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Regulatory programs that control the function of stem cells are
active in cancer and confer properties that promote progression
and therapy resistance. However, the impact of a stem cell-like
tumor phenotype (“stemness”) on the immunological properties of
cancer has not been systematically explored. Using gene-expres-
sion–based metrics, we evaluated the association of stemness with
immune cell infiltration and genomic, transcriptomic, and clinical
parameters across 21 solid cancers. We found pervasive negative
associations between cancer stemness and anticancer immunity.
This occurred despite high stemness cancers exhibiting increased
mutation load, cancer-testis antigen expression, and intratumoral
heterogeneity. Stemness was also strongly associated with cell-
intrinsic suppression of endogenous retroviruses and type I IFN
signaling, and increased expression of multiple therapeutically ac-
cessible immunosuppressive pathways. Thus, stemness is not only
a fundamental process in cancer progression but may provide a
mechanistic link between antigenicity, intratumoral heterogene-
ity, and immune suppression across cancers.
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Tumor infiltration by T cells has been associated with improved
clinical outcomes in a broad range of tumor types. Despite this,

a large proportion of solid cancers appears nonpermissive to lym-
phocyte infiltration or nonimmunogenic (immunologically “cold”),
and thus protected from cytolytic attack by lymphocytes, such as
CD8+ T cells (1). The advent of immunotherapies, such as immune
checkpoint inhibitors that rely on preexisting antitumor immune
responses, has made an improved understanding of the mechanisms
underlying the cold tumor phenotype essential.
Mounting evidence suggests that tumor cells can exhibit stem

cell-like properties, ranging from characteristic gene-expression
profiles to experimentally validated long-term self-renewal and
repopulation capacities. The cancer stem cell (CSC) hypothesis
posits that a subpopulation of tumor cells is capable of self-
renewal and is responsible for the long-term maintenance of
tumors (2). This hypothesis provides compelling explanations for
clinical observations, such as therapeutic resistance, tumor dor-
mancy, and metastasis (3). CSCs have been identified in a variety
of human tumors, as assayed by their ability to initiate tumor
growth in immunocompromised mice (4, 5). However, consid-
erable controversy remains as to how best to define CSCs and
the extent to which different tumor types exhibit a hierarchical
organization. These controversies notwithstanding, there is in-
creasing evidence that stem cell-associated molecular features,
often referred to as “stemness,” are biologically important in
cancer (6). It is unclear whether the stemness phenotype reflects
the presence of bona fide CSCs in tumors or simply the coopting
of stem cell-associated programs by non-CSC tumor cells (or

both). Whatever the underlying mechanism may be, stemness has
emerged as an important phenomenon due to its strong associ-
ation with poor outcomes in a wide variety of cancers (7, 8).
Moreover, stemness appears to be a convergent phenotype in
cancer evolution (9, 10), suggesting it is a fundamentally im-
portant property of malignancy.
The evolution of transformed cells in the tumor microenvi-

ronment is shaped by diverse selective pressures, including the
host immune response. Experimental work has shown that em-
bryonic, mesenchymal, and induced pluripotent stem cells
possess immune modulatory properties, while resistance to immune-
mediated destruction has also recently been shown to be an intrin-
sic property of quiescent adult tissue stem cells (11) and
CSCs (12). Similarly, immune selection has been shown to drive
tumor evolution toward a stemness phenotype that inhibits cy-
totoxic T cell responses (13). Moreover, a recent analysis of The
Cancer Genome Atlas (TCGA) revealed negative associations
between stemness and some metrics of tumor leukocyte in-
filtration (14). Finally, CSCs have been proposed as a driver of
intratumoral heterogeneity (6, 9). Consistent with this, we (15)
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and others (16) have reported negative associations between
immune cell infiltration and intratumoral heterogeneity.
Motivated by these observations, we hypothesized that the

stemness phenotype of cancer cells may confer immunosup-
pressive properties on tumors, resulting in immunologically cold
microenvironments that both foster and maintain intratumoral
heterogeneity. To address this, we performed an integrated
analysis of stemness, immune response, and intratumoral het-
erogeneity across cancers. We recover pervasive negative asso-
ciations between antitumor immunity and stemness, and strong
positive associations between stemness and intratumoral het-
erogeneity. We further find that cancer cell lines with high
stemness have cell-intrinsic immunosuppressive features, sug-
gesting that immunologically cold microenvironments can arise
due to the presence of high-stemness cancer cells. We propose
that cancer stemness provides a link between tumor antigenicity,
intratumoral heterogeneity, immune suppression, and the
resulting evolutionary trajectories in human cancer.

Results
Derivation and Comparison of Stemness Signatures. Recent studies
have provided evidence that cancer stemness can be represented
by core gene-expression programs across diverse cancer types (8,
10, 14, 17, 18). Building on this prior work, we inferred tumor
stemness from cancer transcriptomes using single-sample gene
set enrichment analysis (ssGSEA) with a modified version of a
gene set developed by Palmer et al. (17) to measure the level of
plasticity and differentiation of mesenchymal stem cells, plurip-
otent stem cells, terminally differentiated tissues, and human
tumors across >3,200 microarray samples. Intriguingly, the au-
thors of this gene set identified a cluster of “immune” genes that
negatively loaded the principal components they used to infer
stemness; however, they did not further explore this relationship.
To adopt this gene set for use in ssGSEA and avoid biasing our
analysis toward recovering negative associations between stemness
and immunity, we omitted this immune gene cluster from our sig-
nature. We also omitted cell proliferation markers to avoid recov-
ering a signature of proliferation rather than stemness (19).
We validated the performance of the resulting 109 gene signa-

tures (Dataset S1A) on diverse datasets, finding that it recapitulated
the expected degree of stemness in both malignant and nonmalig-
nant cell populations (SI Appendix, Fig. S1). We further validated
this signature using the stem cell-based validation dataset used by
Malta et al. (14) in their recent pan-cancer stemness analysis
(GSE30652), which revealed similarly high classification accuracy for
our signature compared with theirs [multiclass area under the curve
(AUC) 0.92 vs. 0.91, respectively] (SI Appendix, Fig. S2 A and B).
We then analyzed RNA sequencing data from 8,290 primary cancers
representing 21 solid cancer types (from TCGA) and found our
signature showed good concordance with that of Malta et al. and
two other recently published signatures (Spearman’s ρ = 0.43, 0.74,
and 0.66, respectively) (SI Appendix, Fig. S2 C–F).

Stemness Varies Across Cancers and Predicts Patient Survival. Using
our signature, we found that stemness varied strongly across
TCGA samples, with cancer type explaining 54% of the variation
(ANOVA; adjusted R2) (Fig. 1A). Consistent with prior reports
of stemness being a negative prognostic factor (7, 8), we found a
strong negative relationship between median stemness and median
overall survival across cancer types (Fig. 1B) (ρ = −0.60; P = 0.004;
n = 21 cancers). Within cancer types, Cox regression likewise
showed stemness to be significantly negatively prognostic for overall
survival in the majority of cancers (Cox proportional hazards; P <
0.05), and significantly positively prognostic for none (Fig. 1C),
underscoring the relevance of this signature both within and across
cancers. We also noted a significant decrease in the magnitude of
the hazard associated with stemness within cancers as median
stemness increased (ρ = −0.59; P < 0.01) (Fig. 1C), pointing to a

potential threshold effect with a saturating hazard in cancers with
higher average stemness. For reference, we compared the prog-
nostic association of our ssGSEA-based stemness with the mRNAsi
signature of Malta et al. (14) derived using one-class logistic re-
gression (OCLR), for which positive associations in some cancers
were reported. Using pan-cancer Cox regressions stratified by
cancer, we found ssGSEA-based stemness to be substantially more
predictive of survival in this modeling framework [log hazard ra-
tio = 0.23 ± 0.03 (coefficient ± SE); P < 10−15 vs. not significant for
mRNA stemness index (mRNAsi)], demonstrating this signature
uncovers the negative outcomes associated with high-stemness
cancers expected from previous reports (7, 8). This relationship
held when controlling for tumor purity, demonstrating that a re-
lationship between tumor purity and patient survival is not a con-
founding factor (and see below).

Stemness Negatively Associates with Immune Cell Infiltration Across
Solid Cancers. To evaluate the relationship between stemness and
antitumor immunity, we generated signatures of predicted immune
cell infiltration for each patient sample using xCell, an ssGSEA-
based tool that infers cellular content in the tumor microenviron-
ment (20). CD8+ T cells, which have a well-established association

Fig. 1. Stemness and survival across cancers. (A) Stemness score varies
widely across 21 solid cancers from TCGA. Each point represents an indi-
vidual case, and cancer types are ordered by median stemness score (z-scored
ssGSEA). (B) Median survival decreases with increasing median stemness (P =
0.004). Gray points represent cancers in which median overall survival times
were not evaluable. (C) Stemness associates with poor outcome within
cancers. Log hazard ratio (±95% CI) for the association of stemness with
overall survival is shown. Hazard decreases with increasing average stemness
of cancers (P = 0.008). Cox models control for patient age and tumor purity.
Cancer acronyms are used as defined by TCGA (https://portal.gdc.cancer.gov).
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with favorable prognosis in a majority of solid cancers (21), showed
a clear negative association with stemness for most cancers (Fig.
2A). We also considered other cell types important for antitumor
immunity, including NK cells and B cells, and again observed re-
current negative associations with stemness (Fig. 2A). Additional
cell types, such as CD4+ T cells, Tregs, and neutrophils, showed
more variable associations with stemness, indicating this relation-
ship does not apply to all infiltrating immune cell populations in all
cancers (Fig. 2A).
To generate a robust single score for antitumor immunity

(hereafter referred to as “immune signature”), we aggregated
xCell predictions for CD8+ T cell, NK cell, and B cell infiltration,
reasoning that these cells represent important anticancer effec-
tor cells across diverse cancers (22, 23). Indeed, this immune
signature was significantly associated with increased survival in
the majority of cancers (SI Appendix, Fig. S3A; overall survival
curves for all patients stratified by median stemness and immune
signature are shown in SI Appendix, Fig. S3B). A notable exception

was kidney cancer (i.e., KIRP), where a negative association was
observed, in accord with prior reports for this malignancy (24).
Consistent with our analyses using single immune cell-type scores
(Fig. 2A), the immune signature showed a negative association with
stemness within nearly all cancers (Fig. 2B). This negative associ-
ation was also recovered using other published stemness gene sets
(18, 19, 25) (Dataset S1B), most clearly with stemness scores
reflecting NANOG, SOX2, and MYC signaling, and to a lesser
extent with those reflecting embryonic stem cell programs (SI
Appendix, Fig. S4). Furthermore, when we used CIBERSORT
infiltration scores (26) in place of our immune signature, we
found that increased stemness was associated with strong polari-
zation of infiltrating leukocyte populations toward a macrophage-
dominated, CD8+ T cell-depleted composition for most cancers
(linear model controlling for cancer type; P < 10−15 for both
cell fractions).
Whereas the preceding analyses were performed within cancer

types, we also evaluated the relationship between stemness and

Fig. 2. Stemness negatively associates with immune cell signatures. (A) Circos plot showing the association between stemness score and the presence of
8 inferred immune cell types across 21 cancer types (colored bars in outer ring). The color and height of the inner bars represent the Spearman correlation ρ
values for each cell type and cancer type. (B) Volcano plot showing the association between stemness score and immune signature (sum of z-scored signatures
of CD8+ T cells, NK cells, and B cells) for each cancer. The dashed line indicates Padj = 0.05. (C) Association between stemness score and immune signature in
the different molecular subtypes of endometrial (UCEC) and breast (BRCA) cancer, and within primary and metastatic melanoma (SKCM) samples (Padj < 10−7).
Each point represents one case. Colors indicate the different molecular subtypes of UCEC and BRCA, or sample types for SKCM. CN, copy number; MSI,
microsatellite instable; POLE, polymerase epsilon.
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immune signature across cancer types. Unexpectedly, we found
no significant association between median immune signature and
median stemness score across cancers (P = 0.82). This suggests
that factors other than stemness control the differences in im-
mune cell infiltration across cancer types, while the association
with stemness applies within individual cancer types. It also
demonstrates that our stemness metric is not recovering negative
associations with immunity simply due to the lower tumor purity
that is inextricably associated with the presence of infiltrating
immune cells.
We next examined whether the negative association between

immune signature and stemness was influenced by tumor subtype
or stage. Here, we focused on breast and endometrial cancers,
which have well-characterized subtypes with strong prognostic
associations, and melanoma, for which both primary and meta-
static samples are available within TCGA. In breast cancer,
stemness varied markedly across subtypes (ANOVA; adjusted R2 =
0.26), with the basal subtype having the highest stemness, as
expected (19), and the luminal-A subtype the lowest (Fig. 2C). In
endometrial cancer, the highest stemness score was observed in
high-copy number (CN) alteration (CN-high) and polymerase-
epsilon mutant tumors, and the lowest stemness score was seen
in low-CN alteration tumors (CN-low) [Tukey honest significant
difference (HSD); P = 0.003; CN-high vs. CN-low tumors]. Fi-
nally, we observed a substantially higher stemness score in
metastatic compared with primary melanoma lesions (Fig. 2C).
In all these cancers, we observed recurrent negative associations
between stemness and immune signature which remained sig-
nificant when controlling for cancer subtype and tumor purity
(see below; linear models; P < 10−7).
To investigate in an unbiased manner whether processes apart

from antitumor immunity negatively correlate with stemness, we
conducted differential expression tests to identify gene-expression
patterns associated with the lowest versus highest stemness quintiles
(<20th versus >80th percentiles) for each analyzed cancer type.
Even with this unbiased approach, nearly all of the pathways re-
currently enriched in low-stemness samples within a cancer were
immune-related (SI Appendix, Fig. S5). Recognizing that the pres-
ence of nonmalignant cells can confound expression analyses of
bulk-sequenced tumor samples by diluting tumor-specific expres-
sion signatures, we performed additional analyses to control for
such effects. First, using recently published estimates of purity
across TCGA (27), we found that the association between tumor
purity and stemness was negligible and failed to reach significance
in a pan-cancer linear model controlling for cancer type (P = 0.23).
Second, we refit the differential expression models described above
to control for tumor purity and repeated the pathway enrichment
analyses, still finding that immune-associated pathways were
enriched in low-stemness tumors (SI Appendix, Fig. S6).
To evaluate the relative contributions of malignant versus

nonmalignant cells (e.g., stromal cells) to the stemness score, we
applied our stemness metric to a single-cell RNA sequencing
(scRNA-seq) dataset of lung cancer (28), which comprises a
comprehensive inventory of different cell types from the tumor
microenvironment (>52,000 cells from five patients). The aver-
age stemness score was much higher in cancer cells than any
other cell type, including fibroblasts, myeloid cells, or lympho-
cytes (SI Appendix, Fig. S7) (Tukey HSD; P < 10−15), strongly
supporting the notion that the stemness signature largely ema-
nates from cancer cells rather than stromal or other cell types in
the tumor microenvironment.

Stemness Associates with Immunologically Cold Cancers Measured
via Immunohistochemistry. To confirm the negative association
between stemness and lymphocyte infiltration, we turned to three
patient cohorts with matched immunohistochemistry (IHC)-based
T cell infiltration scores and gene-expression data suitable for
computing a stemness score. Using a cohort of 33 colorectal cancer

patients (29), we found a strong negative association between
stemness and total infiltrating CD3+ T cells (ρ = −0.63; P < 0.001)
(Fig. 3A). Furthermore, in this cohort the xCell-based immune
signature was strongly correlated with infiltrating CD3+ cells (ρ =
0.69; P < 0.001), supporting its fidelity for measuring immune-cell
infiltration. With this validation in hand, we compared the xCell-
based immune signature and stemness for the total patient cohort
with available microarray data (n = 585), and again observed a clear
negative correlation (ρ = −0.22; P < 10−7).
We next evaluated this relationship in a cohort of 35 lung cancer

patients with matched RNA-sequencing and IHC-based quantita-
tion of immune cell infiltrates (30). For consistency with the above
analysis, we calculated the infiltration of T cells by summing pre-
viously calculated CD4+ and CD8+ cell fractions. Although we
observed a negative association between the stemness score and the
percent of infiltrating T cells, this did not reach statistical signifi-
cance (ρ = −0.32; P = 0.07) (Fig. 3B). Nonetheless, the additional
RNA-seq data in this cohort revealed a clear negative association
between the stemness and immune signature at the transcriptional
level (n = 199 tumor samples; ρ = −0.19; P = 0.007).
Finally, we evaluated a small cohort of high-grade serous

ovarian cancer (HGSC) cases (15) for which matched IHC-based
T cell counts and microarray-based gene-expression data were
available for multiple tumor sites within each patient (n =
44 samples from 12 patients). Consistent with the above findings,
we found a negative association between stemness and total
CD3+ T cells (negative binomial mixed effects model; P =
0.0028) (Fig. 3C). In addition, we previously subjected samples
from this cohort to Getis-Ord Gi* “hotspot” analysis to quantify
immune cell engagement with tumor cells (15). Intriguingly, all
hotspot metrics showed a clear negative association with stem-
ness (mixed-effects models; P < 0.01; 44 samples from 12 pa-
tients) (Fig. 3D, FCI shown) (31), suggesting that stemness
negatively influences lymphocyte engagement with tumor cells.

Stemness Associates with Intratumoral Heterogeneity. Stemness has
been proposed to foster tumor clone diversity, with the replicative
potential of CSCs enabling greater tumor heterogeneity (6, 9). Our
hypothesis suggests that stemness could additionally promote
intratumoral heterogeneity by inhibiting immune selection against
new cancer clones. These predictions have not, to our knowledge,
been systematically tested within or across cancers. Therefore, we
compared stemness and intratumoral heterogeneity using data from
two recent TCGA studies (26, 32). Using data from the first study
(32), we found a dramatic positive correlation between median
stemness and median number of clones in a cancer (n = 935 pa-
tients across 11 cancers; ρ = 0.75; P = 0.008) (Fig. 4A). Further-
more, we found a positive association between stemness and tumor
clone count in a linear model controlling for cancer site and tumor
purity, indicating that these associations are discernible both across
and within cancers (P = 0.0002) (Fig. 4B). Using pan-cancer pre-
dictions of intratumoral heterogeneity from a second, larger
TCGA-based study (26), we recovered a similarly strong association
(ρ = 0.64; P = 0.002; n = 6,791 samples across 21 cancers) (Fig. 4C),
which was again significant across all samples when controlling for
cancer site and tumor purity in a linear model (P < 10−15) (Fig. 4D).

Potential Mechanisms and Consequences of Stemness-Associated
Immunosuppression. We evaluated the association between
stemness and several known genetic and environmental factors
that affect antitumor immunity. Antitumor immunity involves
T cell recognition of neo-antigens arising from somatic muta-
tions (33). Therefore, we examined the association between
stemness, immune signature, and nonsynonymous mutation load,
analyzing TCGA samples with available mutation calls (n =
6,682). While median mutation load correlated with median
immune signature across cancers (ρ = 0.49; P = 0.02, n = 21),
there was generally little correlation within cancers, as has been
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reported in other TCGA-based analyses (34) (SI Appendix, Fig.
S8A). Across cancers, median mutation load showed a positive
association with median stemness (ρ = 0.52; P = 0.015, n = 21) (Fig.
5A). Similarly, within cancers, we generally found positive associa-
tions between mutation load and stemness (Fig. 5B). We recovered
qualitatively similar but slightly stronger associations between
stemness and neoantigen load computed with NetMHCpan in the
above pan-cancer analysis (26) (SI Appendix, Fig. S8 B and C).
Cancer-testis (CT) antigens are tumor antigens that normally

are expressed in gametogenic tissue but become aberrantly
expressed in a broad range of malignancies, often leading to an
immune response (35). Using a set of 201 CT genes curated by
the CTdatabase (Dataset S2) (36), we generated an ssGSEA CT
antigen score and found strong positive associations with stem-
ness within cancers (Fig. 5C). Accordingly, there was a generally
negative association between CT antigen score and the immune
signature, which was significant in 8 of 21 cancers (Padj < 0.05)
(SI Appendix, Fig. S9). Thus, like neoantigens, CT antigens show
a positive association with stemness and a negative association
with immune signature.
Normal stem cells have been shown to suppress endogenous

retrovirus (ERV) expression, presumably to prevent insertional
mutagenesis in long-lived stem cell lineages (37). Conversely,
ERV expression can be activated in cancer cells (38, 39), where it
can potentially elicit antitumor immune responses by activating
viral defense mechanisms and the type I IFN response (40) or by

yielding immunogenic foreign epitopes (41). Despite these pos-
sibilities, associations between immunity and ERV expression
were inconsistently observed in a recent pan-cancer analysis (42).
To better understand this relationship, we investigated interac-
tions between stemness, immune signature, and ERV expression.
Because of the repetitive nature of ERVs, we used ERV-specific
read-mappings (42) to evaluate ERV expression in 4,252 TCGA
samples that overlapped with our stemness and immune signature
analysis. Using redundancy analysis (a constrained extension of
principal components analysis), we found that multivariate ERV
expression was not clearly associated with the immune signature,
consistent with prior reports (42); members of the ERVK family
were an exception, showing moderate positive associations with
immune signature (Fig. 5D). In contrast, ERV expression showed a
pervasive negative association with stemness (P < 0.001) (Fig. 5D),
consistent with the notion that suppression of ERV expression is a
feature of the stem cell phenotype (43). Thus, both immune sig-
nature and ERV expression are negatively associated with stem-
ness, but these appear to be largely orthogonal relationships.

Tumor Cell Intrinsic Mechanisms of Stemness-Mediated Immuno-
suppression. To address whether the negative association be-
tween stemness and immune signature is attributable to cancer
cell-intrinsic processes, we calculated stemness scores for 1,048
cancer cell lines using gene-expression data from the Cancer Cell
Line Encyclopedia (CCLE) (44), as well as the cancer cell fraction
from the scRNA-seq study of lung cancer, mentioned above (28).

Fig. 3. Relationship between stemness and immune cell infiltrates in different cancer cohorts scored via IHC. (A) Stemness score negatively associates with
tumor-infiltrating CD3+ T cells in colorectal cancer (P < 0.01; n = 33; data from ref. 29). Each point represents one patient sample. (B) Stemness negatively
associates with tumor-infiltrating T cells (in this case the sum of CD4+ and CD8+ cells) in lung cancer (P = 0.07; n = 35; data from ref. 30). Colors denote adeno
versus squamous cell lung cancers. (C) Stemness is significantly associated with tumor-infiltrating CD3+ T cells in a multisite dataset of high-grade ovarian
cancer (P = 0.028; n = 44 samples from 12 patients; data from ref. 15). Colors represent individual patients. (D) By hotspot analysis, the fraction of tissue area
occupied by colocalizing tumor and immune cells (FCI) is negatively associated with stemness in a multisite dataset from high grade ovarian cancer (P < 0.01;
44 samples from 12 patients; data from ref. 15). Colors represent individual patients.
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We first assessed associations between stemness scores and the
expression of 11 mapped ERVs in CCLE transcriptomes and found
that three of three ERVs with nonnegligible expression levels
across cell lines were significantly negatively associated with stem-
ness, two of which remained significant when controlling for tissue
of origin (linear models; Padj < 0.05) (SI Appendix, Fig. S10). We
next generated an ssGSEA score for type I IFN signaling (reactome
IFN α/β pathway gene set) and generally observed negative corre-
lations with stemness within cancers in the TCGA dataset (Fig. 6A).
When evaluating this association in the CCLE dataset, we observed
a clear negative relationship between the IFN signature and
stemness (ρ = −0.22. P < 10−10) (SI Appendix, Fig. S11A), which
remained significant when controlling for tissue of origin of the cell
line (linear model; P < 0.001) and when omitting cell lines derived
from hematopoietic lineages (linear model; P = 0.02).
Analysis of the aforementioned lung cancer scRNA-seq

dataset (28) also revealed a striking negative association be-
tween cancer cell-intrinsic stemness and IFN α/β signaling in four
of five patients (Fig. 6B). To further test this association in
nonneoplastic lineages, we took advantage of the stem cell gene-
expression dataset previously used to validate stemness signa-
tures (GSE30652), which likewise showed a striking negative
association between stemness and type I IFN signaling (ρ = −0.81;
P < 10−15) (SI Appendix, Fig. S11B).
Finally, to examine other cell-intrinsic mechanisms of immu-

nosuppression, we analyzed a curated list of immunosuppressive
genes previously reported to be expressed in human cancer cells.
Using both the CCLE and pan-cancer TCGA datasets, the ex-
pression of each of these genes was assessed in relation to our
stemness signature (Fig. 6 C and D). This revealed positive as-
sociations between stemness and a number of immunosuppres-

sive genes, including CD276 [B7-H3, shown to inhibit T cell
activation and autoimmunity (45)], PVR [CD155, a member of
the B7/CD28 superfamily, shown to exhibit potent inhibitory
action in different subsets of immune cells (46)], and TGFB1 [a
key player in the induction of immunological tolerance (47)].
Thus, the stemness phenotype is associated with expression of
several gene products that could potentially serve as targets for
immune modulation.

Discussion
Although cancer stemness, antitumor immunity, and intra-
tumoral heterogeneity have all emerged as important features
of cancer in recent years, their covariation across cancers has
not been systematically investigated. Here we report that
stemness is associated with suppressed immune response,
higher intratumoral heterogeneity, and dramatically worse
outcome for the majority of cancers. Although correlative
analyses such as ours do not reveal causality, we propose that
the stemness phenotype found in cancer cells, similar to that in
normal stem cells, involves the expression of immunosuppres-
sive factors that engender the formation of immune-privileged
microenvironments in which tumor clone diversification can
occur. The resulting heterogeneity may provide a substrate for
the selection of treatment-resistant clones, resulting in inferior
clinical outcomes. Thus, our findings implicate stemness as a shared
therapeutic target to achieve the dual objectives of constraining
tumor evolution and enhancing antitumor immunity.
A recent pan-cancer analysis reported inconsistent relation-

ships between cancer stemness and immunity, recovering nega-
tive relationships between stemness and tumor-infiltrating
lymphocytes for some cancers and positive relationships for

Fig. 4. Stemness associates with intratumoral heterogeneity within and across cancers. (A) Median stemness and median clonality [inferred by Andor et al.
(32)] are strongly correlated across cancers (n = 11; P = 0.008). (B) Stemness score and clonality [inferred by Andor et al. (32)] are correlated across patients
while controlling for cancer type (n = 935; P = 0.0002). Colored points represent different tumor sites. (C) Median stemness score and median intratumoral
heterogeneity score [inferred by Thorsson et al. (26)] are strongly correlated across cancers (n = 20; P = 0.002). (D) Stemness score and intratumoral het-
erogeneity [inferred by Thorsson et al. (26)] are correlated across patients while controlling for cancer type (n = 6,791; P < 10−15). Colored points represent
different tumor sites. Spearman ρ values are shown.
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others (14). While this work provided a valuable perspective on
stemness across cancers, our results differ in that we recover
much stronger and more pervasive negative relationships with
immune infiltration and survival. In contrast to our ssGSEA
approach, the OCLR approach used above was validated on a
cohort that lacked any malignant samples. Moreover, when we
reproduced their analysis, we found many components of their
stemness score (i.e., positive OCLR model weights) were im-
munologically relevant genes; for example, among the 50 most
positive gene weights were IDO1, LCK, KLRG2, PSMB9 (a
component of the immunoproteasome), and multiple TNF-
receptors. With the OCLR approach, higher expression of
such immune genes contributes positively to the stemness score,
precluding an unbiased assessment of the relationship between
stemness and tumor immunity. As mentioned, it is also possible
that an immune cell signature in the tumor microenvironment
could negatively correlate with transcriptional signatures from
cancer cells simply through dilution of cancer-specific tran-
scripts by infiltrating immune cells. We took numerous precautions
to ensure this was not driving our results. These included con-
trolling for tumor purity in linear models throughout the analyses,

showing a nonsignificant relationship between stemness and
tumor purity, and identifying a negative relationship between
stemness and cell-intrinsic IFN signaling in individual lung
cancer cells (by scRNA-seq; Fig. 6B) and in cancer cell line tran-
scriptomes (SI Appendix, Fig. S11A).
A contribution of cancer stemness to intratumoral heteroge-

neity has been postulated for some time (6, 9), but direct evi-
dence has been lacking. We recovered a dramatic positive
association between stemness and multiple metrics of intra-
tumoral heterogeneity across cancers (Fig. 4), which is especially
noteworthy given that these metrics were derived from different
data types (i.e., mRNA vs. DNA). Given recent work from our
group and others linking increased intratumoral heterogeneity
with decreased immune cell infiltration (15, 16), one could
speculate that stemness might contribute to intratumoral het-
erogeneity by both increasing the replicative capacities of indi-
vidual tumor clones and by shielding antigenic clones from
elimination by the immune system.
We found generally positive associations between stemness

and mutation load within cancers (Fig. 5B), and clear evidence of
this across cancers (Fig. 5A), consistent with studies demonstrating

Fig. 5. Mutation load, CT antigen expression and ERV associations with stemness. (A) Median stemness and median mutation load are positively correlated
across cancers (n = 21; P = 0.015). Mutation load is represented as log-transformed nonsynonymous mutations per base (log10 ns mutations per base pair). (B)
Volcano plot reveals stemness score and mutation load correlate within some cancers (upper right quadrant). The x axis represents Spearman correlation ρ
values, and the y axis represents −log10-adjusted P values (Padj). Dashed red line indicates the significance threshold, Padj value = 0.05. (C) Stemness score and
CT antigen expression (ssGSEA of CT antigen gene set) positively correlate in most cancers. Bar plots show the Spearman ρ values for each cancer type, and
asterisks denote Padj < 0.05. (D) Redundancy analysis triplot reveals stemness negatively associates with multivariate ERV expression (P < 0.001; 33 ERVs
evaluated in 4,252 samples, analysis conditioned by cancer type).
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accumulation of mutations in normal adult stem cells (48). We
also found strong positive associations between stemness and CT
antigen expression (Fig. 5C), which is consistent with reports of
CT antigen expression in mesenchymal (49), embryonic stem
cells (50), and CSCs (51). It is also consistent with prior studies
(42) and the present work finding nonsignificant or negative
correlations between immune infiltration and CT antigen ex-
pression (Fig. 5D). Thus, the negative association between stemness
and immune response is not readily attributable to low neoantigen
or CT antigen load, strongly implicating the involvement of other
mechanisms.
ERVs, which constitute ∼8% of the human genome, are

known to be suppressed in pluripotent and embryonic stem
cells (43) yet activated in human cancer (38, 39), leading us to
ask which behavior would predominate in high stemness

cancers. We found a strong negative association between
stemness and ERV expression in both TCGA (Fig. 5D) and
cancer cell line data (SI Appendix, Fig. S10), indicating that
the stemness phenotype in human cancer retains this property
of normal stem cells.
We identified a negative correlation between stemness and

type I IFN signaling in the TCGA (Fig. 6A), CCLE (SI Ap-
pendix, Fig. S11A), and scRNA-seq datasets (Fig. 6B).
Whether ERV suppression underlies the low intrinsic IFN
signaling in high stemness cancer cells awaits experimental
investigation. In support of our results, an attenuated innate
immune response is a major characteristic of embryonic stem
cells (52), and we find clear confirmation of this in nonneo-
plastic stem cell transcriptomes (SI Appendix, Fig. S11B).
Collectively, these data suggest that activation of a stemness

Fig. 6. Cell-intrinsic stemness score associates with decreased type I IFN signaling and increased expression of CD276 and PVR. (A) Volcano plot reveals that
stemness score and type I IFN signaling (reactome IFN α/β pathway ssGSEA) are negatively correlated in most cancers (upper left quadrant). The x axis
represents Spearman correlation ρ values, and the y axis represents −log10 adjusted P values (Padj). Dashed red line indicates the significance threshold,
Padj = 0.05. (B) Stemness score is negatively associated with type I IFN signaling (reactome IFN α/β pathway ssGSEA) in tumor cells from four of five lung
cancer patients, based on scRNA-seq data from ref. 28. Each point represents a single tumor cell. (C and D) Heatmaps showing Spearman correlations for
stemness and select immunosuppressive genes based on data from the CCLE (C) and TCGA (D). Spearman correlations were calculated within tissues
represented in the CCLE by more than 10 cell lines. Genes are ranked according to the final column (“overall”), which represents the correlation across all
samples, irrespective of cell line or tumor type. Red-blue intensities reflect the correlation ρ values. Asterisks denote Benjamini–Hochberg-corrected sig-
nificant associations (Padj < 0.05).

Miranda et al. PNAS | April 30, 2019 | vol. 116 | no. 18 | 9027

M
ED

IC
A
L
SC

IE
N
CE

S

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1818210116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1818210116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1818210116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1818210116/-/DCSupplemental


program in tumors could limit antitumor immune responses by
silencing ERVs and repressing type I IFN signaling in a cell-
intrinsic manner (53).
Using CCLE data, we found a clear association between

stemness and the expression of several immunosuppressive
genes, including CD276, PVR, and TGFB1 (Fig. 6C). These as-
sociations are especially intriguing given that CCLE-based gene
expression profiles are independent of any ongoing influence of
the immune system. CD276, a B7 family ligand, is now being
clinically targeted due to expression on both cancer cells and
tumor-infiltrating blood vessels (54). Intriguingly, CD276 is
coexpressed with CD133, a marker that distinguishes cell pop-
ulations enriched for CSCs in colorectal cancer (55). PVR is a
key ligand in an emerging checkpoint pathway involving TIGIT,
an inhibitory receptor expressed on T cells and other immune
cells (46). Although no association between stem cells and PVR
has been described so far in mammalian stem cells, expression of
PVR can be activated by sonic hedgehog signaling (56), a
pathway essential for self-renewal and cell fate determination in
normal and CSCs (57). TGFB1 and other TGFB family members
have well-documented roles in development (58) and CSC pro-
liferation and maintenance (59, 60).
Recent work has demonstrated that tumor-intrinsic onco-

genic signaling pathways have immune suppressive properties
(61), but this too can be understood in the context of stemness.
For example, molecular pathways involving WNT/B-catenin,
MYC, PTEN, and LKB1 have been implicated in the in-
hibition of antitumor immunity (61), yet they also play impor-
tant roles in stem cell maintenance (62–65). Thus, stemness
may provide a unifying framework for understanding how var-
ious oncogenic signaling pathways engender an immunosup-
pressive tumor microenvironment.
Although it remains unclear if stemness metrics derived from

bulk tumor samples represent rare populations of bona fide
CSCs or a wholesale shift of the cancer cell population toward a
higher stemness phenotype, our findings provide rationale for
therapeutic targeting of the stemness phenotype itself. In par-
ticular, if stemness plays a causative role in the formation of cold
tumor microenvironments, it may prove beneficial to target
specific molecules or pathways that are inherent to the stemness
phenotype, such as the aforementioned immunosuppressive
molecules. High-stemness cancers might also be rendered more
sensitive to immune control by administering drugs that induce
cell differentiation to irreversibly disrupt the stemness phenotype
(66). This might bring the additional benefit of constraining
further tumor evolution, creating the conditions for durable
clinical responses.

Materials and Methods
Data Acquisition and Processing. All analyses were conducted with R soft-
ware newer than version 3.4.2. We extracted clinical parameters and
molecular subtypes for TCGA data from the pan-cancer curated clinical
data of Liu et al. (67). Mutation data were downloaded from Firebrowse
(www.firebrowse.org) as the number of nonsynonymous mutations per
base. Tumor purity (27), mRNAsi (14), intratumoral heterogeneity (26, 32),
and CIBERSORT and neoantigen scores (26) were accessed by extracting
the relevant data for overlapping samples from the respective supplemental
materials.

For correlations between stemness scores and IHC-based immune cell
counts, immune cell infiltration data were provided by the authors of the
respective studies (29). We obtained matching expression data (micro-
array or RNA-sequencing) from the Gene Expression Omnibus (GEO:
GSE39582, GSE81089), or from the authors (15, 29, 30). Other expression
data for validation was obtained from the GEO (GSE30652, GSE15192,
GSE31257, GSE76009).

We accessed RNA sequencing as upper quartile-normalized fragments per
kilobase of transcript per million mapped reads using the TCGAbiolinks R/
Bioconductor package (68), for each cancer of interest, and expression data
were merged across cancers. For genes with multiple annotated transcripts,
we selected the transcript with the highest expression to represent the gene,

then filtered the expression set to include only primary samples (except for
melanoma, for which we included metastases), removed patients with
duplicate samples, and removed any patients without a consensus purity
score in Aran et al. (27) to enable purity corrections in analyses. For
microarray datasets, we converted probe IDs to human gene symbols
using biomaRt (69), and retained the probe with the highest expression
for each gene, as above. We accessed the scRNA-seq data and tSNE em-
beddings in Lambrechts et al. (28) from EBI (E-MTAB-6149), while cell type
annotations and anonymized patient codes were provided by the au-
thors. Where appropriate (e.g., for linear modeling), expression data
were log2(x + 1) -transformed.

We calculated stemness and other ssGSEA signatures using the GSVA
package in R (gene sets in Dataset S1) (70) without normalization, and
subsequently scaled values as z-scores within datasets of interest. For ssGSEA
calculations on scRNA-seq, we first omitted genes below the median of av-
erage expression across samples; this left representation for 61 of 109 of the
genes in the stemness signature. xCell enrichment scores were calculated in
R, using the rawEnrichment analysis (20) function, which omits scaling scores
to [0, 1] and correction for correlations among related cell types (20), as we
sought to avoid introducing nonlinearities from these steps into analysis. To
generate the immune signature, we summed z-scored signatures of cell
types of interest (CD8+ T cells, NK cells, B cells). Because z-scoring of ssGSEA
scores was done within each dataset, these scores should not be directly
compared across datasets.

Quantification and Statistical Analysis. We used nonparametric Spearman’s
correlation to assess pairwise associations between variables of interest
within cancers, or for median values across cancers, adjusting for multiple
tests using the Benjamini–Hochberg method, where appropriate. For
analyses across multiple cancer types or subtypes, we used linear models,
controlling for site or subtype as fixed main effects, and inspecting model
residuals to ensure model assumptions were reasonable. For analyses
controlling for purity, purity (as consensus purity estimate from ref. 27) was
included as a covariate (main effect) in linear models.

We conducted survival analyses using Cox proportional hazards models,
calculating 95% CIs on log hazard ratios. We tested model assumptions
using cox.zph (71). Where there were significant violations of model as-
sumptions (P < 0.05), we inspected model Schoenfield residuals. We found
that for the few instances in which model assumptions were violated, this
was attributable to higher than predicted survival for some long-term
survivors. For analyses across all patients and cancer types, we stratified
Cox models by cancer type. For IHC data with multiple samples taken from
the same patient, we modeled patient as a random effect in linear mixed-
effects models implemented in lme4 in R (72) and assessed the signifi-
cance of fixed effects of interest using likelihood-ratio tests on nested
models.

Pathway enrichment analysis was conducted using ReactomePA (73) after
testing for differential expression between quintiles using limma (74). For
enrichment analysis, we selected the top 1,000 significantly down-regulated
genes in high stemness cancers based on the moderated t statistic; in cancers
where <1,000 genes were significantly down-regulated (Padj < 0.05), we
selected all significantly down-regulated genes for downstream analysis.
Significance of enrichment was evaluated at Padj < 0.05, and recurrently
enriched pathways were defined as those that were significantly enriched in
the greatest number of cancers. In limma analyses that included purity as a
covariate, purity was log-transformed for consistency with the trans-
formation of expression values.

To assess ERV expression, we first variance-filtered mapped ERVs to select
those above the median interquartile range of expression using the gene-
filter R package (75). We conducted partial redundancy analysis using the
vegan package (76), implementing the default distance metric (Euclidean).
We conditioned the analysis by cancer type to control for cancer type-
specific effects, and tested the significance of multivariate associations us-
ing permutation tests (n = 1,000).
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