
M A J O R  A R T I C L E

1786  •  jid  2019:219  (1 June)  •  Howard et al

The Journal of Infectious Diseases

 

Received 19 October 2018; editorial decision 7 December 2018; accepted 14 December 2018; 
published online December 19, 2018.

Presented in part: IDWeek 2018, October 2018, San Francisco, CA.
aL. M. H. and J. B. G. contributed equally to this work.
Correspondence: K.  M. Edwards, MD, Sarah H.  Sell and Cornelius Vanderbilt Chair in 

Pediatrics, Professor of Pediatrics, Division of Infectious Diseases, D-7235 MCN, 1161 21st 
Avenue South, Nashville, TN 37232-2581 (kathryn.edwards@vanderbilt.edu).

The Journal of Infectious Diseases®    2019;219:1786–98
© The Author(s) 2018. Published by Oxford University Press for the Infectious Diseases Society 
of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.
DOI: 10.1093/infdis/jiy721

AS03-Adjuvanted H5N1 Avian Influenza Vaccine 
Modulates Early Innate Immune Signatures in Human 
Peripheral Blood Mononuclear Cells
Leigh M. Howard,1,a,  Johannes B. Goll,3,a Travis L. Jensen,3 Kristen L. Hoek,2 Nripesh Prasad,4,  Casey E. Gelber,3 Shawn E. Levy,4 Sebastian Joyce,2,5 
Andrew J. Link,2,6,7 C. Buddy Creech,1 and Kathryn M. Edwards1

1Vanderbilt Vaccine Research Program, Department of Pediatrics and 2Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee;  
3The Emmes Corporation, Rockville, Maryland; 4HudsonAlpha Institute for Biotechnology, Huntsville, Alabama; 5Veterans Administration Tennessee Valley Healthcare System, Nashville; 
Departments of  6Chemistry and 7Biochemistry, Vanderbilt University, Nashville, Tennessee

Background.  Adjuvant System 03 (AS03) markedly enhances responses to influenza A/H5N1 vaccines, but the mechanisms of 
this enhancement are incompletely understood.

Methods.  Using ribonucleic acid sequencing on peripheral blood mononuclear cells (PBMCs) from AS03-adjuvanted and 
unadjuvanted inactivated H5N1 vaccine recipients, we identified differentially expressed genes, enriched pathways, and genes that 
correlated with serologic responses. We compared bulk PBMC findings with our previously published assessments of flow-sorted 
immune cell types.

Results.  AS03-adjuvanted vaccine induced the strongest differential signals on day 1 postvaccination, activating multiple in-
nate immune pathways including interferon and JAK-STAT signaling, Fcγ receptor (FcγR)-mediated phagocytosis, and antigen 
processing and presentation. Changes in signal transduction and immunoglobulin genes predicted peak hemagglutinin inhibition 
(HAI) titers. Compared with individual immune cell types, activated PBMC genes and pathways were most similar to innate im-
mune cells. However, several pathways were unique to PBMCs, and several pathways identified in individual cell types were absent 
in PBMCs.

Conclusions.  Transcriptomic analysis of PBMCs after AS03-adjuvanted H5N1 vaccination revealed early activation of innate 
immune signaling, including a 5- to 8-fold upregulation of FcγR1A/1B/1C genes. Several early gene responses were correlated with 
HAI titer, indicating links with the adaptive immune response. Although PBMCs and cell-specific results shared key innate immune 
signals, unique signals were identified by both approaches.
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Emerging avian influenza viruses, such as A/H5N1 and A/
H7N9, are associated with high mortality and pose a substan-
tial threat for the next influenza pandemic [1–3]. Development 
of effective vaccines for these strains has been hindered by 
poor immunogenicity. Multiple dose regimens using higher 
hemagglutinin content and addition of potent adjuvants have 
enhanced antibody responses [4]. Oil-in-water adjuvants MF59 
[5] and AS03 [6] reduce the antigen dose required to stimu-
late immune responses to influenza A/H5N1 and other avian 
influenza vaccines [6–12]. Antigen-sparing approaches are 

particularly critical in global pandemic preparedness given lim-
itations in production capacity of influenza vaccine antigens.

Conventionally, immune responses to avian influenza vaccines 
are measured by hemagglutination inhibition (HAI) or neutral-
izing (Nt) antibody titers 4–6 weeks after the second vaccination. 
More rapid identification of poor vaccine responders would be 
an attractive component of pandemic preparedness. Systems vac-
cinology provides a comprehensive approach to studying vaccine 
responses by correlating antibody and cell-mediated responses 
with changes in gene transcript, protein, and metabolite abun-
dance in immune cells [13–16]. This approach may uncover new 
mechanisms of immune responses to vaccines and adjuvants [17, 
18] and identify molecular signatures that correlate with anti-
body responses as early as 1 day after vaccination [19, 20].

We previously applied a systems vaccinology approach to study 
an AS03-adjuvanted influenza A/H5N1 vaccine in healthy adults 
in a Phase I clinical trial evaluating transcriptomic and proteomic 
responses to vaccination in isolated populations of 6 immune cell 
types [19–21]. However, this cell separation approach is highly 
labor and resource intensive. Studying bulk populations of cells, 
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such as peripheral blood mononuclear cells (PBMCs), is less labo-
rious. However, it is unclear whether evaluating bulk PBMCs will 
provide such detailed immune insights as observed when study-
ing individual immune cell types. In this study, we present our 
assessment of transcriptomic responses in bulk PBMCs based on 
future-use samples from our earlier Phase I study [19], identify 
PBMC gene signatures that predict peak antibody response, and 
compare PBMC transcriptomic responses to individual immune 
cell type responses as reported in our earlier study [19].

METHODS

Study Design

We performed a single-center, randomized, double-blinded, 
controlled, Phase I  study enrolling healthy adults 19–39  years 
old to assess the safety, immunogenicity, and molecular immune 
responses of intramuscular-inactivated influenza A/H5N1 (3.75 
mcg hemagglutinin [HA] A/Indonesia/05/2005) split-virus 
(SV) vaccine (Sanofi) administered with either AS03 adjuvant 
(SV-AS03; GlaxoSmithKline) or phosphate-buffered saline 
(SV-PBS). Detailed methods and results from the trial have been 
previously reported [19]. In brief, 20 subjects were randomized 
1:1 to the SV-AS03 (n = 10) or SV-PBS (n = 10) group. Subjects 
received two 0.5-mL injections 28 days apart. Subjects and all 
study personnel were blinded to vaccine assignment.

Laboratory Procedures

Whole blood samples for ribonucleic acid sequencing (RNA-
Seq) were collected on study visit days −28, −14, and 0 (pre-
vaccination) and days 1, 3, 7, and 28 (after first vaccination). 
Sera for HAI and Nt antibody assays were collected at study visit 
days 0, 1, 3, 7, 28, and 56.

Cell Sorting
Whole blood samples (90 mL) underwent Ficoll separation to 
yield PBMC and polymorphonuclear cell (PMN) populations. 
For our earlier, published cell type-specific analyses [19], suspen-
sions of PBMCs or PMNs were subjected to magnetic-activated 
cell sorting (MACS) then fluorescence-activated cell sorting 
(FACS) for purification of neutrophils, monocytes, dendritic 
cells (DCs), natural killer (NK) cells, T lymphocytes, and B lym-
phocytes [19, 20]. Purified immune cell types and bulk PBMCs 
were frozen in homogenization buffer and stored at −80°C.

Hemagglutinin Inhibition Antibody Assays
Sera for HAI responses against the homologous A/
Indonesia/05/2005 virus were measured as previously described 
(Southern Research, Birmingham, AL) [22]. Values below the 
limit of detection (1:10) were imputed as half the limit of detection.

Ribonucleic Acid Sequencing and Data Processing
The RNA-Seq experiments were performed as previously 
described [19]. Briefly, RNA was extracted from PBMCs from 

140 future-use samples from our earlier Phase 1 study (20 sub-
jects at 7 time points), polyadenylated RNAs were isolated, 
and next-generation sequencing expression libraries were pre-
pared. Paired-end sequencing (25 million, 50 base pairs) was 
performed on an Illumina HiSeq2000 sequencer. Four samples 
with insufficient RNA were excluded from downstream pro-
cessing. Paired-end reads were mapped against the human ref-
erence genome (GRCh37, ENSEMBL version 63) using TopHat, 
version 2.0.0. Gene expression quantification was conducted 
using Subread, version 1.4.6, counting mapped paired-reads to 
obtain fragment counts per gene (Supplementary Dataset 1, see 
Supplementary Text  for additional details).

Statistical Analysis

Systematic sample differences in fragment counts were cor-
rected using the trimmed mean of M-value (TMM) normaliza-
tion method [23]. Negative binomial models, as implemented 
in edgeR (version 3.2.4) [24], were used to identify genes that 
were differentially expressed (DE) between vaccine groups (SV-
AS03 vs SV-PBS) based on a likelihood ratio test of the group 
x time interaction adjusting for paired samples (subject effect) 
and sample percentage guanine-cytosine (GC) content (covari-
ate). Subject-specific prevaccination levels were estimated 
as the mean of prevaccination samples (days −28, −14, 0)  as 
described in Supplementary Text Section 2.4.1 and [19]. Genes 
with a false discovery rate (FDR)-adjusted P ≤ .05 (p.adjust R 
function) and fold change difference between groups of ≥1.5-
fold were deemed to be DE. Enrichment analysis for KEGG 
[25] (version 70.0) and MSigDB (version 4.0) [26] pathways 
was performed using the goseq R package [27] (version 1.12.0) 
accounting for gene length bias (FDR-adjusted P ≤ .01). The 
TMM-normalized log2 fragment counts per million (LCPM) as 
implemented in edgeR (Supplementary Dataset 2) were used as 
input for principal component analysis (PCA) and to calculate 
log2 fold changes used for regularized linear regression analy-
sis (glmnet version 2.0–2 R package) to identify gene responses 
that best predicted log2 peak HAI titer. Leave-one-out cross-val-
idation was used to select optimal models (see Supplementary 
Text for additional details).

Ethics Statement

The trial was approved by the Vanderbilt University 
Human Research Protections Program and is registered on 
ClinicalTrials.gov (NCT01573312). All subjects provided writ-
ten informed consent before initiation of study procedures.

RESULTS

Peripheral Blood Mononuclear Cells Showed Strongest Differential Gene 

Expression Responses on Day 1 After Vaccination

In the SV-AS03 group compared with the SV-PBS group, we 
identified 474 DE genes for day 1 (Supplementary Table 1); 421 
of 474 (89%) were up-regulated, whereas 53 of 474 (11%) were 
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down-regulated from prevaccination. No DE genes between vac-
cine groups were detected at days 3, 7, or 28. Heatmap analysis of 
DE genes (Figure 1) confirmed strongest differential responses 
at day 1, both in fold change magnitude and consistency within 
the SV-AS03 group. The day 1 signal was primarily driven by 
up-regulated genes that were strongly increased in most SV-AS03 
subjects. The SV-AS03 treatment effect waned quickly, as was ev-
ident by reduced within-group clustering and fold changes.

SV-AS03-Responsive Genes Are Known to Play a Role in Innate 
Immune Signaling and Immune Response to Influenza A Infection
To understand the functional composition of day 1 DE genes, we 
performed pathway enrichment analysis (Supplementary Text, 
Tables A13–A19). Enriched KEGG pathways included known 
innate immune response signaling pathways such as JAK-STAT, 
tumor necrosis factor (TNF), nuclear factor (NF)-κB, NOD-like 
receptor, Toll-like receptor (TLR) signaling pathways, and com-
plement and coagulation cascades. Cytokine-cytokine receptor 
interaction, chemokine signaling pathway, and Reactome path-
way-based interferon (IFN) α/β signaling and IFN-γ signaling 
were also perturbed at day 1. Most DE genes in these pathways 
were up-regulated in the SV-AS03 relative to the SV-PBS group.

Among KEGG human infectious disease pathways that were 
overrepresented in SV-AS03-responsive genes, Influenza A 
had the highest number of overlapping DE genes (20 genes) 
(Figure 2A). Within this pathway, significant up-regulation of 
TLR4 was observed in the SV-AS03 group; the corresponding 
TLR4 receptor is known to recognize viral proteins and induce 
innate immunity, in part by triggering NF-κB signaling and 
subsequent innate immune activation and cytokine signaling 
[28]. This pathway also showed up-regulation of IFN-inducible 
genes, MXA and OAS, the IFN-γ receptor gene (IFNGR), and 
the intracellular JAK-STAT signaling pathway, which activates 

transcription of IFN-inducible genes that trigger antiviral 
responses. Genes encoding for interferon gamma-induced pro-
tein 10 (IP-10) and interleukin-1 were also significantly induced 
in the SV-AS03 group relative to the SV-PBS group. SOCS3, a 
negative regulator of the JAK-STAT pathway, was increased, 
suggesting that some level of negative feedback was triggered 
as early as day 1.

One of the pathways more strongly associated with the dif-
ferential response between the SV-AS03 and SV-PBS groups 
was the KEGG antigen processing and presentation pathway. 
Several genes associated with major histocompatibility complex 
(MHC) class I and class II pathways were significantly enriched 
in the SV-AS03 group at day 1 postvaccination (Figure 2B). For 
MHC class I, this included immunoproteasome genes (PSME2, 
PSMB9, PSME2P2) and chaperones for MHC class  I  loading 
(HSPA6, HSPA7, and TAP1). The FcγR-mediated phagocyto-
sis pathway exhibited a strong differential response between 
groups (Figure 2C), with significant up-regulation of FcγRI 
(FCGRIA, FCGRIB, FCGRIC) and FcγRIIA (FCGRIIA) genes, 
which encode receptor proteins on phagocytes involved in anti-
gen binding and interacting with immunoglobulin (Ig)G anti-
bodies to regulate immune responses.

Changes in Day 1 Signal Transduction Genes and Day 7 
Immunoglobulin Genes Best Correlated With Peak Hemagglutinin 
Inhibition Antibody Responses
In addition to identifying DE genes between groups, we 
investigated genes across groups whose changes from pre-
vaccination best predicted peak HAI titer 28  days after the 
second vaccination using regularized linear regression analysis 
(Supplementary Table 2; Table A20, Supplementary Text). The 
day 7 model achieved the best overall fit (17 predictive genes), 
followed by day 1, day 3, and day 28 (15, 5, and 6 predictive 
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Figure 1.  Heatmaps of baseline log2 fold changes of differentially expressed genes in peripheral blood mononuclear cells for each postvaccination time point. Dendrograms 
were obtained using complete linkage clustering of uncentered pairwise Pearson correlation distances between log2 fold changes in log2 fragment counts per million. Cells 
are color-coded by log2 fold change (red, up-regulated from baseline; blue, down-regulated from baseline).
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genes, respectively). For all 17 predictive genes in the day 7 
model, expression was positively correlated with log2 peak HAI 
titer (Figure 3). These included several Ig genes (IGKV1−5, 
IGHG1, IGKV2−24, IGHV1−69, IGHV3−74, IGKV3−15) and 

MK167, a gene involved in cell proliferation, which had the 
highest relative impact in predicting HAI titer. At day 1, an 
increase in expression of several signal transduction genes 
(STAT1, FCGR1C, FCGR1A, IRF9, PSME2, and SOCS3) was 

Figure 2.  Pathway responses for influenza A infection, antigen processing and presentation, and Fc-γ receptor-mediated phagocytosis. (Left) Color-coded KEGG pathway 
maps for day 1. (Right) Subject-specifc baseline log2 fold changes for pathway genes for day 1 by vaccine group (red, up-regulated; blue, down-regulated). (A) Influenza A. (B) 
Antigen processing and presentation. (C) FcγR-mediated phagocytosis. Pathway node color gradient encodes log2 fold change difference (LFCD) between vaccine groups 
(for multigene nodes the median LFCD was used: red, increased log2 fold changes response for the split-virus (SV)-AS03 group relative to the SV-PBS group; blue, decreased 
log2 fold changes response for the SV-AS03 group relative to the SV-phosphate-buffered saline (PBS) group; black, fold change close to 1; dark gray, genes filtered out due 
to low overall expression; light gray, gene missing database mapping; white, nonhuman gene). Heatmaps are color coded based on subject-specific log2 fold changes in log2 
fragment counts per million.
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positively correlated with peak titer (Figure 3). Negative cor-
relations were observed for AL138831.1, ADAMTS7, BAIAP3, 
and HSPG2, indicating that these genes may negatively regu-
late subsequent antibody response. Scatterplots for all genes are 
shown in Figures A55–A58, Supplementary Text.

Differential Peripheral Blood Mononuclear Cell Transcriptomics 
Signals Were Most Similar to Flow-Sorted Monocyte, Dendritic Cell, 
and Neutrophil Signals
To compare bulk PBMC signals to individual immune cell 
types, we compared expression profiles using PCA and assessed 
overlap in DE genes and enriched pathways. Our prior PCA as-
sessment revealed that gene expression profiles based on LCPM 
clustered according to 3 distinct cell groups: (1) neutrophils, (2) 
lymphocytes (T, B, and NK cells), and (3) DCs and monocytes 
[19, 20]. Using PCA on the  combined data, PBMC samples 
formed a unique cluster that was closest to the lymphocyte fol-
lowed by monocyte/DC clusters (Figure 4). As expected, PBMCs 
clustered distinctly away from neutrophils. Based on Jaccard’s 
Similarity Index, the greatest similarity in DE gene expression 
between PBMCs and individual cell types was for monocytes 
(Jaccard coefficient 0.21, 251 shared DE genes) followed by DCs 
(0.18, 106 shared genes) and neutrophils (0.13, 123 shared DE 
genes) (Figure 5A, Supplementary Table 1). Neutrophils had 
the most unique DE genes (394) followed by PBMCs, mono-
cytes, and DCs (274, 181, and 70, respectively) (Figure 5B). Five 
up-regulated genes (IRF1, PARP9, STAT1, GBP1, and EPSTI1) 
were identified in PBMCs and in each of the 6 immune cell 
types. In our cell-specific assessments, we identified a core net-
work of 80 genes that were DE in monocytes, neutrophils, and 
DCs at day 1 postvaccination [19]. Among these 80 genes, 65 
(81%) were also identified in PBMCs.

To compare functional composition of DE genes between 
PBMCs and individual immune cell types, we performed 
pathway enrichment analysis based on the Reactome database 
[29] (Supplementary Table 3). By enrichment score, PBMCs 
Reactome pathway profiles were functionally most similar to 
neutrophils, monocytes, and DCs (Figure 6, Supplementary 
Table 3). Of 34 Reactome pathways enriched in PBMCs, 17 were 
shared by at least 1 cell type, whereas 17 were unique to PBMCs. 
Most of the shared signals were related to innate immune re-
sponse signaling, whereas PBMCs showed unique enrich-
ment signals related to hemostasis, Toll-like receptor signaling, 
platelet activation, inflammasomes, and regulation of IFNG sig-
naling. Fifteen pathways were significantly enriched in at least 1 
cell type, but not in PBMCs. Most of these were uniquely iden-
tified in neutrophils, including MHC class II antigen presenta-
tion. Interferon-γ and IFN α/β signaling were perturbed in all 
cell populations.

Early Activation of Genes in the Fcγ Receptor Family Was a Key 
Immune Signal Observed in Gene Expression, Pathway Enrichment, 
and Predictive Antibody Analyses
We identified (1) significant differential up-regulation of 
FCGRIA, FCGRIB, FCGRIC, FCGRIIA, and FCGRIIC genes 
in the SV-AS03 relative to the SV-PBS group, (2) robust coex-
pression of FCGR1A and FCGR1B at day 1 after vaccination 
(CPMCD1-008; Figure A18, Supplementary Text), and (3) 
FCGRIA and FCGR1C as predictors of later peak HAI titer 
(Figure 3). To further investigate the FcγR signal in PBMCs 
in the context of our previous cell-specific assessments, we 
contrasted fold change responses for 10 known FcγR genes 
using heatmap and radar plot analysis across cell populations 
(Figure 7). The strongest fold change signals were observed at 
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day 1 for FCGR1A, FCGR1B, and FCGR1C in PBMCs of the 
SV-AS03 group, which ranged from 5- to 8-fold up-regulation 
relative to prevaccination. Similar patterns were observed in 
neutrophils, monocytes, and DCs in our cell-specific assess-
ments, although with lower magnitude of fold-change. FCGR1C 
was  not sufficiently expressed in DCs to be included in the 
analysis.

DISCUSSION

In this assessment of PBMC gene expression signaling after 
AS03-adjuvanted and unadjuvanted influenza A/H5N1 

vaccination, we show that the strongest signals were induced 
at postvaccination day 1 for the SV-AS03 group. This signal 
quickly waned, with no further differential gene expression 
signals between vaccine groups by day 3 postvaccination. 
Enrichment of several key innate immune signaling pathways 
was observed, despite innate immune cells representing a mi-
nority of the PBMC population relative to adaptive immune 
cells, affirming previous reports that AS03 enhances immune 
responses to avian influenza vaccines primarily by triggering 
induction of innate immune pathways shortly after vaccina-
tion [17–19, 21, 30, 31]. Pathway analysis revealed activation of 
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Figure 3.  Combination of gene responses that best predicted peak log2 hemagglutinin inhibition (HAI) titer at day 1 and day 7. The bar plots represent regularized linear 
regression coefficients of the best model. Scatterplots that summarize individual gene associations between peak HAI titer and gene log2 fold change including locally 
weighted scatterplot smoothing trend lines are shown for the top and bottom 3 genes for day 1 and the top 6 genes for day 7.
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innate immune signaling pathways including IFN, JAK-STAT, 
NF-κB, NOD-like, Toll-like receptor and TNF signaling, FC 
receptor-mediated phagocytosis, and enrichment of the antigen 
presentation and processing and Influenza A immune path-
ways, with most genes having higher expression in the SV-AS03 
group. Robust early IFN-associated innate immune signaling 
and enhanced antigen processing and presentation have also 
been associated with milder disease courses in nonhuman pri-
mates experimentally infected with H5N1 [32].

When comparing PBMC transcriptomic responses to 
other human or mouse immunologic transcriptomics data-
sets in MSigDB [26], day 1 responses were most similar to 
PBMC responses after live yellow fever virus vaccination, 

which strongly induced type I  IFN signaling [33] or in vitro 
IFN-γ stimulation of human macrophages [34] (Table A19, 
Supplementary Text). Overlap with unadjuvanted inactivated 
seasonal influenza vaccine PBMC responses was statistically 
significant but was not as pronounced, indicating that the in-
nate immune induction enhanced by AS03-adjuvanted inacti-
vated H5N1 vaccine, mediated by strong IFN signaling, shared 
more similarity to a live-attenuated viral vaccine than inacti-
vated influenza vaccine [14, 19].

Within the Influenza A pathway, the CXCL10 gene  encod-
ing for IP-10 was significantly induced in the SV-AS03 group. 
Serum IP-10 levels were significantly increased at day 1 and 
day 3 in the SV-AS03 group in our earlier study, returning to 
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Figure 7.  Comparison of day 1 fold change responses for 10 FcγR genes between peripheral blood mononuclear cells (PBMCs) and individual immune cell subsets. (A) 
Heatmaps of baseline log2 fold changes of FcγR genes in the split-virus (SV)-AS03 group at day 1 with cell types indicated by colored bars in the y-axis. Heatmap cells are 
color-coded by log2 fold change (red, up-regulated from baseline; blue, down-regulated from baseline; gray, did not meet low expression cutoff). (B) Radar plots contrasting 
fold changes of FcγR genes at day 1 postvaccination in the SV-AS03 (shown at the top) and SV-phosphate-buffered saline (PBS) groups (shown at the bottom). Colored lines 
represent the fold change for a particular cell population using the same color key as shown on the y-axis of A.
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baseline levels by day 7 [19]. In addition, a cluster of 15 coex-
pressed genes in PBMCs showed a strong increase from pre-
vaccination in the SV-AS03 group at day 1 (CPMCD1D28-012; 
Figure A22, Supplementary Text). This cluster included CXCL10 
among other genes with known functions in JAK-STAT and IFN 
signaling, further supporting the potential significance of IP-10 
in modulating AS03-specific responses after IFN signaling.

For avian influenza vaccines, an HAI titer of ≥1:40 meas-
ured 4–6 weeks after the second vaccine dose is considered the 
standard correlate of protection [35]. However, in influenza 
pandemic preparedness efforts, early identification of poor 
vaccine responders is likely to be critical to informing vacci-
nation strategies. Up-regulation of several genes at day 1 or 7 
predicted peak HAI titer on day 56, 28  days after the second 
vaccine dose. In addition to PBMCs, increased day 1 expression 
of STAT1 (1) was also predictive of higher HAI titers in all 6 
individual immune cell types in our earlier study [19], (2) has 
been strongly correlated with the antibody response to triva-
lent influenza vaccine [36], and (3) was observed in recipients 
of an AS03-adjuvanted hepatitis B vaccine [30]. Although these 
findings require further validation, this suggests a possible role 
for the use of STAT1 expression in predicting the magnitude of 
immune responses to an AS03-H5N1 pandemic vaccine 1 day 
postvaccination, with the potential to inform more personalized 
vaccine regimens, of particular importance given the need for 
dose-sparing vaccine strategies in the event of a pandemic. In 
our previous cell-specific transcriptomics assessments, PSME2, 
which encodes a protein involved in immunoproteasome for-
mation, was also predictive of seroprotection in monocytes at 
day 1 [19], and increased expression of the PSME2-associated 
protein in monocytes at day 3 was predictive of higher HAI titer 
in our proteomics assessments [21].

We previously reported that most variation in gene expression 
was attributable to immune cell type [19]. However, when com-
paring gene expression between individual immune cell subsets 
and PBMCs, PBMCs clustered distinctly and away from neu-
trophils (Figure 4), as expected. The closest clusters to PBMCs 
were lymphocytes followed by monocytes and DCs. Greatest 
similarity in DE gene expression with PBMCs was seen with 
innate immune cells (monocytes, DCs, and neutrophils), with 
many shared genes involved in innate signaling, likely driven by 
monocytes or DCs. There was substantial overlap in enriched 
pathways between innate immune cells and PBMCs (Figure 6), 
although many pathways were unique to PBMCs. Most path-
ways that were unique to a single cell type were enriched in neu-
trophils. An important signal in our analysis of NK cells that was 
not identified in PBMCs was cell proliferation at day 3 in the 
SV-AS03 group and antigen presentation at day 28 in the SV-PBS 
group [19]. In addition, at day 1, we observed up-regulation of 
the MHC class II pathway in neutrophils in our cell-specific 
analysis, but this was not observed in PBMCs. Despite these dif-
ferences, and in light of the resource-intensive nature of immune 

cell type separation, our findings suggest that characterization 
of bulk PBMCs and neutrophils is a more efficient alternative 
to postvaccination transcriptomic analysis, at least for influenza 
vaccine and AS03 adjuvant. Additional targeted cell types or 
subsets of interest, such as NK cells, could be isolated based on 
hypotheses pertaining the specific vaccine antigen and/or adju-
vant under study. In addition to targeting only certain cell pop-
ulations of interest, the time points of blood collection could be 
streamlined for prevaccination and/or postvaccination samples, 
depending on the hypothesis being tested, which would enable 
application of this approach to larger study populations.

Development of a universal influenza vaccine that confers 
protection across diverse strains is a major global public health 
priority [37]. Influenza HA head antibodies, stimulated by con-
ventional vaccines, only neutralize a few strains, whereas anti-
bodies to the highly conserved HA stalk neutralize a broader 
array of viruses [38–40]. The Fc-FcγR interactions are pivotal 
in inducing antistalk antibodies that activate FcγR-expressing 
NK cells to kill infected cells through antibody-dependent cel-
lular cytotoxicity (ADCC). Strain-specific HA head antibodies 
do not efficiently interact with FcγRs and thus do not induce 
NK cell-mediated ADCC [41]. We found that AS03 perturbed 
the FcγR-mediated phagocytosis pathway (Figure 2C), with 
strong activation of many FcγR genes, which have important 
functions in antigen presentation and inducing antibody-me-
diated effector functions and effector functions of CD8+ and 
CD4+ T cells or regulatory T cells that recognize peptide-MHC 
complexes. Thus, the FcγR family serves as a potential link be-
tween the innate and adaptive immune systems and may bridge 
the humoral and cellular adaptive immune responses [42, 43]. 
We previously identified strong signals for NK cell activation 
at day 3 postvaccination in the SV-AS03 group [19]. Although 
we did not see a noticeable increase in FcγR gene expression 
in NK cells in bulk PBMCs (Figure 7), we hypothesize that 
AS03 may stimulate low levels of pre-existing antistalk antibod-
ies to activate NK cells to initiate a cytotoxic response to the 
vaccine antigen. AS03-mediated activation of FcγR genes may 
have implications for the development of vaccines that promote 
antistalk antibody responses and thus are more broadly protec-
tive across diverse influenza strains.

Although our cell separation procedures [19, 20] isolated 
highly purified cell populations, this may have filtered out 
cell phenotypes that were not captured with a single marker. 
Because gating and choice of CD markers may impact the 
identity of isolated populations, analyzing bulk PBMCs may 
capture immune signals from complex cell phenotypes that 
are not observed when studying highly pure cell populations. 
For example, plasma cells may not express CD19, the marker 
used for B-cell selection; thus, these may have been excluded 
from our B-cell populations. Although individual immune 
cell types were subjected to MACS and FACS, sorted cells 
were not activated by the sorting process [20]. Larger studies 
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of AS03-adjuvanted vaccines would be needed to confirm the 
observed responses, implicated pathways, and predictive ability 
of the models. A study design that evaluated AS03 administered 
with or without a vaccine antigen would allow clearer distinc-
tion of immune responses to AS03. Small sample size may limit 
the generalizability of our results. However, our study highlights 
the strengths of PBMC transcriptomic assessments in identify-
ing potential AS03 mechanisms of action such as the activation 
of FcγR, IP-10, and antigen processing and presentation-re-
lated genes. Direct comparisons to cell-specific transcriptomic 
results provide critical information that may inform the design 
of future transcriptomics assessments in vaccine clinical trials.
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