets respectively and the results in the test set were
compared with DRIU [29].

Drishti-GS dataset consists of 101 macula-centered
fundus images which are divided into 50 training and 51
test images. High-resolutional images with a width of 2896
and height of 1944 were collected in Indian hospital and
annotated by Indian experts. A mask of the optic disc was
retrieved by averaging masks of 4 ophthalmologists with
varying experience (3, 5, 9, 20 years).

Experimental Design

In our experiments, we evaluated the performance of GAN
with 4 discriminators and a U-Net architecture after training
from the scratch. Throughout all experiments, we main-
tained the same experimental settings, including utilization
of uniform hyper-parameters during training and application
of identical procedures for image preprocessing, to elimi-
nate external variability that can potentially confound the
performance evaluation. Details of experimental settings are
described in Appendix D.

As metric, area under the receiver operating characteris-
tic (AU-ROC) and area under the precision and recall curve
(AU-PR) were compared between the models. The curves
were drawn by shifting the threshold for vessels and the
optic disc from 0 to 1. In order to measure statistical signif-
icance in the improvement of AU-ROC and AU-PR, we ran
experiments 5 times on the same setting and estimated the
p-value via Kolmogorov-Smirnov test which was widely

https://bitbucket.org/woalsdnd/retinagan
https://bitbucket.org/woalsdnd/retinagan
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Table 1 Comparison of models with different discriminators on two datasets with respect to area under the receiver operating characteristic
(AU-ROC) and area under the precision and recall curve (AU-PR)

Model DRIVE STARE

AU-ROC AU-PR AU-ROC AU-PR

U-Net (No discriminator) 0.9671 ± 0.0028 0.8898 ± 0.0016 0.9736 ± 0.0038 0.9085 ± 0.0028

RetinaGAN Pixel (1 × 1) 0.9723 ± 0.0005 0.8927 ± 0.0009 0.9813 ± 0.0016 0.9142 ± 0.0021

Patch-1 (8 × 8) 0.9730 ± 0.0004 0.8951 ± 0.0008 0.9804 ± 0.0009 0.9123 ± 0.0019

Patch-2 (64 × 64) 0.9766 ± 0.0029 0.9045 ± 0.0075 0.9832 ± 0.0019 0.9194 ± 0.0011

Image (640 × 640) 0.9800±0.0010 0.9134±0.0011 0.9858±0.0016 0.9197±0.0045

Digits are rounded to the 4th decimal point and shown in the form of μ ± σ where σ is the empirical standard deviation. Receptive Field size of
the discriminator is shown in the parenthesis

used for testing whether two distributions differ with a small
number of samples. We fixed the training set and test set to
exclude any external perturbations induced by the shuffling
of datasets.

We compared the best result of our models with other
techniques regarding AU-ROC, AU-PR and dice coefficient
or F1 measure. To compare dice coefficient, best operating
point that yielded highest value was selected for all methods
as in the previous literature [29]. For fair measurement, only
pixels inside the Field Of View (FOV) were counted when
computing the measures.

Results

Vessel Segmentation

Statistics of AU-ROC and AU-PR are shown in Table 1
for different GAN architectures with distinct discrimina-
tors. U-Net, which is not equipped with a discriminator,

demonstrated inferior performance to other GAN architec-
tures with substantial confidence regarding both AU-ROC
and AU-PR on both datasets (p value< 0.05). This suggests
that GAN meaningfully contributes to the improvement of
segmentation quality. Also, it is noticeable that a deeper and
more complex discriminator yields better measures. Image
GAN outperformed pixel GAN and patch GAN-1 statisti-
cally significantly (p value< 0.05) in both measures on
both datasets. Image GAN surpassed patch GAN-2 in both
measures only on DRIVE dataset (p value< 0.05) and
no statistically significant improvement was observed on
STARE dataset. This observation is consistent to the claim
that a competent discriminator is key to successful training
with GAN [33, 39].

As obvious in Table 1, AU-ROC and AU-PR of Image
GAN do not seem overwhelmingly higher than those of U-
Net. However, the gap in performance measures between
U-Net architecture and GAN architectures mainly comes
from segmentation of fine vessels. Exemplar comparison is
shown in Fig. 2 between U-Net and Image GAN. As shown

Fig. 2 Fundus image (a, e), gold standard (b, f), output of U-Net (c, g), and output of RetinaGAN-Image (d, h). Central area of images at the top
row is zoomed up at the bottom row
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in the figure, fine vessels are more preserved in the result
of Image GAN than that of U-Net. Basically, detecting thin
vessels is difficult unlike thick main branches since colors
differ merely around them. Under such constraints, U-Net is
only penalized for missing fine vessels by segmentation loss
which is minuscule due to the small number of pixels in fine
vessels. However, GAN is also penalized for the tendency to
miss fine vessels included in the gold standard. Therefore,
GAN architecture captures fine vessels better than U-Net.

Figure 3 shows ROC and PR curves for RetinaGAN
(Image) and other existing methods (DRIU [29], N4-
Fields [40], HED [31], Kernel Boost [41], CRFs [42], and
Wavelets [19]) around an operating regime with high F1
score. As shown in the figure, Image GAN draws ROC and
PR curves above other methods in the operating regime on
both datasets. The margin between curves of Image GAN

and DRIU seems inconspicuous; however, the difference
is stark in probability maps. This is because AUROC and
AUPR can still be high even though probability values are
unrealistic.

Figure 4 compares vessel images of the gold standard
with results of current best method (DRIU) and our
method. Probability maps are converted into binary masks
by Otsu threshold [43] and original fundoscopic images
are multiplied element-wise with the binary masks. As
shown in the figure, vessels extracted by our method are
more concordant to the gold standard. DRIU tends to over-
segment fine vessels and boundaries between vessels and
the background.

Also, main trunks are over-segmented as well preventing
precise measurement of vascular caliber which is crucial
for quantitative studies in ophthalmology. Therefore, our

Fig. 3 Receiver Operating Characteristic (ROC) curve and Precision and Recall (PR) curve for various methods on the DRIVE dataset (top) and
STARE dataset (bottom). Red dots mark performance of the human annotator in individual images
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Fig. 4 (From the leftmost
column to the rightmost
column) fundoscopic images,
gold standard, current
state-of-the-art technique
(DRIU [29]) and RetinaGAN on
DRIVE (top half) and STARE
(bottom half) dataset

method expresses the probability of vessels in more sensible
ways than DRIU and is more suitable to tasks that require
probability maps to describe uncertainty.

Table 2 summarizes AU-ROC, AU-PR and dice coeffi-
cient. We retrieved output images of other methods from
previously published literature [29] and computed measures

from the images. Our method demonstrated superior AU-
ROC, AU-PR and dice coefficient to any other existing
methods. Also, our method surpassed the human annotator’s
ability on both DRIVE and STARE datasets.

Figure 5 shows results of RetinaGAN with the best
and worst dice coefficients. The threshold was chosen to

Table 2 Comparison of different methods on two datasets with respect to area under the receiver operating characteristic (AU-ROC), area under
the precision and recall curve (AU-PR) and dice coefficient

Method DRIVE STARE

AU-ROC AU-PR Dice AU-ROC AU-PR Dice

CRF [42] − − 0.7797 − − −
FC-CRF [44] − − 0.7858 − − 0.7902

Kernel Boost [41] 0.9307 0.8464 0.7795 − − −
HED [31] 0.9696 0.8773 0.7935 0.9764 0.8888 0.8057

Wavelets [19] 0.9436 0.8149 0.7600 0.9694 0.8433 0.7756

N4-Fields [40] 0.9686 0.8851 0.8018 − − −
DRIU [29] 0.9793 0.9064 0.8207 0.9772 0.9101 0.8323

Human − − 0.7889 − − 0.7605

U-Net 0.9718 0.8904 0.8039 0.9759 0.9093 0.8307

RetinaGAN (Image) 0.9810 0.9145 0.8275 0.9873 0.9226 0.8378

Digits are rounded to 4th decimal point
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Fig. 5 Fundoscopic images and
segmentation results with best
dice coefficient (2 columns on
the left) and worst dice
coefficient (2 columns on the
right) on DRIVE (top half ) and
STARE (bottom half ) dataset.
Green region represents correct
segmentation while red and blue
denote false negative and false
positive respectively

maximize the average dice coefficient for all images. In
general, thick and conspicuous trunks were not missed.
When thick trunks were missed, the trunks were hard to
discern from the retinal wall in the fundoscopic images.
On the other hand, extremely thin vessels that span only
1 pixel in width are often missed (red) and sometimes
additionally detected (blue). Drawing extremely thin vessels
demands understanding of vasculatures as invisible vessels

need to be extrapolated according to surrounding vascular
structures based on anatomical knowledge that vessels are
connected. We suspect that our model does not possess such
a reasoning processes and ended up missing them. Other
techniques would be necessary to reduce false negatives.
When it comes to false positives, on the other hand, it is
desirable to detect those that the human annotator may miss
due to intra-observer variance. Results suggest that visible

Table 3 Comparison of different discriminators with respect to area under the receiver operating characteristic (AU-ROC) and area under the
precision and recall curve (AU-PR) on DRIONS-DB, RIM-ONE (r3) and Drishti-GS

Method DRIONS-DB RIM-ONE Drishti-GS

AU-ROC AU-PR AU-ROC AU-PR AU-ROC AU-PR

U-Net (No discriminator) 0.9996 ± 0.0001 0.9886 ± 0.0010 0.9995 ± 0.0001 0.9913 ± 0.0020 0.9997 ± 0.0000 0.9957 ± 0.0017

RetinaGAN Pixel (1 × 1) 0.9995 ± 0.0001 0.9876 ± 0.0029 0.9995 ± 0.0000 0.9915 ± 0.0007 0.9990 ± 0.0012 0.9929 ± 0.0028

Patch-1 (8 × 8) 0.9996 ± 0.0001 0.9880 ± 0.0015 0.9995 ± 0.0001 0.9910 ± 0.0011 0.9991 ± 0.0010 0.9937 ± 0.0029

Patch-2 (64 × 64) 0.9995 ± 0.0001 0.9868 ± 0.0018 0.9995 ± 0.0000 0.9915 ± 0.0002 0.9994 ± 0.0006 0.9891 ± 0.0095

Image (640 × 640) 0.9990 ± 0.0004 0.9769 ± 0.0075 0.9995 ± 0.0001 0.9909 ± 0.0013 0.9989 ± 0.0004 0.9719 ± 0.0112

Digits are rounded to the 4th decimal point and shown in the format of μ ± σ where σ is the empirical standard deviation. Receptive Field size of
the discriminator is shown in the parenthesis
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Table 4 Comparison of U-Net, DRIU and a human annotator with respect to boundary error and dice coefficient on DRIONS-DB, RIM-ONE (r3)
and Drishti-GS

Method DRIONS-DB RIM-ONE Drishti-GS

Boundary Error Dice Boundary Error Dice

Human 1.6111 ± 0.5875 0.9636 3.5530 ± 1.511 0.9453 − −
DRIU 1.2933 ± 0.3017 0.9672 2.3321 ± 1.1483 0.9548 − −
U-Net 1.1466 ± 0.3351 0.9688 2.3443 ± 0.9479 0.9562 1.4348 ± 0.6048 0.9678

RetinaGAN (Pixel) 1.2461 ± 0.3930 0.9685 2.2290 ± 1.2608 0.9546 1.3961 ± 0.7257 0.9674

Digits are rounded to the 4th decimal point and shown in the format of μ ± σ where σ is empirical standard deviation

vessels are still missed while more invisible vessels are
segmented by the annotator.

Optic Disc Segmentation

Statistics of AU-ROC and AU-PR are shown in Table 3
for various GAN architectures with different discrimina-
tors. It turned out that there were no statistically significant
improvements in AU-ROC and AU-PR with GAN archi-
tectures on both datasets (p value> 0.2 for all pairs). In
fact, U-Net already achieves very high AU-ROC and AU-
PR. Unlike the case of vessels, segmentation of the optic
discs can be reliably done without GAN architecture since
the optic disc is a salient blob-like structure that U-Net is
especially good at segmenting.

In Table 4, performance of the RetinaGAN (Pixel)
is compared with U-Net, the current state-of-the-art
method (DRIU [29]) and the 2nd annotator regarding dice
coefficient and boundary error. Boundary error, or average
distance between boundaries, is formally described as

1

|Bout |
∑

o∈Bout

min
g∈Bgt

‖o − g‖2 (1)

where Bout and Bgt are sets of pixels constituting the
boundary of the output and ground truth. Operating point
with best F1 score is found to compare with results of the
current state-of-the-art method (DRIU) [29]. As shown in
the table, all CNN models (DRIU, U-Net and RetinaGAN)
showed similar performance on both datasets which is
comparable to or slightly better than an independent human

Fig. 6 Original fundoscopic
images and detected boundary
of the optic disc with smallest
boundary error (2 columns on
the left) and largest boundary
error (2 columns on the right) on
DRIONS-DB (top half ) and
RIM-ONE (r3) (bottom half )
dataset. Curves are color-coded
by type of annotation (Green :
Ground Truth, Yellow : Human,
Blue : U-Net)
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expert. Superiority of one model over others could not be
clearly seen. Dice coefficients differ only in the 4th decimal
place, the quantity of which is interpreted as unnoticeable
difference to human eyes. Also, boundary errors do not
significantly vary between the models.

Figure 6 shows results of a U-Net with best and worst
boundary error. Overall, U-Net robustly segments the optic
disc. Worst cases on RIM-ONE (r3) dataset involve a
tumultuous boundary that humans would not draw. This
is mainly because humans would draw disc-like shapes
even when the contour is rough. By contrast, U-Net solely
depends on color information to detect the optic disc which
results in a contour that is not smooth. Even though it seems
that GAN framework can forge smoother segmentation, we
could not witness any substantial differences in the worst
cases. We suspect that the ability to draw smooth contours
in the absence of clear visual cues is unattainable with
GAN framework as is the case for segmentation of invisible
vessels that require extrapolation.

Discussion

In this study, we introduced Generative Adversarial
Networks (GAN) framework [33] to segmentation of retinal
vessels and the optic disc to leverage the capability
of Convolutional Neural Networks (CNN). The rationale
behind our approach is that the GAN loss that penalizes
dissimilarity from the gold standard would encourage the
segmentation results to be more realistic and thus, improve
the segmentation quality [33, 34, 39].

In the experiments, the GAN framework was formulated
with a U-Net [27] style generator and several discriminators
with different discriminatory capabilities. Statistical signif-
icance in the improvement of AU-ROC and AU-PR was
investigated among independent GAN frameworks and U-
Net. The choice of AU-ROC and AU-PR as performance
measures is motivated for the comparison in the entire oper-
ating regime following the suit of previously published
literature [19, 29, 31, 40, 41].

Experimental results in vessel segmentations suggest that
the GAN framework meaningfully boosts AU-ROC and
AU-PR compared to U-Net as shown in Table 1. GAN
frameworks with any discriminator outperformed U-Net
statistically significantly (p value< 0.05). The amount
of improvement seems insignificant in nominal digits,
however, improvement in AU-ROC and AU-PR mainly
derived from localization of fine and thin vessels at terminal
branches that are sometimes nearly indistinguishable with
the naked eyes (Fig. 2). Since fine and thin vessels
constitute only a minor fraction among pixels of vessels,
the improvement was minimal, though they were captured.
However, the ability to localize fine and thin retinal

vessels has clinical meaning in certain cases such as when
estimating visual acuity of patients with diabetic macular
edema [45].

The improvements originate from additional loss in
the GAN architecture. Unlike U-Net that penalizes under-
segmentation only, the GAN architecture additionally penal-
izes overlooked fine vessels with the discriminator. There-
fore, the GAN architecture could detect fine and thin vessels
better than U-Net. We believe that the GAN framework
can also be applied to other modalities. Especially, GAN
framework is expected to help segment microvasculature in
Optical Coherence Tomography Angiography [46].

Also, it is confirmed in Table 1 that a discriminator with
more discriminatory capabilities lead to higher AU-ROC
and AU-PR which is consistent with previous literature
[33, 39]. The best model in our experiments (Image GAN)
surpassed the current state-of-the-art method (DRIU [29])
let alone an independent human annotator in the measures
of AU-ROC, AU-PR and dice coefficient on DRIVE
and STARE dataset as shown in Fig. 3 and Table 2. It
has already been reported that CNN-based models [29]
easily outperformed any other methods that depend on
heuristics [10–17] and hand-crafted features [18–20]. Up
to our knowledge, our method achieves the state-of-the-art
performance on the two public datasets in the measures that
are widely accepted in retinal vessel segmentation.

However, as can be seen in Figs. 2 and 5 , our method
still under-segments fine vessels that the human annotator
can identify with the help of anatomical knowledge that the
vessels are connected and do not appear out of nowhere.
Also, the knowledge that retinal vessels always branch in
acute angle helps detect vessels more precisely. We believe
that post-processing of the segmentation results based on
such anatomical knowledge about retinal vascular structure
would yield more reliable vessel segmentation. Region
growing algorithm [13, 15] that expands the region from
several seed points or morphological dilation and erosion
would help connect scattered pieces of vessels.

Unlike vessels, segmentation of the optic disc would
not witness statistically meaningful improvement in AU-
ROC and AU-PR through the introduction of the GAN
framework. As obvious in Table 3, the optic disc is
reliably segmented with U-Net presenting high AU-ROC
and AU-PR on both datasets. The optic disc is a noticeable
blob that U-Net can readily segment with high precision.
Still, our U-Net architecture outperformed an independent
human annotator and showed commensurate or slightly
superior performance compared with the current state-of-
the-art method [29] with respect to boundary error and dice
coefficient (Table 4).

However, our U-Net style segmentation network some-
times failed to clearly segment the optic disc in an oval
shape (Fig. 6). As was the case with vessel segmentation,
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we believe that post-processing can complement limitation
of our method with the anatomical knowledge that the optic
disc is generally an oval shape and a convex hull. There-
fore, transforming the detected optic disc into a convex
hull [47] would result in a more reliable and interpretable
segmentation result.

Conclusion

We have demonstrated that the introduction of GAN frame-
work to retinal vessel segmentation improves segmentation
quality by detecting fine and thin vessels better than the U-
Net. The best model that we have discovered also surpassed
the current state-of-the-art performance. When it comes to
segmentation of the optic disc, however, the improvements
were not statistically significant. We suspect that the optic
disc can be easily segmented with U-Net due to its con-
spicuity. For future work, we look forward to combining
anatomical knowledge about vascular structure and the optic
disc to further advance the segmentation quality.
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Appendix A: Network of a Generator

For the generator, we follow the main structure of U-
Net [27] where initial convolutional feature maps are
depth-concatenated to layers that are upsampled from the
bottleneck layer. U-Net is a fully convolutional network [28]

which consists only of convolutional layers and depth
concatenation is known to be crucial to segmentation tasks
as the initial feature maps maintain low-level features such
as edges and blobs that can be properly exploited for
accurate segmentation. We modified U-Net to maintain
width and height of feature maps during convolution
operations by padding zeros at the edges of each feature
map (zero-padding). Though concerns could be cast on the
boundary effect with zero-padding, we observed that our
U-Net style network does not suffer from false positives at
the boundary. Also, the number of feature maps for each
layer is shrunk to avoid overfitting and accelerate training
and inference. Details of the generator network are shown
in Table 5. We used ReLU for the activation function [48]
and batch-normalization [49] before the activation.

Appendix B: Network of Discriminators

There is variability in the choice of discriminators by the
size of pixels on which the decision is made. We explored
several models for the discriminators with different output
size as done in the previous work [50]. In the atomic level,
a discriminator can determine the authenticity pixel-wise
(Pixel GAN) while the judgment can also be made in the
image level (Image GAN). Between the extremes, it is also
possible to set the receptive field to a K × K patch where
the decision can be given in the patch level (Patch GAN).
We investigated Pixel GAN, Image GAN, and Patch GAN
with two intermediary patch sizes (8 × 8, 64 × 64). Details
of the network configuration for discriminators are given in
Table 6.

Appendix C: Objective Function

Let the generator G be a mapping from a fundoscopic
image x to a probability map y, or G : x �→ y.

Table 5 Details of the generator network

Block Input Conv 1-4 Conv 5 Conv 6-9 Output

Output Size (640, 640, 3)
(

640
2n−1 , 640

2n−1 , 32 ∗ 2n−1
) (

640
2n−1 , 640

2n−1 , 32 ∗ 2n−1
) (

640
29−n , 640

29−n , 32 ∗ 29−n
)

(640, 640, 1)

Upsample - - - Conv n − 1 -

Depth Concat - - - Conv 10 − n -

Operations -

⎧
⎪⎨

⎪⎩

3 × 3conv

batch-norm

ReLU

⎫
⎪⎬

⎪⎭
× 2

2 × 2 maxpool

⎧
⎪⎨

⎪⎩

3 × 3conv

batch-norm

ReLU

⎫
⎪⎬

⎪⎭
× 2

⎧
⎪⎨

⎪⎩

3 × 3conv

batch-norm

ReLU

⎫
⎪⎬

⎪⎭
× 2

{
1 × 1conv

sigmoid

}
× 1

Output size represents (width, height, depth). n refers to index of convolution block from 1 to 9. In conv 6-9, lower layer and upsampled layer
are first concatenated along depth and is applied operations designated. Output depth for convolution operations is set equal to output depth of the
block
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Then, the discriminator D maps a pair of {x, y} to binary
classification {0, 1}N where 0 represents machine-generated
y and 1 denotes human-annotated y and N is the number of
decisions. Note that N = 1 for Image GAN and N = W×H

for Pixel GAN with image size of W × H .
Then, the objective function of GAN for the segmenta-

tion problem can be formulated as

LGAN(G, D) = Ex,y∼pdata(x,y)[log D(x, y)]
+ Ex∼pdata(x)[log(1 − D(x, G(x)))]. (2)

Note that G takes the input of an image, thus, analogous
to conditional GAN [34], but there is no randomness
involved in G. Then, the GAN framework solves the
optimization problem of

G∗ = arg min
G

[
max

D
Ex,y∼pdata(x,y)[log D(x, y)]

+ Ex∼pdata(x)[log(1 − D(x, G(x)))]] . (3)

For training the discriminator D to make correct judgment,
D(x, y) needs to be maximized while D(x, G(x)) should
be minimized. On the other hand, the generator should
prevent the discriminator from making the correct judgment
by producing outputs that are indiscernible to real data.
Since the ultimate goal is to obtain realistic outputs from the
generator, the objective function is defined as the minimax
of the objective.

In fact, the segmentation task can also utilizes gold
standard images by adding a loss function that penalizes
distance from the gold standard such as binary cross entropy

LSEG(G) = Ex,y∼pdata(x,y)

[−y · log G(x)

− (1 − y) · log(1 − G(x))
]

. (4)

By summing up both the GAN objective and the
segmentation loss, we can formulate the objective function
as

G∗ = arg min
G

[
max

D
LGAN(G, D)

]
+ λLSEG(G) (5)

where λ balances the two objective functions.

Appendix D: Experimental Details

D.1 Image Preprocessing

In the public datasets that are used in our experiments,
the number of data is not sufficient for successful training.
To overcome the limitation, we augmented the data to
retrieve new images that are similar but slightly different
to the originals. First, each image is rotated with interval
of 3 degrees and flipped horizontally yielding additional
239 augmented images from one original image. We
empirically found that 3 degree was sufficient for the

rotational augmentation. Finally, photographic information
is perturbed by the following formula,

I ′
xyd = (1 − α)I

gray
xy + αIxyd, I

gray
xy

= 0.299Ixyr + 0.587Ixyg + 0.114Ixyb (6)

where Ixyd is a pixel value in channel d ∈ {r, g, b} at
coordinate (x, y) in an image I and α is a coefficient
that balances a color-deprived image (gray image) and the
original image. In our experiment, α is randomly sampled
from [0.8, 1.2]. When α is above 1, color in each channel
intensifies while subtracting intensity in gray scale. From
multiple experiments, we found that these augmentation
methods can result in a reliable segmentation for both
vessels and the optic discs.

When feeding fundoscopic input images to the network,
we computed z-score by subtracting the mean and dividing
by standard deviation per channel for each individual image.
Formally, the following equation is applied to each pixel,

zxyd = Ixyd − μd

σd

, μd = 1

WH

∑

x,y

Ixyd σd

= 1

WH

∑

x,y

(Ixyd − μd)2 (7)

where Ixyd denotes a pixel value in channel d ∈ {r, g, b} at
(x, y) in an image I ∈ R

W×H . Since the mean and standard
deviation in every image are set to 0 and 1 respectively, the
sheer difference in brightness and contrast between the two
images is eliminated. Therefore, any meaningful features
will not be extracted based upon brightness or contrast
during training.

D.2 Validation and Training

After the augmentation of original images, 5% of images
are reserved for validation set and the remaining 95%
of images are used for training. The models with the
least generator loss on the validation set are chosen for
comparison. We ran 10 rounds of training in which the
discriminator and the generator are trained for 240 epochs
alternatively. Total of 2400 epochs during training was
enough to observe convergence in the generator loss.
We emphasize that training both networks alternatively
with sufficient iterations can lead to stable learning in
which the discriminator perfectly classifies at first and the
generator completely fakes the discriminator by letting the
discriminator become gradually weaker.
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D.3 Hyper-parameters

As an optimizer during training, we used Adam [51] with
fixed learning rate of 2e−4 and first moment coefficient
(β1) of 0.5, and second moment coefficient (β2) of 0.999.
We fixed the trade-off coefficient in Eq. 5 to 10 (λ = 10).
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