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The intrinsic rate of viral replication in HIV-infected patients
treated with antiretroviral combination therapy is estimated by
using a mathematical model of viral dynamics. This intrinsic rep-
lication is found to be episodic, varying considerably in quantity
between patients (even among those achieving long-term unde-
tectable levels of viremia) and is always reduced by increasing the
potency of the antiviral drug regimen. The analysis reveals that
even in conditions of perfect patient adherence and drug pene-
tration a substantial level of residual viral replication is expected.
The rate of evolution in the viral quasispecies, and thus also the
probability of new drug-resistant viral strains being created, is
proportional to the total amount of residual viral replication.
Under most circumstances, the viral population continues to turn
over rapidly during therapy, albeit at a much reduced level.

antiviral therapy � residual replication � mathematical model

Treatment with combinations of antiretroviral compounds
that inhibit viral replication is currently the main therapy

used to slow progression to serious disease in HIV-infected
patients. With the current available drugs, residual viral repli-
cation is often observed in otherwise successfully treated pa-
tients who show no overt signs of disease (1–4). In this study we
quantify the capacity for HIV to replicate in treated patients,
using a mathematical model to describe viral dynamics that
generates predictions consistent with observed changes in viral
load and CD4 abundance seen under therapy (5–10) and long-
term trends in HIV pathogenesis (11). Residual replication is
shown to be an intrinsic and expected feature of viral dynamics,
where its episodic burst-like nature is found to reflect random
patterns of host exposure to antigens that drive T cell activation.
We quantify viral replication during therapy by using a dynamic
measure: the average number of cells newly infected by HIV per
day, which is proportional to the probability of emergence of
viral resistance de novo. A wide range of residual replication
rates are shown to be consistent with the apparently successful
suppression of viral load, indicating that the viral population can
be expected to continue to evolve even under therapy.

Methods
The Model. The model of viral dynamics is defined by eight
coupled ordinary differential equations:

dX
dt

� �na � �X � �XV

dYL

dt
� fL�XV � �LYL

dY1

dt
� �1 � fL��XV � �LYL � �1Y1

dY2

dt
� �1Y1 � �2Y2�1 � �Z2�

dV
dt

� kY2 � cV

dZ1

dt
� d�Z0 � Z1� � 2pZ2 � �Y2Z1

dZ2

dt
� �Y2Z1 � pZ2

dna

dt
� 	a � �ana. [1]

These equations describe changes over time in the number X of
target cells, YL of long-lived infected cells, Y1 of early-stage
infected cells, Y2 of late-stage infected cells [producing virus and
susceptible to cytotoxic T lymphocyte (CTL) lysis], V of free
virions, Z1 of resting HIV-specific CTLs, Z2 of activated anti-
HIV CTLs, and finally na of distinct (HIV and non-HIV)
antigens that activate CD4 cells. This model has 17 independent
parameters, too many to simultaneously estimate by fitting to
viral load decay curves, as in refs. 5–8. The parameters and their
estimates or assumed values are presented in Table 1. This model
builds on earlier related studies (11) and is consistent with
long-term observed trends of HIV immunopathogenesis. It
provides a realistic description of the viral set-point and its
relation to disease progression rates and to the magnitude of the
anti-HIV CTL response. Both deterministic and stochastic
versions of the model were used in this analysis.

The first departure from the classic models of HIV dynamics
(reviewed in ref. 8) is the explicit description of antigen driving
the activation of susceptible target CD4� T cells, and thus
driving viral replication. Previous studies of viral treatment have
usually described the CD4 pool as a uniform passive target for
HIV [although the role of changing activation has been explored
(10)]. This is unsatisfactory because HIV replicates primarily in
activated cells (12, 13) that make up only a small but changing
fraction of the CD4 pool. We choose the simplest possible
description of antigen dynamics: antigens eliciting a new CD4
response are encountered by the patient at a Poisson rate 	a and
are then cleared at rate �a. Each new antigen activates CD4 cells
at rate �. Because the average number of concurrent antigens is
small (� 	a��a), it is important to model random variations in
na over time: the long-term variance in na is given by its mean
(	a��a). These variations directly change the number of HIV
target cells, affecting the efficacy of the whole viral replication
cycle.

The second departure from published models is the decom-
position of the interaction between CTLs and infected cells into
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Table 1. The parameters of the model

Symbol�
equation Description Value Unit Comments�ref(s).

� Cell activation per antigenic exposure 2.5 � 107 Cells per day Approx 1:1000 cells activated per day is
consistent with pathogenesis (11)

� Cell division rate 1 Per day Activated CD4 cell takes approx. 1 day to
divide

� Viral infectivity 4 � 10�10 Per virion per cell
per day

Derived from R0 below

fL Fraction of infections resulting in a
long-lived infected cell

10�5 Per infection Chosen consistent with known first
phase–second phase transitions in viral
load decay curves after start of
treatment (7)

�L Rate of latent infected cell reactivation 0.001 Per day Fastest observed long-term decay rate
(2, 30)

�1 Rate of progression from cell infection
to viral expression and production

1 Per day (16)

�2 Death rate of productively infected cell 1 Per day (16)
� Increase in death rate of productively

infected cells caused by CTL activity
10�5 Per activated anti-

HIV CTL per day
Chosen to match observed frequency of

anti-HIV CTLs (15)
k�c Ratio of free virus to infected cell

numbers
1,000 Virions per cell Conservative estimate based on ref. 32

c Clearance rate of free virus 25 Per day Estimated from plasma apheresis
experiment (33); precise value
unimportant provided fast enough to
decouple from model

p Proliferation rate of activated anti-HIV
CTLs

1 Per day

d Death rate of anti-HIV CTLs 0.01 Per day (34)
	a Rate of exposure to new antigens 0.3334 Per day (11)
�a Rate of antigen clearance 0.03334 Per day Corresponding to an average of 10

concurrent distinct antigens, cleared in
30 days (11)

�R0	 Average basic reproduction number of
HIV

100 Number Higher than lower bound calculated in
ref. 19, consistent with pathogenesis
(11)

NPB Factor used to convert figures from 1 ml
of peripheral blood to whole body

2.5 � 105 Volume (6)

� Rate of CTL activation per productive
infected cell

(i) 1.3334 � 10�8

(ii) 1.3334 � 10�9

(iii) 1.3334 � 10�10

Per CTL per infected
cell per day

Three example values determine
set-point viral load

Steady-state values calculated from the model (for the pretreatment set-point)

V̂ �
dk
�c

Viral load (i) 7.5 � 108

(ii) 7.5 � 109

(iii) 7.5 � 1010

Virions Gives 3,000, 30,000, and 300,000 virions
per ml of peripheral blood, chosen as
low, median, and high baseline viral
load (28)

Ŷ2 �
d
�

Number of productively infected cells (i) 7.5 � 105

(ii) 7.5 � 106

(iii) 7.5 � 107

Cells

X̂ �
�n� a

� � �V̂

Number of susceptible cells (i) 1.92 � 108

(ii) 6.25 � 107

(iii) 8.06 � 106

Cells

Ŷ1 �
�X̂Ŷ2

�1

Number of early-stage infected cells (i) 5.77 � 107

(ii) 1.88 � 108

(iii) 2.42 � 108

Cells

ŶL �
fL�X̂Ŷ2

�L

Number of long-lived infected cells (i) 5.77 � 105

(ii) 1.88 � 106

(iii) 2.42 � 106

Cells Matches direct estimates (29)

Ẑ1 � Ẑ2 Number of anti-HIV CTLs (i) 7.87 � 108

(ii) 2.63 � 108

(iii) 4.27 � 107

Cells Matches direct estimates (15)

Ẑ2

Ẑ1 � Ẑ2

Percentage of CTLs activated (i) 1%
(ii) 1%
(iii) 1%

Percent

�Ẑ2

1 � �Ẑ2

Percentage of infected cells killed by
CTLs

(i) 98.7%
(ii) 96.3%
(iii) 80.9%

Percent

1
�1

�
1

�2�1 � �Ẑ2�

Average lifetime of an infected cell (i) 1.01
(ii) 1.04
(iii) 1.19

Days

�X̂Ŷ2 Number of new cells infected per day (i) 5.77 � 107

(ii) 1.88 � 108

(iii) 2.42 � 108

Infections per day To be compared to same quantity
calculated after therapy in Fig. 1

(i), (ii), and (iii) refer to parameters for patients with low, median, and high viral loads, respectively.
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multiple stages. We model CTL activation by viral antigens as
preceding cell division, which occurs at a fixed rate p, and we
assume that only activated CTLs can kill infected cells. Dynam-
ically, such a model has several advantages. First, this response
explains the large (1000-fold) variation in viral set-point between
patients as a result of differences in the ability of CTLs to activate
in response to viral antigens, rather than resulting from 1000-fold
differences in CTL proliferation or death rates, or even 1000-fold
differences in the availability of target cells. The model could be
further increased in realism by allowing variation in multiple
parameters to explain variations in viral load (as in ref. 14).
Second, CTL proliferation is naturally rate limited, with a
maximal doubling time of ln(2)�p, independent of other param-
eters. Third, the observed dynamics are stable, unlike previous
models (8) that can exhibit prolonged oscillations in viral and
cellular population sizes. Fourth, as seen in Table 1, the model
predicts the correct inverse relation between the frequency of
anti-HIV CTLs and set-point viral load observed in ref. 15. As
highlighted in ref. 16, the division of the infected cell pool into
subpopulations of early-stage (previral expression and produc-
tion) and late-stage infected cells provides a natural explanation
for the relative uniformity in infected cell lifetimes inferred from
posttherapy decay curves (5, 6).

The equations are integrated in fixed time steps of 
t � 0.01
day. For the stochastic model, na is increased in each time step
by a Poisson deviate of mean 	a
t, and reduced by binomial
deviate with probability �a
t and sample size na. For the
deterministic model na is fixed � 	a��a. The other equations are
integrated by using a fourth-order Runge–Kutta algorithm,
assuming fixed na over the interval (17).

The Basic Reproduction Number. The basic reproduction number is
the number of new cells that an infected cell infects before it dies,
in the absence of density-dependent constraints (8). For this
model, it is approximately given by

R0 �
�na�k
��2c

. [2]

It is a function of the number of distinct antigens na and so
fluctuates over time.

The average value of R0 in the stochastic model, denoted
�R0�, coincides with the value of R0 in the deterministic model,
and is given by

�R0	 �
�kX0

�2c
, [3]

where X0 � �	a��a is the average number of susceptible target
cells in the absence of HIV infection.

Steady States of the Deterministic Model. The deterministic model
has three equilibria. In the equations below, we approximate
Z0  0. The uninfected equilibrium is given by

X�1� � X0 Y1
�1� � 0 Y2

�1� � 0 Z2
�1� � 0. [4]

There are two infected equilibria. The first has no sustained CTL
response, and is given by

X�2� �
X0

�R0	
Y1

�2� �
�X0

�1
�1 �

1
�R0	

�
Y2

�2� �
�X0

�2
�1 �

1
�R0	

� Z2
�2� � 0. [5]

The second infected equilibrium is associated with a stable
effective anti-HIV CTL response, and is given by

X�3� �
X0

R0
CTL Y1

�3� �
�X0

�1
�1 �

1
R0

CTL�
Y2

�3� �



d
Z2

�3� �
1
�� �R0	

R0
CTL � 1�. [6]

In the above, we define R0
CTL to be the CTL-restricted repro-

duction number, as the number of secondary infections caused
by an infected cell before it dies, in the presence of a mature CTL
response. It is defined by analogy with R0 and is given by

R0
CTL � 1 �

�kd
cd�

. [7]

For all equilibria, the remaining densities are given by

YL
��� �

fL�1

�L
Y1

��� V��� �
k
c
Y2

��� Z1
��� �

d
p

Z2
���. [8]

The uninfected steady state, defined in Eq. 4, is stable if and only
if �R0	 � 1. The CTL-free infected steady state, defined in Eq.
5, is stable if and only if R0

CTL � �R0	 � 1. The CTL-restricted
steady state, defined in Eq. 6, is stable if and only if �R0	 � R0

CTL

� 1. The parameters that define the boundaries between these
stable states are threshold values.

Calculation of the Threshold Treatment Efficacies. For the parame-
ters we use (defined in Table 1), before antiviral treatment, the
patients are in the CTL-restricted steady-state defined by Eq. 6.
The effect of antiviral therapy is to reduce the ratio �k�c to
(�k�c)(1 � �), where � is the treatment efficacy (7, 18); the
thresholds separating equilibrium 6 from 5 and 5 from 4 are
crossed sequentially with increasing �. The threshold efficacies
are given by

�1 � 1 �
1

�R0	 � 1 � R0
CTL [9]

for the first crossing and

�2 � 1 �
1

�R0	
[10]

for the second.
The third threshold discussed arises from the reduction in the

replenishment of the resting cell pool attributable to activated
CD4 cells being destroyed as a result of HIV replication. The
replenishment rate is proportional to the number of susceptible
cells X(*), and thus it increases as treatment efficacy increases.
If pS is the probability that an activated cell will successfully
divide, then the threshold treatment efficacy is

�3 � min�1 �
2pS

�R0	
; 1 �

2pS � 1
R0

CTL � 1�. [11]

Stochastic effects do not remove, but rather blur, these threshold
effects.

Results
The key quantity that captures the capacity for viral replication
within the patient is the basic reproduction number, R0, defined
as the average number of secondary cell infections caused by the
introduction of a single infected cell into a susceptible person (8,
19). The definition and derivation of R0, as well as the underlying
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biological assumptions incorporated into a mathematical model
of HIV replication, are presented in Methods. An important
feature of this model is that R0 is not fixed, but varies as a
function of the rate of activation of CD4 cells; this in turn reflects
the temporal pattern of exposure to HIV and non-HIV antigens.
The extent to which antiretroviral therapy inhibits viral replica-
tion is simply the factor by which it reduces the magnitude of R0
(7, 18), thus providing both a precise definition for treatment
efficacy and a measurement tool.

The long-term outcome of therapy depends crucially on the
magnitude of the reduced value of R0 because this relates to the
net rate of evolution of the virus. The dependence between the
magnitude of R0 (determined by treatment efficacy) and the
long-term outcome of treatment is predicted to be more complex
than suggested by previous theoretical studies of HIV dynamics
(20), in accord with observed patterns (9). In Methods, we
describe how our model can be formulated as deterministic or
stochastic, corresponding respectively to a fixed or a randomly
fluctuating level of antigenic stimulation and subsequent T cell
activation. We start by describing the deterministic model be-
cause it is simpler: antigenic stimulation, T cell activation, and
thus R0 are all constant over time. We observe four qualitatively
different outcomes to antiviral therapy, separated by three
threshold values of treatment efficacy (derived in Methods). The
short-term effect is always a reduction in viral load. The distinct
dynamical regimes are as follows:

1. The short-term effect of low-efficacy treatment is to reduce
the number of anti-HIV CTLs in circulation caused by a
transient reduction in viral load. In the long term, viral load
returns to its pretreatment value, whereas the number of CTLs
remains reduced. The long-term effect of therapy is only a
modest reduction in viral load because of the tradeoff between
drug action and reduced CTL action.

2. As treatment efficacy is increased and R0 is reduced, a CTL
stimulation threshold is crossed and the efficacy of the CTL
response declines because of lower rates of activation caused by
the reduced viral population (21).

3. At a second threshold, the probability that a CD4 cell can
successfully divide without being either infected or suffering
activation-related death reaches 0.5. Above this value therapy
causes a change in viral load to a new and lower set-point but no
continuing decay in viral load. However, the long-term depletion
of CD4 cells is reversed (11), so overall this scenario represents
a discordant response to therapy.

4. The third threshold is achieved when R0 falls below unity in
value: below this value viral replication becomes unsustainable
and a rapid biphasic decay in viral load is observed (7).

The order on which the thresholds are crossed depends on the
parameter values, but is always either 1–2-3–4 or 1–3-2–4.

The effect of random variations in the number of antigens that
are activating the CD4 cell pool is to cause R0, and concomitantly
viral load, to fluctuate. When treatment efficacy is close to a
threshold value, this introduces a degree of intermittency to the
viral dynamics as the system bounces below and above the
threshold, as seen in the viral load decay curves plotted in Fig.
1. Random antigenic exposures can therefore temporarily shift
the patient back and forth between the states of viral decay and
viral growth. It is thus a prediction of the model that short
episodes of sustained viral replication are an intrinsic part of the
dynamics of antiretroviral treatment. The duration of these
intermittent episodes is determined by the average time taken to
clear a typical antigen (given by 1��a in the model: see Methods).
The magnitude and frequency of these episodes is predicted to
decrease with increasing treatment efficacy (Fig. 1), as clinically
observed.

The model was further used to quantify the amount of residual
replication expected in patients where treatment efficacy is on
average sufficient to render viral replication unsustainable (R0 �

1 on average). Two measures were estimated: one for the first 50
days of treatment, and one for the subsequent 250 days. This
approach was adopted because a high rate of target cell infection
is expected in the early parts of treatment when viral loads are
still high, and a low rate once treatment effectively suppresses
viral load. The measure of viral replication used was the average
number of cells infected by HIV per day, as plotted in Fig. 1, as
a function of the value of the average posttherapy R0. Because
the average pretherapy R0 is fixed in the simulation, posttherapy
R0 and treatment efficacy are interchangeable: the lower R0, the
higher the efficacy. The simulation was repeated 1,000 times for
100 different values of R0, separately for patients with high,
median, or low set-point viral loads (as defined in Table 1).
Comparative values are given for the deterministic model to
illustrate the effect of intermittency on residual replication. The
predicted fraction of patients achieving undetectable levels of
virus after 50 days and after 24 weeks [gauged at �5 copies per
ml of peripheral blood, in line with current ultrasensitive assays
(7)], are also plotted in Fig. 1.

The analysis shows that for high-efficacy drug regimens, there
is considerably more residual replication in the early part of
treatment. For marginally effective treatments (R0 close to 1),
antigen-driven intermittency was found to increase long-term
residual replication substantially above that predicted by the
deterministic model, up to levels equivalent to the first 50 days
of treatment, and the number of patients failing to reach
undetectable levels of virus dropped accordingly (independent
of other factors such as poor compliance or the emergence of
viral resistance to treatment). Outside this zone, the outcomes of
the simulation are centered on the prediction of the determin-
istic model, thus randomly varying antigenic exposure does not
in general predict more residual replication to occur than the
model where this is constant. In identical simulations, a mini-
mum 2-fold variation in the average number of cells newly
infected per day was found.

The measure used was approximately equal to the number of
new mutations generated in the viral population, and thus also
to the probability of emergence of de novo drug resistance (8, 22,
23). This probability is expected to relate to the likelihood of
treatment failure in the long term (20). The variation reflects the
randomness of antigenic encounters in simulated patients with
identical parameters. A millionfold variation in viral replication
was observed in the range 0.1 � R0 � 1 (corresponding to 0.9%
variation in treatment efficacy). Even when 100% of the patients
are predicted to reach undetectable viral loads (R0 � 0.5),
more than a hundredfold variation in residual viral replication
was observed. The degree of residual replication was found to be
intrinsically variable, but is always reduced by increasing treat-
ment efficacy.

Discussion
Persistent viral replication, even at low levels, compromises the
long-term success of therapy by providing opportunities for the
evolution of drug-resistant variants of the virus (the net rate of
evolution is directly proportional to the net rate of viral repli-
cation) and concomitant treatment failure. There are many
factors that can cause residual replication in treated HIV-
infected patients (24). Poor adherence of patients to treatment
protocols has been shown to be predictive of drug failure (25).
Cellular reservoirs or physiological compartments (such as the
central nervous system) where drug penetration is poor have also
been implicated (24). Whereas the reality of in vivo treatment is
multifactorial, the use of a mathematical model allows us to
separately analyze and dissect these factors, performing a ‘‘vir-
tual experiment’’ to estimate how much residual replication is
intrinsic to the stochastic dynamics of viral replication and
antigenic exposure. The estimates are subject to the caveat that
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they extrapolate information from peripheral blood measure-
ments to the whole body, whereas there is an additional contri-
bution to viral decay and diversity from virus attached to
follicular dendritic cells in lymphatic tissues (26).

The mathematical model is founded on a substantial experi-
mental, observational, and theoretical literature (recently re-
viewed in ref. 8). The model captures both the role of antigenic
exposure in regulating viral replication by limiting the number of
available target cells for HIV to those that are in the dividing
stage (12), and the impact of an active CTL response (27). It
predicts a pattern of intermittency in viral replication during
therapy, and thus offers an explanation for the episodic nature
of viral replication in patients known to adhere well to treatment
regimens (4). The model also helps explain the wide variations
in pretreatment viral load seen between patients (28). The
description of a multistage model (i.e., resting and activated HIV
antigen-specific cells) to describe the anti-HIV CTL response
generates predictions consistent both with long-term trends in
HIV pathogenesis (11) and with the relative constancy in
infected cell lifetimes (16).

Several recent studies have found evidence for active viral
transcription in patients where viral load is successfully sup-

pressed (1–3). Such residual replication is thought to replenish
stocks of long-lived infected CD4 cells (4), which are held
responsible for long-term viral persistence in infected patients
(29, 30). The current study shows unambiguously that a substan-
tial amount of residual viral replication is an intrinsic feature of
HIV dynamics during antiretroviral therapy, and that the viral
population continues to turn over rapidly, albeit at a much-
reduced net rate. Even when currently undetectable levels of
virus are reached, there remains scope to reduce residual
replication by intensifying the treatment [e.g., five-drug regimens
(7)]. Intensifying treatment by using drugs with better pharma-
codynamic properties (i.e., a greater ability to suppress viral
replication and longer half-lives) and attempting to minimize
poor patient adherence by education and counseling is essential
to reduce current rates of treatment failure (31). However, a
recent re-appraisal of pharmacodynamic measures of drug effi-
cacy indicates that complete blocking of viral replication by the
combinations of the currently available drugs is more difficult
than previously thought (18).

C.F. and R.M.A. thank the Wellcome Trust for funding and N.M.F.
thanks the Royal Society.

Fig. 1. Residual viral replication in treated HIV-positive patients. The figure illustrates results from the simulation for three sets of patients with high, median,
and low set-point viral loads (300,000, 30,000, and 3,000 copies per ml in the Top, Middle, and Bottom graphs, respectively). The graphs to the Left show typical
outcomes for a range of different treatment efficacies, as measured by the posttherapy average basic reproduction number R0. The dashed line indicates a limit
of detection of 5 copies per ml. The graphs in the Center and Right columns illustrate the outcome of 1,000 separate simulations for 100 values of R0. For each
simulation the average number of residual infections is recorded during the first 50 days (Center) and the subsequent 250 days (Right). The color of the graph
illustrates the relative frequency of each outcome, as scaled by the color bar on the right. The dotted black line is the prediction calculated from the deterministic
model in which antigenic exposure is assumed constant rather than random. The white line on these graphs is the fraction of the 1,000 simulated patients that
reach levels of virus �5 copies per ml, after 50 days in the Center graphs, and after 24 weeks in the graphs to the Right.
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