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SUMMARY

Throughout mammalian neocortex, layer 5 pyramidal (L5) cells project via the pons to a vast 

number of cerebellar granule cells (GrCs), forming a fundamental pathway. Yet it is unknown how 

neuronal dynamics are transformed through the L5→GrC pathway. Here, by directly comparing 

premotor L5 and GrC activity during a forelimb movement task using dual-site two-photon Ca2+ 

imaging, we found that in expert mice, L5 and GrC dynamics were highly similar. L5 cells and 

GrCs shared a common set of task-encoding activity patterns, possessed similar diversity of 

responses, and exhibited high correlations comparable to local correlations among L5 cells. 

Chronic imaging revealed that these dynamics co-emerged in cortex and cerebellum over learning: 

as behavioral performance improved, initially dissimilar L5 cells and GrCs converged onto a 

shared, low-dimensional, task-encoding set of neural activity patterns. Thus, a key function of 

cortico-cerebellar communication is the propagation of shared dynamics that emerge during 

learning.
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In Brief

Simultaneous recordings of ensembles of individual neurons in the neocortex and cerebellum 

provide a view of how these two brain regions learn together

INTRODUCTION

Mammalian brain evolution has maintained a remarkably conserved ~4:1 ratio of total 

neurons in the cerebellum to that in neocortex, with these two structures containing ~99% of 

neurons in the human brain (Barton and Venditti, 2014; Herculano-Houzel, 2010). 

Cerebellum and neocortex are also densely interconnected: most neocortical regions send 

layer 5 (L5) projections to the pontine nuclei, which provide the largest input to the 

cerebellum through granule cells (GrCs) (Brodal and Bjaalie, 1997; Kelly and Strick, 2003; 

Suzuki et al., 2012). However, little is known about either the propagation of cortical 

dynamics into the GrC layer, or how properties of cortico-cerebellar communication develop 

with learning.

GrC anatomy is highly distinctive: each GrC receives only four inputs, called mossy fibers, 

which are fixed during development and can originate from neocortex via the pontine nuclei, 

as well as from the brainstem and spinal cord (Huang et al., 2013; Sillitoe et al., 2012). 

Moreover, different GrCs are unlikely to share the same set of four inputs. Therefore, any 

individual signal originating in L5 might recombine with three other disparate mossy fibers 

in a given GrC, and the vast number of GrCs (more than half of all neurons in the brain) 

could permit many distinct input recombinations. This basic, conserved anatomical feature is 

thought to allow the GrC layer to produce outputs highly distinct from those of cortex 

(Albus, 1971; Babadi and Sompolinsky, 2014; Billings et al., 2014; Cayco-Gajic et al., 2017; 

Chabrol et al., 2015; Litwin-Kumar et al., 2017; Marr, 1969).
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Despite these anatomical clues, studies have yet to detail the functional properties of L5-GrC 

transmission and its evolution with learning. This stems from a few technical hurdles. First, 

recording granule cells is challenging due to their small size and high packing density, with 

recordings from ensembles of granule cells in behaving animals only recently achieved via 

two-photon Ca2+ imaging (Giovannucci et al., 2017; Knogler et al., 2017; Wagner et al., 

2017). Second, simultaneous single-cell-resolution recordings have not yet been obtained 

from L5 cells and GrCs. As a result, prior studies of cortico-cerebellar interaction have not 

observed L5-GrC signal transmission and its evolution during learning. Here, we devised a 

strategy for simultaneous chronic two-photon imaging of premotor cortical L5 neurons and 

cerebellar GrCs, and uncovered surprisingly shared cortico-cerebellar dynamics that 

emerged as animals gained expertise on a forelimb movement task.

RESULTS

Simultaneous Imaging of Neocortex and Cerebellum in Behaving Mice

To characterize disynaptic projections from the neocortex to the cerebellum in mice, we 

performed projection-based monosynaptic retrograde rabies tracing (TRIO; Schwarz et al., 

2015) to identify cortical neurons presynaptic to pontine neurons that project to the 

cerebellar cortex. We found neurons from nearly every cortical region were presynaptic to 

pontine neurons that project to the dorsal surface of the cerebellum (Figure S1), similar to 

previous reports in rats and monkeys using polysynaptic rabies tracing (Kelly and Strick, 

2003; Suzuki et al., 2012). We focused on the premotor cortex, given the importance in 

theoretical models of cortical transmission of motor plans to the cerebellar cortex (Moberget 

and Ivry, 2016).

We devised a strategy to simultaneously monitor activity of premotor L5 cells (Rbp4-Cre+ 

pyramidal neurons) and the cerebellar input layer (GrCs) with single-cell resolution. We 

adapted a custom two-photon microscope that enabled imaging of two distant brain areas via 

a pair of mechanically articulated optical arms, each equipped with its own microscope 

objective lens (Lecoq et al., 2014) (Figure 1A, left; Figure S2). To image premotor cortex at 

the rostral forelimb area, we used a microprism for better optical access to layer 5b, which is 

enriched for subcortically-projecting pyramidal neurons. We also placed a cranial window 

over cerebellar lobules VI, simplex, and crus I (Wagner et al., 2017), regions that are 

forelimb-related and receive heavy inputs from the pontine nuclei (Huang et al., 2013; 

Suzuki et al., 2012) (Figure 1A, right). We used transgenic mice that expressed the 

genetically-encoded Ca2+ indicator GCaMP6f (Chen et al., 2013; Madisen et al., 2015) in 

both L5 cells and GrCs. Together, these methods allowed simultaneous 30-Hz two-photon 

imaging of somatic Ca2+ activity of 73±7 premotor L5 cells and 86±7 cerebellar GrCs 

(mean±SEM across n=28 imaging sessions in 10 mice) (Figure 1B and Movie S1). Due to 

Ca2+ indicator kinetics, the GCaMP6f transients in our imaging data likely correspond 

primarily to multiple spikes (Chen et al., 2013; Giovannucci et al., 2017) (STAR Methods). 

Thus, our recordings are more attuned to sustained activity, as observed in cortex during the 

planning or delay periods of motivated behaviors (Li et al., 2015), than to individual spikes. 

We therefore designed a movement planning task with the potential to engage sustained 

neural signaling.
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Our task required mice to make a sequence of two perpendicular motions in a virtual track 

(STAR Methods): a 6-mm forward motion followed by a 6-mm lateral motion to the left or 

to the right, with reward delivered after a delay period of 1 s. Left and right trials occurred in 

alternating blocks of 40 trials, without a cue (Figures 1C–E). The common forward motion 

preceding both left and right turns implied that different neural states prior to turning likely 

reflected different movement sequence plans. For analyzing behavior, we classified “pure” 

turn trials as those in which the mouse did not push the handle in the incorrect lateral 

direction by more than 500 μm at any point during either the forward or lateral motion 

segments—a strict criterion to identify correctly planned motions. Trials in which the mouse 

exceeded this threshold were scored as error trials, regardless of the mouse’s paw motion 

subsequent to the erroneous motion (in some cases, the mouse “recovered” to successfully 

execute the correct motion, Figure 1D, while in other cases, it exceeded a physical threshold 

beyond which the trial automatically terminated, STAR Methods). After training (~3 weeks, 

~30 min/day), expert mice executed pure turns on 60±3% of attempts, with movements 

spanning ~400 ms in total (Figure 1F). Optogenetic manipulations demonstrated that both 

the cortical and cerebellar regions that we imaged were critically necessary for task 

execution (Figure S3A–G). By examining single-cell activity traces, we found that both L5 

cells and GrCs often appeared preferentially active during trials of one turn direction (Figure 

1G).

Similar Task Representations in L5 Cells and GrCs in Expert Mice

We first characterized neural representations of the motor task in expert mice. To identify 

task-locked activity of each cell, we aligned its time-varying fluorescence on all trials to turn 

onset, and then computed the average across trials (separately for pure left and pure right 

turns). We often observed L5 cells with direction-preferring responses both during and 

substantially earlier than the onset of movement (Figures 2A and 2B, top). This is consistent 

with other planning tasks, in which premotor cortex activity precedes upcoming movements 

(Li et al., 2015; Shenoy et al., 2013). In addition to movement-locked signals, we computed 

time-varying trial-averaged fluorescence aligned to reward delivery and found that many L5 

cells responded selectively prior to or during reward consumption, often preferentially 

following one turn direction (Figures 2C and 2D, top).

We next examined the trial-averaged activity of GrCs, which exhibited response profiles 

with selectivity similar to that of L5 cells (Figures 2A–D, bottom). While we have 

previously reported reward-related signals in GrCs (Wagner et al., 2017), to our knowledge 

this is the first report of movement-planning-related signals in GrCs. To quantify the 

prevalence of different responses in L5 and GrC ensembles, we defined a set of behavioral 

regressors that each indicated a key task event: pre- and post-turn and pre- and post-reward, 

separately for left and right pure turn trials (Figure 2E). Cells were considered responsive to 

a task event if the corresponding regression coefficient was significant, and direction-

preferring if the coefficient was significantly larger for one turn direction (STAR Methods). 

Overall, similar proportions of active L5 cells and GrCs were direction-selective during each 

task phase (Figures 2F), which was surprising given that input recombination in the GrC 

layer is thought to generate activity profiles distinct from those of the neocortex (Marr, 

1969). However, while active L5 cells and GrCs contained broadly similar responses, the 
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populations differed in the fraction of visible GCaMP-expressing cells without any 

detectable activity, suggesting differential recruitment of L5 cells vs. GrCs by our task. Of 

the cells with visible baseline fluorescence, 55% of GrCs and 18% of L5 cells were 

undetected by the cell-extraction algorithm, which only identifies neurons with activity. 

Manual analysis confirmed that such undetected neurons had near-zero Ca2+ event rates 

(STAR Methods). Since neurons that we did not extract were inactive (possibly due to 

spiking levels below detection threshold), L5 cells and GrCs hereafter denote the set of all 

extracted neurons.

To further assess and compare motor planning dynamics in L5 and GrC ensembles, we 

defined a metric to discriminate turn direction using each population’s activity prior to turn 

onset. On each trial, we computed the time-varying difference between the average activity 

of all pre-left-turn- and of all pre-right-turn-preferring L5 cells (Figure 2G, left) and GrCs 

(Figure 2G, right, normalized to range from −1 to 1; cells identified from regressions in 

Figure 2F). Direction discrimination rose at similar rates in both L5 cells and GrCs prior to 

pure turns, but was absent prior to motion on error trials. Hence, pre-turn L5 cells and GrCs 

exhibited similar motor planning dynamics.

We next used linear regression analysis to directly compare the similarity of active L5 and 

GrC ensembles. We found that GrC ensembles were as accurate as L5 ensembles at 

reproducing the trial-averaged time-varying activity of individual L5 cells (Figure 2H), 

indicating that most activity profiles in L5 were recoverable in the GrC layer. We also 

quantified the overall diversity of ensemble activity using principal components analysis 

(PCA). We performed PCA across all cells, using each cell’s concatenated activity on all 

movements (pure turns and errors). Thus, for each imaging session, we performed one PCA 

on a (T×N)-by-C matrix, where T is the number of trials, N is trial duration (−2 to 2 s 

relative to turn onset), and C is the number of cells. The resulting principal components are 

linearly independent activity patterns that account for the most variability across neurons. 

We found that the number of principal components needed to explain a given fraction of 

population activity in GrCs was slightly lower than in L5 cells (Figure 2I). Together, these 

results indicate that L5 cells and GrCs encoded the task similarly, had common trial-

averaged response profiles, and exhibited comparable response dimensionality.

Highly Correlated Single-trial L5-GrC Activity in Expert Mice

In addition to sharing similar task representations in their trial-averaged activity, L5-GrC 

pairs often exhibited strong single-trial correlations (Figure 3A). We sought to quantify 

correlations within and across L5 and GrC populations. Although correlation magnitudes 

depend on how they are measured (Cohen and Kohn, 2011), all measurement factors were 

common to L5 and GrC recordings. Thus, the inter-areal and intra-areal correlations can be 

directly compared. We used the concatenated single trial activity of each cell [the (T×N)-by-

C matrix described above] and computed the matrix of pairwise correlation coefficients 

between every pair of columns of the matrix. We first characterized each neuron’s 

correlation to other neurons via its “best-match” partner cell (Figure 3B). Remarkably, 

overall L5-GrC correlation magnitudes were nearly as high as those between different L5 

cells in our small imaging fields (Figures 3B, 3C). L5-GrC correlations were also consistent 
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across the cerebellar lobules we imaged (Figure 3D). Correlations between GrCs were even 

higher than L5-L5 or L5-GrC correlations (Figures 3B, 3C; Figure S3H). Analysis of the 

distribution of correlations among all cell pairings yielded similar results (Figure S3I).

Control analyses suggest that L5-GrC correlations were contributed substantially by shared 

trial-to-trial variability, rather than resulting only from common task tuning (Figure S3J, K). 

To exclude the possibility that correlations result from systematic factors, we performed 

simultaneous imaging of GrCs and the orbitofrontal cortex (OFC), where the density of L5 

cells that project to cerebellum via pons is similar to that of premotor cortex (Figure S1). 

Our OFC L5-GrC data shared the same systematic factors as our premotor L5-GrC data: 

transgenic mice, Ca2+ indicator kinetics, genetically defined class of L5 cells, and motor 

task. But in contrast to our premotor L5-GrC data, OFC L5-GrC correlations were 

substantially weaker (Figures S3L–O). Thus, no systematic factors or artifacts can account 

for high premotor L5-GrC correlations. Taken together, high correlations between premotor 

L5 cells and GrCs demonstrate shared dynamics.

GrCs Exhibit More Ca2+ Events and Greater Reliability than L5 Cells

High single-trial correlations between GrCs and premotor L5 cells demonstrated faithful 

recapitulation of cortical dynamics in the GrC layer. To identify more subtle differences 

between GrCs and L5 cells, we analyzed correlated L5-GrC pairs in greater detail. Even for 

highly correlated L5-GrC pairs, activity in the GrC and L5 cell still occasionally differed. 

We found that L5-GrC discrepancies frequently resulted from Ca2+ events in the GrC that 

were missing from the L5 cell (Figure 3E). Overall, for highly correlated L5-GrC pairs 

(defined arbitrarily as r>0.4), a significantly greater proportion of GrC events were present 

only in the GrC (“GrC-only” events), compared to the proportion of L5 events that were 

present only in the L5 cell (“L5-only” events, Figure 3F).

To determine the behavioral significance of GrC-only versus shared L5-GrC events, we 

compared the temporal distribution of the two event types relative to forelimb movement. 

Most often, GrC-only events occurred at similar times during the trial as shared L5-GrC 

events (Figure 3G). This indicated greater GrC reliability relative to similar L5 cells, 

potentially resulting from pontine integration of similarly-tuned L5 neurons. Less frequently, 

we observed GrCs for which GrC-only events were temporally distinct from shared L5-GrC 

events (Figure 3H), potentially reflecting GrC multiplexing of disparate input signals. 

Overall, GrCs often exhibited more activity with more reliable signaling than the L5 cells to 

which they were correlated (Figure 3I). Thus, while L5 cells and GrCs share similar 

dynamics, GrC encoding is of greater fidelity, suggesting that pontine integration may 

reduce noise. Simulations indicated that the shared L5-GrC dynamics in our data are 

challenging to explain if GrC output combines substantial contributions from multiple 

mossy fiber inputs, but follow naturally if the output of some GrCs is dominated by a single 

input, such as a task-related signal originating in cortex (Figure S4).

Pontine Contribution to L5-GrC Dynamics

To verify that cortico-cerebellar transmission contributes to L5-GrC correlations and GrC 

task representations, we expressed inhibitory opsins in the basal pontine nuclei (Figure 4A). 
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In expert mice (n=10), we imaged GrCs while photoinhibiting pontine neurons on a random 

20% of trials (Figures S5A–K). In a small subset of GrCs, turn direction-preferring 

responses were abolished by pontine photoinhibition (Figures 4B, 4C). Inhibition was 

equally common in cells of each response type (Figure S5L). In total, 10% of GrCs were 

inhibited and 10% were disinhibited during pontine inhibition (Figures 4D, 4E, S5M, and 

S5N), the latter likely due to reduced inhibition from Golgi cells (Billings et al., 2014).

In six mice, we performed simultaneous premotor L5 and GrC imaging in conjunction with 

optogenetic inhibition of the pons. Pontine inhibition lowered L5-GrC correlations (Figure 

4F) and decreased the fraction of GrC activity explained by L5 using linear regression 

(Figure 4G). These data likely substantially underestimate the effect of pontine input to 

GrCs, due in part to incomplete viral coverage of the pontine nuclei (Figure S5O). As a 

result, L5 activity was largely unaffected (Figure S5P) and behavior was unchanged during 

the random 20% interleaved pontine inhibition trials (Figure S5Q). Thus, changes in GrC 

activity were most likely due to the direct effects of diminished pontine input to GrCs, rather 

than indirect consequences of altered cortical activity or behavior. (However, behavioral 

performance was degraded during an alternative paradigm employing continuous inhibition 

for two 40-trial blocks of movements; Figure S5R). While there may also be contributions 

from common input or cerebello-cortical feedback (Gao et al., 2016), these data indicate that 

pontine transmission contributes to GrC task encoding and to L5-GrC correlations.

Common L5 and GrC Task Representations Emerge Concurrently over Learning

What is the origin of shared cortico-cerebellar dynamics observed in expert mice? To 

address this question, we tracked the activity of individual L5 cells and GrCs over the 2–3 

week course of task learning (Figures 5A and 5B). Our training procedure began with an 

initial period (3–7 days) without imaging during which mice learned the basic task structure 

by performing forward-only movements in a linear track for reward. Chronic imaging began 

on the first day in which mice were exposed to the movement sequence task. Early in 

learning, both L5 cells and GrCs often had activity time-locked to movement or reward 

without distinguishing left- from right-turn trials. Over time, these cells lost their 

responsiveness to one turn-direction selectively (Figures 5C and 5D). Equally common were 

cells that were time-locked to a particular phase of the task and with strong direction 

preference late in learning, but which were not time-locked at that phase early in learning 

(Figures 5E and 5F).

To quantify these trends, we used two methods to assess the neural encoding of behavior. 

First, we examined behavioral encoding by individual cells, using linear regression of the 

single-trial fluorescence of each individual L5 cell or GrC onto the set of behavioral 

regressors from Figure 2E. We thereby identified all cells which, late in learning, had 

significant direction-preference during a particular phase of the task. We found that, earlier 

in learning, such cells were generally either not responsive at that time, or responsive but not 

direction-selective (Figure 5G). Overall, substantially more neurons exhibited direction-

preference late in learning (Figure 5H). Moreover, these regressions more accurately 

reproduced each cell’s activity after learning (Figure 5I), indicating stronger relationships 

between neural activity and behavior.
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Second, we assessed the behavioral information conveyed by the L5 and GrC neural 

ensembles. We defined “behavioral signals” that selectively indicated either movement or 

reward on either left or right turn trials (Figure S6A, left). We then used the concatenated 

single-trial population activity of either L5 or GrC ensembles to reproduce each of these 

behavioral signals in turn via separate linear regressions (Figure S6A, right), and tabulated 

the mean accuracy of these regressions (R2). This analysis demonstrated that both L5 and 

GrC ensembles encoded more behavioral information after learning (Figure 5J). Moreover, 

the fidelity of GrC and L5 ensemble behavioral encoding covaried across imaging sessions 

(Figure 5K). Thus, task encoding emerges concurrently in L5 cells and GrCs during 

learning.

In addition to increasing the prevalence of task-encoding neurons, learning also decreased 
the overall diversity of activity among different neurons in the L5 and GrC ensembles. For 

each imaging session, we performed PCA across cells on single-trial activity from all 

movements (as in Figure 2I). We tabulated both the variance explained by the top 10 PCs, as 

well as the number of PCs required to explain 50% of variance in ensemble L5 or GrC 

activity in each session. Over learning, both parameters indicated reduced dimensionality in 

both L5 cells and GrCs (Figures 5L and 5M). Trial-averaged response profiles similarly 

became lower dimensional (Figure S6B). Thus, L5 cells and GrCs together exhibit increased 

task encoding and reduced response diversity during learning.

Cortico-cerebellar Correlations Rise over Learning

Are the strong L5-GrC correlations a product of connectivity established during 

development, or produced during learning? To address this question, we first identified L5-

GrC pairs that were highly correlated on the final day of imaging (arbitrarily defined as pairs 

with r>0.4). We found that despite robust last-day correlations, these pairs were less 

correlated earlier in learning (Figures 6A; S6C). To exclude the possibility that this resulted 

simply from random fluctuations in correlations caused by the passage of time, we similarly 

identified L5-GrC pairs that were highly correlated early in learning (r>0.4), which were less 

common. We found that such pairs tended to remain substantially correlated late in learning 

(as compared to the initial correlations of pairs with high last-day correlations; Figure 6B). 

In addition, when considering all cells, correlation magnitudes similarly rose with learning 

(Figure S6D, E). Increased correlations were due both to more similar trial-averaged activity 

patterns and to greater shared trial-to-trial variability (Figures S6F, G). Increased 

correlations were also not caused by increased Ca2+ event rates, which fell slightly over 

learning (Figure S6H). Moreover, analysis of temporal lags in the computation of cross-

correlations between all L5 cells and GrCs demonstrated that neurons also became more 

temporally aligned (Figure S6I). Consistent with increasing pairwise correlations, population 

L5 activity more accurately reproduced single-trial activity of individual GrCs via linear 

regression after learning (Figure 6C). Taken together, these data demonstrate that learning 

promotes L5-GrC single-trial correlations.

The rise in both inter-areal (L5-GrC) and intra-areal (GrC-GrC and L5-L5) correlations over 

learning suggested that the two ensembles had converged onto a shared low-dimensional 

space of activity patterns. To quantify this, we performed a reduced rank regression between 
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L5 cells and GrCs, which attempts to find the lowest-dimensional projection of L5 ensemble 

activity needed to reproduce the most possible GrC ensemble activity. This analysis 

confirmed that, compared to early learning, L5 ensembles in expert mice explained more 

GrC activity while using a lower-dimensional projection of their ensemble activity (Figure 

6D).

We next investigated whether increased coupling between lower-dimensional L5 and GrC 

activity involved the emergence of mutually correlated groups of L5 cells and GrCs. In 

support of this, we found that GrCs that developed stronger correlations with the rest of the 

GrC ensemble over learning were substantially more likely to also exhibit increased 

correlation with L5 cells (Figure 6E). To explicitly identify mutually correlated groups of 

GrCs and L5 cells that emerged over learning, we performed k-means clustering analysis on 

the changes in population pairwise correlation coefficients (Figure 6F, top; clustering 

performed on the difference in correlations between the first and final days of imaging). Cell 

groups identified to have undergone coherent changes in correlation during learning 

contained substantial numbers of both L5 cells and GrCs (Figure 6F, bottom). We used 

mutual information to quantify the amount of information about cell type (L5 or GrC) 

provided by the cluster membership and found little tendency for clusters to segregate by 

cell type (Figure 6G). Taken together, these data suggest that over learning, groups of 

initially dissimilar L5 cells and GrCs converge together onto shared activity patterns.

Evolution of L5-GrC Dynamics Parallels Behavioral Improvement

To assess how emergent cortico-cerebellar dynamics related to improved behavioral 

performance over the multi-week learning process, we first quantified behavioral learning. 

We found that pure turns as a fraction of all trials rose over learning (Figure 7A, left). 

Kinematically, the average time to execute a movement decreased (Figure 7A, middle), due 

to faster transitions between the forward and lateral motions (Figure 7A, right; Figure S7A, 

S7B). Thus, mice planned more continuous movement sequences after learning. We 

summarized behavioral performance by the pure turn fraction and compared its session-by-

session changes to the simultaneously acquired neural activity. Over weeks of learning, pure 

turn fraction covaried with behavioral encoding in both L5 and GrC ensembles (Figures 7B 

and 7C, assessed by the fidelity of linear regression to behavioral signals as in Figure 5J). In 

addition, L5-GrC coupling (measured by the accuracy of linear regression of single-cell GrC 

activity onto the L5 population activity, as in Figure 6C) also covaried with behavioral 

performance gains across imaging sessions (Figure 7D). Thus, behavioral learning is a key 

factor in the emergence of shared L5-GrC dynamics.

Shared Cortico-cerebellar Dynamics Reflect A Learned Circuit State

The parallel emergence of shared L5-GrC dynamics and improved behavioral performance 

may reflect different potential relationships between neural activity and behavior. In one 

possible scenario, neural representations could be fixed with respect to motor output. In this 

case, apparent increases in neural correlations over learning simply reflect more cohesive 

motor output. For example, more coherent activation of different muscles might cause the 

activity of neurons that represent distinct variables to appear more correlated. Alternatively, 

learning could recruit L5 cells and GrCs into more coherent dynamics through synaptic 
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changes. The first hypothesis predicts that cortico-cerebellar correlations should covary with 

trial-by-trial variations in motor performance within a single imaging session, rather than 

learning per se. By contrast, the circuit plasticity hypothesis predicts that L5-GrC 

correlations are determined by the state of learning in the circuit, which evolves slowly over 

days.

To distinguish between these hypotheses, we leveraged trial-to-trial variability in motor 

output during individual imaging sessions. We identified the trials most or least 

kinematically similar to the average pure turn trajectory in each imaging session (Figure 7E). 

We tested two predictions. First, in late learning, we found that L5-GrC correlations during 

least consistent trials were no different than during the most consistent trials (Figure 7F and 

S7C). Thus, trial-to-trial variations in motor output do not significantly alter cortico-

cerebellar correlations. Second, we compared the least consistent trials late in learning to the 

most consistent trials in mid-learning. Despite greater motor stereotypy, the most consistent 

mid-learning trials exhibited substantially weaker L5-GrC correlations than did the least 

consistent late-learning trials (Figure 7F and S7C). Together, these data support the 

interpretation that L5-GrC correlations are produced by plastic circuit changes over the 

multi-week learning process: neural correlations are largely unchanged by trial-by-trial 

fluctuations in kinematic stereotypy within a single imaging session. These conclusions also 

held when we restricted our analysis to the set of neurons consistently tracked throughout 

learning (Figure S7D). Thus, our data suggest that the emergence of shared L5-GrC 

dynamics reflects plastic circuit changes that increase the prevalence of correlated task-

encoding activity patterns across both populations.

DISCUSSION

By performing the first simultaneous recordings of neocortical layer 5 projection neurons 

and cerebellar granule cells in behaving mice over learning, we found that as animals 

learned, L5 and GrC ensembles converged onto increasingly shared, low-dimensional, and 

task-encoding activity patterns (Figure 7G). These data indicate that, although GrC anatomy 

permits diverse signal recombinations, a key outcome of learning in the cortico-cerebellar 

pathway is in fact increasingly similar dynamics in cortex and cerebellum. As a result, task-

related L5 dynamics are faithfully recapitulated, rather than extensively transformed, in the 

GrC layer in expert mice.

Discrepancies with Dimensionality Expansion Theory and Potential Resolutions

At a basic level, GrC activity that is dominated by low dimensional, task-encoding L5 

dynamics in expert mice differs from frameworks emphasizing GrC dimensionality 

expansion (Albus, 1971; Fujita, 1982; Marr, 1969). However, there are several caveats. First, 

dynamics and correlations will vary by the timescale of analysis (Cohen and Kohn, 2011; 

Kadmon and Sompolinsky, 2015), which in our data is set by the relatively slow GCaMP 

kinetics. While results may differ on faster timescales, our findings of increased correlations 

over learning are likely to remain similar. Second, we note that ~50% of GrCs and ~20% of 

L5 cells exhibited near-zero Ca2+ activity. While inactive cells cannot significantly increase 

the dimensionality of activity in our task, as they contribute little additional variance (STAR 
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Methods), they do suggest a larger reservoir of representational capacity in the GrC network, 

which is an important aspect of classical theory.

Finally, while the classical theory of granule cell function (Albus, 1971; Marr, 1969) focused 

on dimensionality expansion, a modern reanalysis of this theory indicates that maximal 

dimensionality expansion is not always preferable, as such expansion alone can also amplify 

input noise (Babadi and Sompolinsky, 2014; Kadmon and Sompolinsky, 2016; Litwin-

Kumar et al., 2017). Thus, noise reduction is a theoretically predicted requirement for the 

cortico-cerebellar pathway. Our work supports this prediction, as GrCs in expert mice were 

often more reliable than L5 neurons (Figure 3). From this perspective, GrCs may sacrifice 

dimensionality expansion to avoid amplifying cortical noise in our task. A direction for 

future study would be to determine how L5-GrC correlations and dimensionality depend on 

task complexity (Gao and Ganguli, 2015).

Mechanistic Implications

Our data show that individual L5 cells and GrCs share similar activity in expert mice. Our 

simulations suggested that these findings were most consistent with a scenario where, for a 

subset of GrCs, activity is dominated by the input from just one mossy fiber (Figure S4), 

likely as a result of learning. This is surprising in light of GrC anatomy (see Introduction). 

On the other hand, the existence of inactive GrCs in our data may imply that different GrCs 

operate in qualitatively different regimes: classical sparsely active coincidence detectors 

(Chadderton et al., 2004) versus densely active relays of cortical dynamics, with 

transmission modes potentially modulated through plasticity (Gao et al., 2012). This 

segmentation of granule cell activity may have important effects on computation in 

downstream Purkinje cells (Galliano et al., 2013), which is an interesting subject for future 

study.

An additional key feature of our learning data is that directional selectivity emerged over 

learning in previously non-selective L5 cells and GrCs, seemingly at random (Figure 5). 

This observation suggests that L5-pons transmission is itself plastic (Figure S4). 

Specifically, it is likely that GrCs inherit direction selectivity from direction-selective mossy 

fiber inputs, since each GrC receives a fixed set of only four mossy fiber inputs. Thus, 

pontine neurons likely also transmit direction-selective signals. If, over learning, direction 

selectivity emerges randomly among different L5 cells, pontine neurons would need to 

adaptively reweigh different L5 inputs as they evolve, in order to avoid mixing away L5 

selectivity before transmission to GrCs. Thus, a plastic cortico-pontine pathway may aid in 

the selection and denoising of cortical representations, before expansion in the GrC layer 

(STAR Methods).

New Perspective on Cortico-cerebellar Communication: Shared Dynamics Emerge with 
Learning

Our premotor L5 cortical data are broadly consistent with studies demonstrating that cortical 

neurons develop more stereotyped task-locked responses during learning (Peters et al., 

2014). Other frontal cortical regions—similarly to the frontal premotor region we studied—

have been found to exhibit relatively low dimensional activity that mimics task complexity, 
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in contrast to higher dimensional sensory areas (Brincat et al., 2018; Inagaki et al., 2018). 

Theoretical analysis suggests that, whereas machine learning algorithms often involve high-

dimensional representations, low dimensionality—especially in simpler tasks—may be a 

fundamental outcome of learning in neocortical circuits, potentially increasing robustness to 

noise and aiding pattern completion (Denève et al., 2017).

Our simultaneous L5-GrC recordings expand these concepts by demonstrating that the 

cerebellum is strongly coupled into this learning process, as low-dimensional cortical 

dynamics that emerge with learning extend with striking fidelity into the cerebellar GrC 

input layer. This finding has important implications for the larger recurrent cortico-cerebellar 

network, in which cerebellar output returns to cortex via thalamus (Kelly and Strick, 2003). 

Recent work suggests that projections from the cerebellar nuclei to the neocortex are 

required for sustained cortical activity (Chabrol et al., 2018; Gao et al., 2018). Truly sparse 

GrC representation as classically predicted might prevent propagation of cortical dynamics 

through the cerebellar circuit. By contrast, if many GrCs faithfully transmit prominent 

cortical signals, they may more effectively shape downstream Purkinje cell and cerebellar 

nuclei firing patterns that ultimately feedback to cortex. Our findings that L5 and GrC 

ensemble dynamics co-evolve during learning support the notion that reciprocal interactions 

between cortex and cerebellum may underlie the learning process. Overall, our data suggest 

that it will be critical to study cortex and cerebellum as a joint dynamical system to fully 

understand the contributions of each to behavioral learning and performance.

STAR*Methods

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, Liqun Luo (lluo@stanford.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Mice—All procedures followed animal care and biosafety guidelines approved by Stanford 

University’s Administrative Panel on Laboratory Animal Care and Administrative Panel on 

Biosafety in accordance with NIH guidelines. To express the Ca2+ indicator GCaMP6f 

(Chen et al., 2013) in cerebellar GrCs and neocortical layer 5 pyramidal cells, we used the 

Cre- and tTA-dependent GCaMP6f transgenic mouse line Ai93 (TRE-lox-stop-lox-
GCaMP6f) (Madisen et al., 2015). We crossed the Ai93 mouse to a Cre-dependent tTA 

mouse ztTA (CAG-lox-stop-lox-tTA). In parallel, we crossed Math1-Cre, to obtain 

expression in granule cells as described previously (Wagner et al., 2017), to Rbp4-Cre, 
which in the cortex is expressed mainly in layer 5 pyramidal neurons (Gerfen et al., 2013). 

Mice were aged 6–16 weeks at the start of experimental procedures and were in good health. 

Except in the cases indicated, in which animals contributed to multiple datasets, mice were 

not used in previous surgical or experimental procedures. Prior to their training on the tasks 

used to generate the datasets in this study, mice were naïve to the behavioral task; mice used 

to study learning were naïve to the movement planning task, while mice that were only 

studied in the expert state had previously undergone training as described in the “Behavior” 

section below. We used a total of 24 Ai93/ztTA/Math1-Cre/Rbp4-Cre quadruple transgenic 
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mice (9 females and 15 males on mixed genetic backgrounds) for all experiments. In expert 

mice, behavioral performance was similar for male and female mice (pure turn fraction, p = 

0.76, Wilcoxon rank sum test, n = 29 and 17 sessions from male and female mice). We also 

confirmed that pairwise correlations among granule cells, a central statistic of our findings, 

were similar in expert male and female mice (p = 0.24, r = 0.43±0.01 and 0.46±0.02 in 29 

and 17 sessions from male and female mice). 10 contributed to premotor cortex / cerebellum 

dual site imaging data of Figures 1–3. Of these, 7 were imaged repeatedly over the course of 

task learning (Figures 5–7), and of those 7, in 4 we were able to track the same neurons 

repeatedly until mice had mastered the task. 6 premotor / cerebellum dual-site mice, along 

with 4 cerebellum-only imaging mice, contributed to the pons-inhibition data (Figure 4). Of 

these 10 total, 7 underwent inhibition via eNpHR3.0 and 3 via iC++. 6 mice contributed to 

orbitofrontal cortex (OFC) / cerebellum dual site imaging data (Figure S3). 2 mice 

contributed lateral Crus II GrC imaging data in Figure S3. In addition, 12 wild-type C57/bl6 

mice were used for tracing studies in Figure S1, and 3 double-transgenic Gad2-Cre 
(Taniguchi et al., 2011) / Ai32 (CAG-lox-stop-lox-ChR2) (Madisen et al., 2012) on mixed 

genetic background were used for the optogenetic behavioral studies in Figure S3. Mice 

were singly housed during the period that experiments were performed. Mice were housed in 

plastic cages with disposable bedding on a 12 hour light/dark cycle with food available ad 
limitum, and water available ad libitum until experiments began, in which case they were 

placed on a water restricted regime as described below. Experiments were done during the 

dark phase.

METHOD DETAILS

Cortex-cerebellum connectivity tracing—Wild-type mice were injected with 500 nL 

CAV-Cre (Soudais et al., 2001) (genomic titers ~1012/mL) in one of several cerebellar folia 

(Vermis lobule VI: 750 μm lateral of midline, 500 μm anterior of the post-lambda suture; 

Vermis lobule VII: 750 μm lateral of midline, between the mediolateral vessels separating 

lobules VI and VII, visible through the thin posterior skull surface; Simplex: 2.1 mm lateral, 

−5.9 mm from bregma; Crus2: 3 mm lateral, between the mediolateral vessels separating the 

crus1 and paramedian lobules, visible through the thin posterior skull surface). Mice were 

also injected with 500 nL of AAV8-hSyn-FLEx-TVA-mCherry-2A-G (genomic titer 

1012/mL) in the pontine nuclei bilaterally (−3.9 mm from bregma and 0.6 mm laterally). 2 

weeks later, mice were injected in the pontine nuclei with G-deleted EnvA-pseudotyped 

Rabies-eGFP (genomic titers generally 109/mL). The procedure follows previously 

established protocols (Schwarz et al., 2015).

Histology—We anesthetized mice using tribromethanol (Avertin) and transcardially 

perfused them with phosphate-buffered saline (PBS) followed by 4% paraformaldehyde 

(PFA). We extracted the brains into 4% PFA for 24 h of post-fixation, followed by at least 24 

h in 30% sucrose solution. We cut 40 or 60 μm tissue sections on a cryotome (Leica). 

Sections in Figure S1 were imaged using a slide scanner (Leica) and a 20× 0.8 NA objective.

For pontine rosette counting in cerebellar cortex (Figure S5O), we used a confocal 

microscope (Zeiss) with a 40× 1.4 NA objective to image 42 regions (area: 213 × 213 μm) 

from the dorsal surface of the cerebellum where we generally imaged in vivo, from 4 of the 
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mice that were used for optogenetic inhibition experiments. We collected a z-stack through 

the entire labeled thickness of the tissue (mean z-stack thickness: 28±1 μm). We then 

visualized each z-stack as a volume in Imaris (Bitplane) and manually identified and 

counted mCherry-positive terminals in the volume.

Surgical procedures—Given the complexity of our multi-port optical preparation (Figure 

S2A) – consisting of a window over the cerebellum, prism in the motor cortex, bilateral 

fibers for pons inhibition, and two head-fixation headplates – we used computer-aided 

design (CAD) software (Creo Parametric, PTC) to plan our preparation. The model of the 

mouse skull was derived from micro-CT volumes (Mouse Imaging Centre, Toronto). In 

addition to ensuring the basic fit of all components on the mouse head, we used CAD 

planning to confirm that the microscope objectives used for the cortex and cerebellum did 

not collide with one another during imaging or with the implanted optical fibers.

We anesthetized mice using isoflurane (1.25–2.5% in 0.7–1.3 L/min of O2) during surgeries. 

We removed hair from a ~10 mm diameter patch of skin over the skull, cleaned the skin with 

Betadine, and removed the patch of skin. We then peeled back connective tissue and muscle 

and dried the skull.

For cerebellar implants, we drilled a 3 mm diameter cranial window centered 

anterioposteriorly over the post-lambda suture and 1.5 mm right of the midline (Figure S2B, 

left). This positioned the window over cerebellar lobules VIa, VIb and simplex. To seal the 

skull opening, we affixed a #0 3 mm diameter glass cover slip (Warner Instruments) to the 

bottom of a 3 mm outer diameter, 2.7 mm inner diameter stainless steel tube (McMaster) cut 

to 1 mm height (Figure S2B, top right). We stereotaxically inserted the glass/tube assembly 

into the opening in the skull at a polar angle of 45° from the vertical axis and an azimuthal 

angle 25° from the midline (Figure S2B, bottom right). We then fixed the window in place 

and sealed it using Metabond (Parkell). We next affixed a custom stainless steel head 

fixation plate to the skull using Metabond and dental cement (Coltene/Whaledent). The 1.8 

mm-thick headplate had a central 5 mm diameter opening to accommodate the glass/tube 

assembly, and two lateral extensions to permit fixing the plate to stainless steel holding bars 

during imaging and behavior. Among the cohort of mice, we took particular care to install 

the headplate at a consistent rotation angle about the implant axis, as variations in this angle 

could result in gross discrepancies in the positioning of the front part of the head containing 

the cortical implant.

For optogenetic inhibition of the pons, we first injected either AAV8-hSyn-eNpHR3.0-
mCherry (n=7 mice) or AAV8-hSyn-iC++-mCherry (n=3 mice) bilaterally into the basal 

pontine nuclei. We drilled two small holes (~0.5 mm) in the cranium 3.9 mm posterior to 

bregma and 0.6 mm left and right of the midline. We injected 500 nL of virus at a depth of 

5.6 mm below lambda. We then implanted multimode fibers to illuminate the pons. Notably, 

the fiber implants (Doric Lenses, either 200 μm core/0.66 NA (3 mice) or 400 μm core/0.66 

NA (7 mice)) had a short, 3.6 mm height ferrule (Figure S2C, left) which helped to avoid 

collisions with the imaging objectives. We stereotaxically inserted the fibers at a lateral tilt 

of 22°, entering the brain surface at 2.6 mm lateral of the midline, to a depth of 4.6 mm 
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along the insertion axis (Figure S2C, right). We cemented the fiber cannulas in place using 

Metabond.

For premotor cortical prism implants, we drilled a 3 mm diameter cranial window centered 

at the coordinates of the rostral forelimb area, 1.5 mm anterior of bregma and 1.1 mm lateral 

of the midline (Figure S2D). We then used a scalpel blade (EMS #11 feather) to make a 1.2 

mm-long parasagittal incision centered in the opening (Figure S2E). After cleaning any 

bleeding, we used a fine forceps to carefully peel back the dura medial of the incision to 

facilitate insertion of the prism into cortex (Figure S2F). We found that leaving the dura 

intact over the tissue lateral to the incision (which is the tissue that is imaged by the prism) 

was critical for subsequent imaging quality. We glued a 1 mm right angle prism with 

protected aluminum mirror coating on the hypotenuse (Shanghai Optics) to the bottom of a 3 

mm cover slip / steel tube assembly (Figure S2G). Using the stereotax, we inserted the prism 

into the incision at a tilt of 10°, lowering until the surface of the brain was maximally flush 

with the glass. We cemented the implant in place using Metabond.

For Gad2-ChR2 optogenetic behavioral studies, we implanted the 3 mm window assemblies 

described above into the cerebellar area, as well as into the premotor area (but without a 

prism).

For orbitofrontal cortex implants (OFC), we drilled a ~2 mm diameter opening in the skull 

centered at 1.2 mm lateral of midline and 2.1 mm anterior to bregma. We removed the dura 

over the insertion area, then stereotaxically inserted a 1 mm diameter, 0.5 NA GRIN lens 

(GRINTech) glued to a 1 mm right angle prism mirror into the brain to a depth of 3.2 mm 

below bregma with the prism facing medially. We cemented the GRIN-prism probe in place 

using Metabond. As OFC columns are oriented vertically, our protocol kept the columns 

containing the imaged neurons intact. The OFC / cerebellum preparation (Figure S3L) 

provided greater clearance between objectives during simultaneous imaging than the 

premotor cortex / cerebellum preparation.

Two-photon microscopy—We performed all Ca2+ imaging using a custom two-photon 

microscope with two articulating objective arms (Lecoq et al., 2014). Each arm operated as 

an independent two-photon microscope (Figure S2H), with its own piezo-mounted 

(P-725.4CD, Physik Instrumente; or nPFocus100SL, nPoint Inc.) microscope objective and 

GaAsP photomultiplier tube (PMT; H10770PA-40, Hamamatsu). Each arm was also 

equipped with an “eyepiece” CMOS camera (DMK 23UV024, The Imaging Source) to 

visualize microscope positioning with bright-field illumination of the sample (with the main 

dichroic removed). We used a 40× 0.80 NA objective (LUMPlanFLN 40XW, Olympus) for 

all cerebellar imaging, covering a 250 × 250 μm field-of view (FOV); and a 20× 0.50 NA 

objective (UMPlanFLN 20XW, Olympus) for all cortical imaging. Premotor cortical 

imaging generally provided ~600 × 600 μm FOV, whereas OFC imaging through a 1 mm 

GRIN-prism probe (either #1050-002184, Inscopix; or custom-assembled) covered a 570 × 

570 μm FOV.

A Ti:Sapphire laser (MaiTai, Spectra Physics) provided 920 nm excitation for two-photon 

imaging. For the cerebellum and premotor cortex, we used ~50–60 mW (each) after the 
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objective. For imaging the OFC, we used 80–90 mW after the objective, as measured above 

the implanted GRIN-prism probe.

Each microscope arm had six mechanical degrees-of-freedom (DOF): three translational 

DOFs to position the objective tip in space, two rotational DOFs to adjust the orientation of 

the optical axis, and fine, piezo-controlled movement along the objective axis. In addition, 

the sample stage had three translational DOFs, and the behavioral apparatus could be finely 

rotated (in the xy plane) on top of the sample stage. In total, our imaging apparatus afforded 

16 mechanical degrees-of-freedom to achieve simultaneous imaging of cortex and 

cerebellum (Figure S2I).

To align the two microscope objectives to the cerebellar and cortical implants, we utilized 

the laser back-reflection technique described previously (Wagner et al., 2017), but in the 

following three-step order (Figure S2J). In Step 1, we aligned the 40× objective to the 

cerebellar window primarily using the “vertical” rotation of the objective (i.e., rotation in the 

yz plane) and the translational DOFs and “horizontal” rotation (i.e., in the xy plane) of the 

sample holder. Next, in Step 2, we aligned the 20× objective to the cortical implant utilizing 

only the translational and rotational DOFs of that objective. Finally, in Step 3, for fine tuning 

and live adjustment of the imaging FOVs, we utilized only the translational and piezo DOFs 

of each objective.

We used ScanImage 5.2 software (Vidrio Technologies) to control each microscope. All 

movies were acquired at 512 × 512 pixel resolution at ~30 Hz frame rate. For all except iC+

+ experiments, we operated the two microscopes asynchronously. The precise temporal 

relationship between the two Ca2+ movies was established by sampling both microscopes’ 

frame clocks with a common digitizer (Logic 8 Pro, Saleae). For iC++ experiments, we 

explicitly synchronized the two microscopes at the frame level by providing the frame clock 

of one microscope to the external trigger input of the other. We assessed the level of 

synchronicity by recording both pairs of frame and line clocks. We observed a slight, 

variable delay (~0.1 ms; to be compared with a frame period of ~33.3 ms) in the timing of 

the externally triggered frame relative to the “master” frame clock. The delay was taken 

explicitly into account in the iC++ deinterlacing procedure.

Image preprocessing and extraction of Ca2+ signals—We applied a common image 

preprocessing pipeline to all two-photon movies. First, we corrected for any DC offset in the 

pixel values (which can originate, for example, from an arbitrary bias in the PMT 

preamplifier). For each frame, we computed the minimum pixel value over the entire image. 

We then averaged this value over all frames, and subtracted the result from all pixels in the 

movie. Next, we corrected brain motion using piecewise rigid motion correction 

(NoRMCorre) (Pnevmatikakis and Giovannucci, 2017) over 64 × 64 pixel patches of the 

image. We then corrected for slow drifts in movie brightness over the course of the session 

(e.g. caused by slow loss of immersion fluid). We estimated a frame’s “brightness” by its 

mean pixel value over the entire image. We then fitted an exponential curve (a * exp(−b * t) 
+ c) to the brightness as a function of frame, and divided each frame by its fitted brightness. 

Finally, we z-scored each pixel using its mean value and standard deviation over all frames.

Wagner et al. Page 16

Cell. Author manuscript; available in PMC 2020 April 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Two-photon movies acquired during simultaneous optogenetic perturbation underwent a 

modified version of the above pipeline. For iC++, we deinterlaced image frames during 

optogenetic perturbation periods (Figure S5J) prior to DC offset correction. For both iC++ 

and eNpHR3.0, we performed brightness drift correction by fitting only to the laser-off 

frames. We then computed the difference between average laser-on and laser-off images, to 

check for brightness increases during laser-on periods due to residual optogenetic light 

leakage. With eNpHR3.0, we typically observed a full-field brightness increase (~2%) on 

laser-on frames, whereas for iC++ we observed transient increases in brightness (~2%) 

following subfield transitions. We fitted these artifactual increases in brightness and 

compensated them on all laser-on frames.

To identify cells and extract their activity traces from the z-scored Ca2+ movies, we used the 

constrained non-negative matrix factorization (CNMF) cell-sorting algorithm 

(Pnevmatikakis et al., 2016), manually adding additional sources as necessary based on the 

neighboring-pixel correlation image. We utilized custom software written in MATLAB to 

visually check all candidate cells produced by CNMF and confirm that each had a 

morphology and Ca2+ activity trace consistent with an L5 cell or a GrC.

For downstream analyses, we did not use the deconvolved Ca2+ signals directly from CNMF, 

but recomputed the fluorescence traces by applying the manually confirmed spatial filters to 

the z-scored movie via least squares. We then removed high-frequency noise from these 

traces by low-pass filtering with a 2nd order Butterworth filter (−3 dB frequency at 4 Hz). 

We removed slow drifts from each trace by subtracting a 10th percentile-filtered (15 s sliding 

window) version of the signal.

Potentially inactive neurons—The CNMF algorithm only extracts neurons with 

detectable fluorescence activity. Other cells can be seen in background fluorescence that are 

not detected by CNMF. To obtain an estimate of the fraction of visibly GCaMP6f-expressing 

GrCs and L5 cells without detectable activity, and therefore not included in our analyses, we 

computed the mean projection image and manually counted the number of visible neurons 

(n=4 imaging sessions). We found that CNMF-extracted neurons were 45% of all visible 

GrCs, and 82% of total visible L5 cells. By applying ROIs to the manually-identified 

inactive neurons, we extracted fluorescence traces from these visible-but-not-CNMF-

extracted cells. This analysis confirmed that “inactive” cells had few, if any, bona fide 
identifiable Ca2+ transients (Ca2+ event rate: 0.02±0.002 Hz, mean±SEM, n=459 manually 

identified GrCs; 0.04±0.004 Hz, n=82 L5 cells; compare to Figure S6H). The primary 

analyses that gave rise to our conclusions were derived from the structure of L5 and GrC 

activity: behavioral encoding (inactive cells neither contribute nor degrade population 

encoding); fractions of GrC activity explained by linear regression onto L5, or vice versa, 

and, similarly, best-match correlation coefficients (inactive cells are not recruited into 

regressors); dimensionality assessed by PCA (inactive cells do not contribute variance, and 

thus do not affect the dimensionality of activity). As a result, our primary conclusion—that 

the activity of L5 and GrC ensembles converges onto a shared, low-dimensional, task-

encoding subspace of responses over learning—is unaffected by the inclusion or exclusion 

of silent cells. Interestingly, however, the greater number of inactive GrCs does suggest a 
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substantially larger “reservoir” of spare representational capacity in the GrC network, 

potentially engaged by contexts other than our behavioral task.

Relating GrC Ca2+ transients to spiking—Prior work imaging cerebellar granule cells 

with patch electrode recordings from the same cells in vitro estimated that 1 GrC action 

potential is likely associated with ~15% Δf/f GCaMP6f transients (Giovannucci et al., 2017). 

Similarly, in vivo anesthetized V1 recordings in L2/3 found 1 action potential was associated 

with ~15% Δf/f (Chen et al., 2013). To calibrate our Ca2+ data against these references, we 

converted our fluorescence traces into Δf/f units and then computed two critical quantities. 

First, we computed the noise floor, as the spread of the distribution of fluorescence values 

excluding Ca2+ transients. Across cells, we found that the 99th percentile value for the noise 

distribution was 16±0.2% Δf/f for GrCs and 12±0.2% Δf/f for L5 cells (mean±SEM across 

568 GrCs and 368 L5 cells). Hence, it is likely that only multi-spike events consistently rose 

above our noise floor. Second, we examined the amplitudes of Ca2+ transient events used in 

analyses in Figure 3. We found that the mean Ca2+ event height was 48±1% for GrCs and 

38±1% for L5 in Δf/f units (mean across cells), suggesting that most detected Ca2+ events 

fall into the multi-spike regime.

Behavior—For all behavior, mice were water restricted to 1 mL of water per day. Mice 

were monitored daily for signs of distress, coat quality, eye closing, hunching, or lethargy to 

assure general health. During behavioral training and imaging, mice generally received all 

water during daily training sessions. During all experiments, we recorded licking at 200 Hz 

using a capacitive sensor coupled to the metal water port, which delivered ~6 μL 4% sucrose 

water reward near the animal’s mouth per successful trial. For all experiments, mice were 

head-fixed and their bodies were loosely constrained by a custom 3D printed transparent 

plastic tube.

The apparatus used for all forelimb tasks was as described previously (Wagner et al., 2017). 

In brief, 3D-printed plastic pieces were assembled into the configuration shown in Figure 1. 

The two primary linkages consisted of a passive “elbow joint” that rotated via ball bearings, 

and a “shoulder joint” actuated by a DC motor (Maxon DCX22) for which the rotation was 

measured by an optical encoder (Gurley Precision Instruments R120). A passive “wrist” 

joint connected the two linkages via a ball bearing at the handle. Control of the device was 

programmed in Labview (National Instruments) via a compact RIO chassis (cRIO 9024 with 

two 9505 motor driver modules and a 9403 digital I/O module) that communicated with a 

Windows PC. Software consisted of nested control loops: a 10 kHz FPGA controlled motor 

current and encoder reading; a 1 kHz real-time PC performed all other computations, 

including geometric transformations and force production calculations, and processes 

including data sampling, buffering and transfer to the Windows PC; and the Windows PC 

controlled high-level behavioral transitions including trial type specification, trial start and 

end, reward delivery, and data logging.

Training on the motor planning task proceeded in stages. Mice were first trained to push the 

handle forward in a virtual linear track by 7–8 mm to receive a sucrose water reward. 

Following movement, a 1 s delay preceded reward delivery, followed by another ~2 s delay 

before the robot automatically returned the handle to the mouse for the next trial, a process 
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which took ~1.5 s. Mice trained in this condition for 3–7 days, until they reliably performed 

~200 trials in a 20–30-minute session.

After mice became proficient on linear movements, we exposed them to the movement 

sequence task, designed to assess motor planning similar to a previous study in humans 

(Sheahan et al., 2016). Initially, mice moved in a loose right angle track with a 6 mm 

forward segment followed by a 6 mm lateral segment, directed either left or right. The loose 

track was implemented by a proportional-integral-derivative (PID) controller that responded 

to increasing deviation of the handle from the desired trajectory with an increasing opposing 

force. Specifically, during the first segment until forward motion reached 6 mm, the robot 

opposed only lateral motion. During the second segment, the robot only opposed forward/

backward motion. Deviations less than 0.05 mm were ignored by the controller. The 

parameters of the control loop did not perfectly cancel sudden forces exerted by the mouse. 

Thus, mice had some ability to veer off-track (typically up to ~1 mm, Figure 1D, 7E). Left 

and right movements alternated in blocks of 40 successful trials. In this phase, if mice 

pushed the wrong way (i.e., left during a right trial or vice versa) and collided with the 

virtual walls of the track, they were permitted to recover by pushing in the correct direction. 

When mice were proficient at this task (minimum 3 days), we changed the task contingency 

such that if they pushed in the wrong lateral direction during the lateral segment of the trial 

beyond a threshold (either 0.5 mm or 3 mm), the robot locked in place, ending the trial 

without reward. The 3 mm threshold drove learning more effectively in mice poor at the 

task. Following the standard delay (2 s), the handle automatically returned to the mouse for 

the next trial. We found that this final contingency was critical for mice to pay close 

attention to their intended turn directions. Highly trained mice could reliably perform ~160–

240 trials (i.e., 4–6 blocks of 40) in a 20–30-minute session. For chronic imaging, Day 1 

refers to the first day mice were exposed to the loose right-angle track.

Cortical and cerebellar optogenetics studies—Gad2-Cre/Ai32 mice implanted with 

windows over both the premotor cortical and cerebellar regions that we imaged throughout 

the paper were trained on the task. During optogenetic manipulation sessions, two 

collimated optical fibers (~3–4 mm beam diameter) were positioned ~1 cm above each of 

the two windows to deliver 445 nm light (OBIS 445, Coherent). The laser was pulsed at 50 

Hz with 10 ms pulse duration. Time-averaged optical powers were 1–5 mW for the 

cerebellar window and 9–25 mW for the cortical window, distributed over the ~3 mm of 

tissue exposed in the windows. These power levels were chosen based on tests during the 

forward-only movement task. The lower cerebellar power was necessary to avoid inducing 

right forelimb tremor which precluded forelimb movements required by our task. We trained 

the mice for 1–2 weeks on the movement sequence task without optogenetic perturbation. 

During perturbation experiments, following baseline performance (~1–5 minutes), one of the 

two fibers was activated for 1 minute. After the fiber was turned off, mice were given 1–5 

minutes to recover their prior task performance (~10–20 successfully executed trials) before 

the next 1-minute laser-on period began. Mice received 1–2 laser-on periods for each brain 

region and for each movement direction (left or right) per experiment. Each of the 3 mice 

underwent 3 experiments.
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Pontine optogenetics studies—We performed pontine inhibition experiments in 

conjunction with single-site cerebellar imaging in 4 mice and with dual-site premotor and 

cerebellar imaging in 6 mice. For pontine manipulation during cerebellar imaging without 

cortical imaging, we mounted the fibers from the laser (FG025LJA, Thorlabs) directly on-

axis with the implanted fibers (Figure S5A and S5B) using standard ferrule mating sleeves 

(Doric Lenses). For pontine inhibition during dual-site imaging, it was necessary to re-route 

the optogenetic fibers to avoid the cortical objective. We designed a custom micro-optical 

assembly, consisting of a GRIN lens collimator and a right angle prism mirror, to fold the 

fiber axis by 90° above the implanted fibers (Figure S5C). While the GRIN-prism 

component (#1050-002186, Inscopix) was not originally designed for this application, 

optical simulation (Zemax) showed that it sufficed to mode-match the output light of the 

incoming fiber onto the face of the implanted fiber (Figure S5D). Using the fold adapter on 

both fiber implants allowed for optogenetic manipulation of the pons during dual-site 

imaging without collisions (Figure S5E).

To actuate eNpHR3.0 (Figure S5F), we utilized a 594 nm laser (OBIS 594, Coherent) 

filtered by a 592/8 bandpass filter (FF01-592/8-25, Semrock). During pons inhibition trials, 

we opened a shutter to allow for continuous-wave illumination of the pons. In the emission 

path of the two-photon microscopes, we inserted a 594 nm notch filter (NF03-594E-25) to 

suppress excess photons from leaking into the PMT. For eNpHR3.0, spectral separation was 

sufficient to allow for GCaMP6f imaging in the cerebellum and dorsal cortex despite 

concurrent 594 nm illumination in the pons (Figure S5H).

To actuate iC++ (Figure S5G), we utilized a 488 nm laser (LuxX 488-200, Omicron), 

filtered by a 482/18 bandpass filter (FF02-482/18-25), and equipped the two-photon 

microscopes with a 496 nm longpass filter (FF01-496/LP-25). In contrast to the eNpHR3.0 / 

594 nm case, spectral separation did not allow two-photon imaging of GCaMP6f during 

concurrent iC++ actuation (Figure S5I). Hence, to allow for simultaneous iC++ actuation 

during two-photon imaging, we devised a temporal multiplexing protocol in addition to 

spectral separation.

Our temporal multiplexing scheme utilized a duty ratio of ~1:1 between iC++ actuation and 

GCaMP6f imaging, thereby reducing the effective imaging frame rate to 30/2=15 Hz. 

During optogenetic perturbation, we divided the imaging frame into an odd number (e.g. 
N=11) of subfields. On odd-numbered imaging frames, we imaged the odd subfields (Figure 

S5J, top left) and enabled the 488 nm laser during even subfields; and on even-numbered 

frames we imaged the even subfields (top middle) and enabled the 488 nm laser during odd 

subfields. Hence, every pair of optogenetics-interlaced frames could be combined to produce 

a full frame image (top right). We implemented the multiplexing scheme with a 

microcontroller (Arduino Mega 2560) that took as inputs an “opto enable” TTL signal along 

with the frame and line clocks from the microscope and computed a “laser enable” TTL 

signal that modulated the 488 nm laser (Figure S5J, bottom).

During optogenetic imaging experiments, we activated the laser on 20% of trials for the 

entire duration of the trial (i.e., from the return of the handle from the previous trial, until the 

return of the handle for the subsequent trial, overall ~4 s).
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Chronic imaging studies—For the chronic studies in Figures 5–7, imaging began from 

the first day on the movement sequence task. We imaged each mouse multiple days over the 

first 7–9 days of training on the task, by which point they had achieved general competency. 

We called any sessions acquired during the first 3 days “early” learning, and afterwards 

“mid” learning. For all mid-learning sessions error turns were penalized by aborting the trial 

with no reward. After this initial imaging period, we continued training mice for another 7–

14 days without imaging until they achieved asymptotic task performance. We then returned 

for final imaging sessions (“late” learning). We performed these experiments in 7 mice, but 

we were only able to track individual neurons from early to late learning in 4 of those 7. 

Thus, all analyses requiring consistent cell identity were restricted to the 4 mice in which we 

successfully tracked neuronal identity over learning.

Aligning cells across days—First, we performed image registration – either 

MATLAB’s built-in intensity-based affine registration (imregtform), control point-based 

projective geometric mapping (fitgeotrans), or rigid-only NoRMCorre registration – to 

rigidly align each day’s mean image to that of every other day. This step primarily accounted 

for lateral variations in the field-of-views on each day. We supplemented the rigid alignment 

with NoRMCorre’s non-rigid registration to correct for any nonlinear discrepancies in the 

mean images. We thus obtained spatial transformations between every pair of days, which 

allowed spatial filters from each day to be “imported” into the coordinate frame of every 

other day.

Next, we sought to maximize the number of matching cells across days. Generally, cells 

absent one day but detected on another day could be due to multiple reasons: (1) the cell was 

not present in the movie due to lateral or axial shifts in the imaging field; (2) the cell was 

present in the movie, but not active; or (3) the cell was both present and active but simply 

“missed” by the extraction algorithm. Because it was not always possible to distinguish 

between (1) and (2), we maximized the number of cross-day matches only by minimizing 

the number of cells falling into case (3) for each day.

To identify potential “missed” cells, we used previously computed spatial transformations to 

determine which cells were identified on one day but missing on another (“unmatched” 

cells). We then “imported” the unmatched spatial filters. For a particular day, this produced 

multiple sets of possibly missed cells, derived from each of the other days. We then 

extracted traces for all filters while eliminating duplicates, and manually examined each one 

to determine whether a cell was in fact present with at least one Ca2+ fluorescence transient. 

For ~50% of such missed cell candidates, transients were in fact present. By including 

“missed” cells in this way, the number of cells on each day typically increased by ~2×.

Finally, using the “missing cell”-corrected datasets, we performed cell map alignments 

between the last training day to all other days. Across datasets, 35±3% of cells present on 

the last day were present on all previously imaged days.

QUANTIFICATION AND STATISTICAL ANALYSIS

Behavior analysis—For trial-locked and trial-averaged analyses, we used either the onset 

of lateral motion or the time of reward delivery to align trials. We defined the turn onset as 
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the time when lateral motion crossed a 0.5 mm threshold. In cases where mice made small, 

back-and-forth lateral movements, we used the final threshold crossing as the midpoint. We 

divided trials into two main categories. “Pure” left or right turning trials were those in which 

the animal’s lateral motion did not stray more than 0.5 mm in the wrong direction. “Error” 

trials were those in which mice attempted to move in the wrong direction.

For analyses of task encoding, to minimize behavioral differences between mice and 

between training days, we restricted analysis to pure left or right turns which were more 

kinematically similar. For all other analyses including correlations and dimensionality 

assessment we included all trials.

Analysis of neural task encoding—We performed two main analyses of cells’ task-

encoding. The first was a single-cell analysis (Figure 2E,F 5G,H,K) in which we used linear 

regression to “reproduce” a cell’s single-trial fluorescence activity from a set of behavioral 

regressors. We defined the set of behavioral regressors as indicator signals active over one of 

the following time windows: the 300 ms before (“pre-turn”) or after (“post-turn”) turn onset, 

the 300 ms before (“pre-reward”) or after (“post-reward”) reward delivery. We further 

segregated these signals by left and right turn trials. For each GrC or L5 cell, we then 

linearly regressed its activity traces during all pure left and right turn trials onto these 8 

behavioral indicators. Cells with a significant regression coefficient for either turn direction 

were considered “modulated” in that corresponding time window. If a cell additionally had a 

significantly greater coefficient for one direction than for the other then it was considered 

“direction-preferring” in that window. We also tabulated the variance in each cell’s activity 

explained by this regression (Figure 5I).

To determine significance for the single-cell behavioral regression analysis, we performed 

two permutation tests. The first permutation test determined significant modulation. We 

generated randomized data sets where the times of each trial’s turn onset (the alignment 

point) was chosen randomly from the full recording. We then aligned all fluorescence 

activity to these random “trials,” and performed linear regression using the true regressors. If 

the true weight given to a regressor was greater than that given in 95% of the shuffles, the 

cell was deemed to be “modulated” by that regressor. The second permutation test 

determined significant direction preference. We generated randomized data sets by randomly 

permuting the left/right trial labels of the true fluorescence activity. We then recomputed the 

same regressions using the randomized left/right fluorescence activity for each shuffle. If the 

true difference between the weight assigned to a left regressor and that assigned to the 

corresponding right regressor was larger than the corresponding difference between those 

regressors in 95% of the shuffles, the regressors were deemed to be significantly different. If, 

in addition, the preferred regressor had also been deemed to significantly modulate the cell 

by the previous permutation test, the cell was deemed to be significantly direction preferring 

in the corresponding time window (pre/post turn or reward).

The second analysis of task encoding employed ensemble activity. In this analysis, we used 

linear regression to reproduce behavioral signals from the single-trial activity of all cells. 

The behavioral signals were: a “movement” signal (−300 ms to + 300 ms relative to turn 

onset) and a “reward” signal (−200 ms to +400 ms relative to reward delivery) for each turn 
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direction, as illustrated in the top row of Figure S6A. We then performed a separate linear 

regression for each of these “behavioral signals,” using the fluorescence activity of all cells 

on all trials. An example output of this regression is shown in (Figure S6A). We then 

tabulated the variance in behavioral signals explained by this regression (Figure 5J, K and 

Figure 7B, C; for each session, averaged across the regressions for each of the 4 behavioral 

signals).

Dimensionality analysis—Dimensionality analysis was performed using PCA across 

cells—i.e., to identify the main contributors to variability across cells (as opposed to 

variability across trials). We performed two types of analysis. The first analysis was 

dimensionality of single-trial activity (Figure 2I and 5H, I). In this case, we performed PCA 

across cells. In the data matrix, each column was the fluorescence of one cell concatenated 

across all trials (pure turns, errors, aborted trials). Thus, the data matrix was of size (T×N)-

by-C, where T is the number of trials, N is the number of timepoints per trial (from −2 to 2 s 

relative to turn onset), and C is the number of neurons. We then plotted the fraction of total 

ensemble L5 or GrC signal variance as a function of the number of principal components 

included in the reconstruction of the original population activity.

The second analysis was dimensionality of trial-averaged activity (Figure S6B; “signal” 

dimensionality, analogous to “signal” correlations described below). In this case, we 

computed the trial-averaged activity of every cell on successful left and right turn trials 

separately and then concatenated the left- and right-trial averages and recorded the results in 

a data matrix in which each column was the trial-averaged activity of one cell. Thus, the 

resulting data matrix was of size 2N-by-C. We then performed PCA across cells.

Correlations and L5-GrC regressions—We characterized every GrC by its 

correlations both to all other GrCs, as well as its correlations to all L5 neurons. Thus, each 

GrC was associated with two distributions: a distribution of GrC correlations, and a 

distribution of L5 correlations (full distributions shown in Figure S3I). For each GrC, we 

summarized these distributions by the best-match correlation, i.e., the maximum of the 

distribution (Figure 3B). We then tabulated this statistic for all neurons, yielding the 

distribution of best-match GrC-GrC and L5-GrC correlations. The motivation for using the 

best-match correlation was two-fold: first, this allowed us to compare representations in 

similar L5-GrC pairs (e.g., Figure 3); second, the distributions were very heavy-tailed, and 

the maximum captured the changes in this tail. Nevertheless, as shown in Figure S3I, the full 

distributions conveyed qualitatively similar information. For each L5 neuron we similarly 

computed the correlations with all other L5 neurons, and we recorded the best-match 

correlation for every cell, yielding the distribution of L5-L5 best-match correlations.

To compute correlations in trial-averaged signals (often called “signal correlations”, Figure 

S6F) or in trial-to-trial variability (often called “noise correlations”, Figure S3K and S6G), 

we followed standard techniques (Cohen and Kohn, 2011). For correlations in trial-averaged 

responses, we computed the trial-averaged response of each cell (averaged for left and right 

turns separately) and then correlated the trial-averaged responses of different cells (with left 

and right responses concatenated). For correlations in trial-to-trial variability, we 

concatenated all the single-trial activity for each cell, subtracted from each single trial 
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fluorescence trace the trial-averaged response (for left and right turn trials separately), and 

then computed the correlations between the mean-subtracted concatenated single-trial 

responses.

We used linear regression to determine the variance of each individual GrC’s single-trial 

activity that was explained by the L5 ensemble as an alternative to pairwise correlations 

(Figure 6C and 7D). We linearly regressed each GrC’s single-trial fluorescence traces 

concatenated across trials onto all the corresponding traces of all L5 cells. We recorded the 

R2 fraction of variance explained by this regression. We also performed regression using the 

trial-averaged activity (Figure 2L). In this case, we computed the trial-averaged activity of 

every cell on successful left and right turn trials separately and then concatenated the left- 

and right-trial averages and recorded the results in a data matrix in which each column was 

the trial-averaged activity of one cell. Thus, the resulting data matrix used for regression was 

of size 2N-by-C.

To regress the entire GrC ensemble single-trial activity onto the entire L5 ensemble activity 

and also determine the minimum dimensionality of L5 activity needed to best explain GrC 

activity, we performed Reduced Rank Regression on the concatenated single-trial activity of 

all GrCs and L5 cells and tabulated the variance explained and the rank of the regression 

(Figure 6D).

Due to the marginally different L5 vs GrC sampling rates (variable, but typically ~30.03 Hz 

in GrC and 29.97 Hz in cortex), we linearly interpolated the L5 signals to match the GrC 

sampling rate when directly matching time points. In addition, GrC ensembles were slightly 

larger on average than L5 ensembles (86±7 vs 73±7 cells). To ensure that our results were 

not impacted by this discrepancy, we performed a Monte Carlo subsampling analysis in 

which we repeatedly randomly sampled a subset of whichever of the two populations was 

larger (L5 or GrC), to be the same size as the smaller population, prior to recomputing best-

match correlations (as in Figure 3C) or regressions (as in Figure 2H), and produced results 

nearly identical to those reported in the Figures (data not shown).

Ca2+ event-based analysis—For Ca2+ event-based analyses (Figure 3), we performed 

threshold-based peak detection (MATLAB’s findpeaks function) using a 1.5 SD threshold 

and requiring a minimum event separation of 500 ms (motivated by GCaMP6f Ca2+ 

kinetics). For event matching between one GrC and one L5 cell, we tabulated any events 

occurring within 300 ms of one another as “matched.” Matching was only performed on 

highly correlated cells (r>0.4). While we believe that these parameters are appropriate given 

the temporal characteristics of Ca2+ imaging data, we also confirmed that the principal 

conclusion drawn from these data—that there are more GrC-only events than L5-only 

events, for correlated pairs—did not depend on parameters. Namely, we repeated the 

analysis of Figure 3F using more fine-grained parameters: 250 ms event bins and 150 ms 

event-matching separation. Under these conditions GrC-only events continued to outnumber 

L5-only events (p<10−6 Wilcoxon sign rank test). More precise estimates than this are 

impeded by the Ca2+ indicator kinetics.
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We computed the Kullback-Leibler (KL) divergence (Figure 3I) to compare the temporal 

distribution of shared L5-GrC events aligned to the task to that of GrC-only events. We 

computed time histograms for GrC-only and shared L5-GrC events (−2.5 s to 2.5 s with 0.5 

s time bins) separately for left and right turn trials (and concatenated the histograms for the 

two directions). We collapsed all events that were outside this interval with respect to 

movement into the ends of the histogram. We then computed the KL divergence as 

−∑time binsPshared log
PGC − only

Pshared
.

Optogenetic GrC response analysis—To determine which GrCs were inhibited or 

disinhibited by optogenetic inhibition of pontine neurons (Figure 4, Figure S5), we 

employed a permutation test. For each GrC, we computed the trial-averaged response on left 

and right trials separately, and on laser-off and laser-on trials separately. We found the 

timepoint with the largest decrease in trial-averaged activity on laser-on trials compared to 

laser-off trials (between −2 s and 2 s), tmax. We then averaged the decrease in an 800 ms 

window centered on tmax (magnitudes shown in Figure 4E). We then computed the same 

quantity for trial-shuffled data, in which, for every shuffle, we randomly permuted the laser-

off/laser-on trial labels (but only permuted among trials of the same turn direction). If the 

true maximum decrease was greater than that observed on 99% of the shuffles and if the 

maximum decrease was at least 0.5 z-scores of fluorescence, we tabulated the cell as 

significantly inhibited by optogenetic inhibition of pontine neurons. We similarly 

determined whether cells were significantly disinhibited.

Clustering changes in correlations—To identify clusters of L5 cells and GrCs for 

which correlations evolved coherently during learning, we first computed the correlation 

coefficients between all possible pairings among the set of L5 cells and GrCs tracked every 

day throughout learning (4 mice). To identify clustered changes, we computed the difference 

between the correlation coefficient matrix on the final day of imaging and on the first day of 

imaging. We performed k-means clustering on the correlation coefficient difference matrix 

(“kmeans” function in MATLAB, k=2, although conclusions were unchanged when using 

three or four clusters). To compute the normalized mutual information between cell type and 

cluster membership, we used the formula: NMI(W , C) = I(W; C)
(H(W) + H(C)) ∕ 2  where the mutual 

information I(W; C) = ∑k ∑ j
∣ wk ∩ c j ∣

N log2
N ∣ wk ∩ c j ∣
∣ wk ∣ ∣ c j ∣  and the entro H(W) = ∑k

∣ wk ∣
N log2

∣ wk ∣
N , 

in which N is the total number of neurons, ∣wk∣ is the number of neurons in cluster k, and ∣cj∣ 
is the number of L5 cells or GrCs, following (Schütze et al., 2008). The normalized mutual 

information represents the reduction in uncertainty about cell type provided by knowledge of 

the cluster assignment, relative to the total uncertainty in cell type and cluster assignment 

measured by entropy, and thus varies from 0 to 1.

Statistics—We used MATLAB (Mathworks) for all statistical tests. We compared medians 

of two groups using the Wilcoxon rank-sum test. We probed the median difference between 

groups of paired samples using the Wilcoxon signed-rank test. We also compared the 

median of a distribution to zero using the Wilcoxon signed-rank test. These nonparametric 

tests do not assume the data follow a particular statistical distribution. Histogram error bars 
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were computed from counting statistics as N 1 − N
Ntotal

, where N=number per bin and 

Ntotal=total elements.

In some cases where standard statistical tests could not be applied, we used custom 

permutation tests described in the corresponding analysis sections.

For all statistical tests and all data presentations in each main and supplemental Figure, the n 
value used to evaluate significance or generate the data figure is indicated in each Figure 

legend or in each citation in the Results text, as appropriate.

Simulations (Figure S4)—Simulated GrCs. Similar to prior work, we implemented a 

simulated granule cell input circuit containing NGrC GrCs. Each GrC, σi, i = {1, … , NGC} 

had binary output (active/inactive) for simplicity. Binary neurons, as previously published 

(Billings et al., 2014; Gilmer and Person, 2017; Litwin-Kumar et al., 2017), are a reasonable 

simplification since GrCs have very low tonic firing rates with bursty responses to mossy 

fiber input (MF) (Chabrol et al., 2015; Chadderton et al., 2004). Simulated GrCs received 

exactly four MFs. Feedforward inhibition modeled gain control effects of Golgi cells 

(Billings et al., 2014) by dynamically setting GrC firing thresholds, as originally posited by 

Marr-Albus (Albus, 1971; Marr, 1969). The dynamic threshold allowed activation of only 

the top fGrC=10% of GrCs ranked by input strength at each time point (Babadi and 

Sompolinsky, 2014; Litwin-Kumar et al., 2017). GrCs activity levels were taken from the 

data (binarized: mean probability of a Ca2+ event in each GrC in each 500 ms time bin was 

0.1).

We had no way to accurately determine the fraction of MFs arising from task-related L5 

signals. To very roughly estimate, we considered that our tracing studies showed that 

premotor cortex contributes 15% of cortex-via-pons inputs to this region of the cerebellum 

(Figure S1). Although the pontine nuclei are the largest source of MFs (Sillitoe et al., 2012), 

without knowing the true fraction of MFs contributed by pons, we considered a scenario 

where pons contributed around half of all MF inputs. Thus if each GrC receives input from 

four nearby MFs at random, combinatorics implies that each GrC has probability pinput=0.27 

to receive at least one MF of premotor origin, of which only a small probability (3%) comes 

from receiving two or more of these inputs which, for simplicity, we ignored in this 

simulation. An important feature of our imaging data is that 55% of GCaMP-labeled GrCs 

had few detectable fluorescence transients (see Methods section above). This suggests that 

most of these GrCs are very unlikely to receive task-related input, and thus suggests that 

cells from which we extract activity are substantially more likely to receive task-related 

input. To represent this unknown but likely substantially higher effective probability of 

receiving task related MF input, we varied pinput widely between 0.4, 0.5, and 0.6, which 

yielded qualitatively similar results. For simplicity were therefore display only pinput=0.5. 

(In additional simulations not shown, we explored the possibility that MFs cluster in 

individual GrCs, such that 50% of premotor-recipient neurons received more than one 

premotor-derived MF. We explored whether the standard MF integration model could 

recapitulate our data under these conditions, but due to the heterogeneity of selectivity 
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within premotor L5 itself, this results in GrCs that mix away the selectivity in L5, thereby 

failing to match our data).

Each MF contributed to the postsynaptic membrane potential of recipient GrCs via synaptic 

weights drawn from a Gaussian distribution. Due to the dynamic threshold set by 

feedforward inhibition, and the use of binary GrCs, there is a free choice of scale, thus the 

magnitude of the moments of the distribution are arbitrary. Formally, the activity of each 

GrC can be written as

σi
GG = Θ ∑

i = 1

NMF

wi j σMF − T ,

Where Θ is the Heaviside step function which is equal to one in its argument is positive and 

is zero otherwise. Each row wi of the connectivity matrix had exactly 4 non-zero entries, one 

of which with probability pinput arose from the pontine MF population. The dynamic 

threshold, representing feedforward inhibition from Golgi cells, was then set to ensure that 

∑i
NGC

σi = f GC.

Simulated MFs.: MF activity was also assumed to be binary, with the probability of 

activation for each MF in each time bin parametrized by fMF. The constraints provided by 

the observed GrC activity levels in our data (described above), and satisfying the assumption 

that GrCs generally require two or more active MFs to fire (Chadderton et al., 2004), were 

sufficient to determine fMF=0.15. Alternatively, when we considered a model where GrCs 

can fire with only 1 active MF (Figure S4D,E), we thus required that fMF=0.1.

We simulated two MF populations: “task-related MFs” originating from the pontine layer 

receiving input from the task-related L5 pool; and a pool of “all other MFs.”

Since for the “all other MFs” population we had no information about response properties or 

potential correlations to the “task-related MF” pool, we parametrized the correlation among 

all mossy fibers (x-axis in all panels similar to Figure S4B). We implemented this by 

generating the “all other MFs” activity as a random projection of the activity of the task-

related MF pool combined with noise. At one extreme parameter value, each MF in the “all 

other MFs” pool reproduced one task-related MF exactly, while at the other extreme, the 

activity of the “all other MFs” pool was purely random. This maintained the same MF 

activity level at all correlation parameter values.

For the “task-related MFs,” we simulated a pontine layer. Each pontine cell received input 

from the L5 layer. Like the GrCs, each pontine cell’s output was binary and in the active 

state when the weighted sum of its inputs exceeded threshold:

σi
MF − L5 = Θ ∑

i = 1

NL5
Ji j σL5 − T .
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Here NL5 is the number of pons-projecting L5 neurons. The threshold in this layer was 

chosen to produce a pontine activity level of fMF.

There were two possible mechanisms for the high selectivity (i.e., pre/post left/right 

movement/reward) of GrCs in our imaging data, which was in turn similar to what we 

observed in L5: (1) Selectivity was inherited from L5 cells, which would also require 

pontine cells to be selective. (2) GrCs generate selectivity de novo, which would require 

GrCs to integrate multiple MF inputs that carry similar weakly selective information. As 

random combinatorial inputs to GrCs makes (2) very difficult (Litwin-Kumar et al., 2017), 

we therefore assumed that pontine activity is selective. Therefore, to preserve selectivity in 

pontine output, we set the synaptic weights from L5 to pons via a simple Hebbian 

association rule. Specifically, each pontine neuron had a “desired” output activity pattern 

over the set of stimuli, denoted by xμ
pons, an Npons-dimensional binary vector indicating 

which pontine neurons are responsive to stimulus μ. The Hebbian association rule ensures 

selective responses similar to the desired activity patterns (Babadi and Sompolinsky, 2014) 

by setting the synaptic weights to

Ji j = 1
NL5 ∑

μ

P
xi, μ
L5 x j, μ

pons,

Where P is the number of stimuli, xμ
L5 with μ = 1, … , P is the NL5-dimensional vector 

indicating which L5 neurons are responsive to stimulus μ. Since some L5-pons convergence 

exists (Brodal and Bjaalie, 1997), but the precise convergence ratio is unknown, we set NL5 

to be 5 times larger than the pontine layer. Varying this ratio from 1.25, to 2.5, to 5 produced 

very similar results (data not shown).

Simulated L5 cells.: Input to the model was a set of canonical stimuli, numbering P=10. 

Each stimulus activated a set of L5 cells, with each L5 cell responding to each stimulus with 

probability fL5 = 0.1 (again based on event rates in the data). In addition, noise parametrized 

by η corrupted each L5 cell response, so that each L5 cell had probability fL5η to fire for a 

stimulus to which it was not responsive, and probability (1 – fL5)η to not fire to a stimulus to 

which it was responsive. This noise structure produced L5 activity levels that were constant 

across noise levels. The noise level η allowed control of L5-L5 correlations, and was thus 

chosen to match correlations to the data (when binarized into events with 500 ms bins, 

described in Methods section above).

Dominant MF model.: Under an alternative model, task-related MFs (e.g. from premotor 

L5 via pons) become substantially stronger than other MFs, such that they ‘dominate’ the 

GrC’s output. We simulated dominant MFs by setting their synaptic strength sufficiently 

high to activate the recipient GrC with high probability, i.e. synaptic weights above the 

average GrC activation threshold of 2MF in the random mossy fiber integration model.

Correlation quantification.: In all simulation data panels in Figure S4, correlations were 

quantified, for each neuron, by the spread of its distribution of correlation coefficients to 
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other neurons (standard deviation). Thus to compare to the data, data correlations in this case 

were computed as SD of the distribution of correlation coefficients across cell pairs, rather 

than best-match correlations. This was necessary, because the number of neurons simulated 

(10,000 GrCs) was much greater than the number recorded in an imaging session, 

precluding a direct comparison of best-match correlations.

Simulated GrC selectivity.: To measure the selectivity of each of the GrC neurons to the 

different P stimuli (e.g., Figure S4C), we calculated a response vector for each GrC, 

measuring the fraction of trials on which it responded to the noisy MF input resulting from 

that stimulus. Each GrC i thus had a P-dimensional vector with values λμ
i , μ = 1 ,.., P, each 

between zero and one. We then calculated the dispersion of these values using

di = 1 −
∑μ

Pλμ
i 2

P∑μ
P λμ

i 2

Where the dimension ratio di = 0 implies the GrC responded equally to all patterns, and at 

the upper bound di = 1 – 1/P implies the neuron was selective to a single stimulus.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• First simultaneous recordings from neocortex and cerebellum over weeks of 

learning

• Cortical layer 5 and cerebellar granule cells show similar task encoding in 

experts

• Learning increases correlations among initially dissimilar L5 and granule 

cells

• L5 and granule cells converge to similar, low-dimensional, task-encoding 

activity
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Figure 1. Simultaneous Two-photon Ca2+ Imaging of Cerebellar GrCs and Premotor Cortex L5 
Pyramidal Neurons during a Forelimb Movement Task
(A) Experimental schematics. Mice voluntarily moved a manipulandum for sucrose water 

reward (left). We performed simultaneous Ca2+ imaging in cerebellar GrCs through a cranial 

window, and in L5 pyramidal neurons of the premotor cortex using an implanted 1 mm 

prism (right). GCaMP6f was expressed in L5 cells and GrCs using quadruple transgenic 

mice Rbp4-Cre/Math1-Cre/Ai93/ztTA.

(B) Mean images from representative two-photon Ca2+ imaging movies in L5 cells (left) and 

GrCs (right). The spatial filters used to extract fluorescence traces from cells with detected 

activity are highlighted in grayscale or red/blue (see G below; n=144 L5 cells/177 GrCs).

(C) Forelimb movement task. Water-restricted mice self-initiated trials. The task alternated 

blocks of 40 forward/left-turn movements with blocks of 40 forward/right-turn movements. 

No cues indicated trial type.

(D) Example movements on the virtual right-angle track (left panel, n=20 each of pure left 

and right turns; right panel, n=8 error-correction turns in each direction).

(E) Average motion over time in forward (black curve) and lateral (colored curves) 

directions for all pure turn trials in the session in D, aligned temporally to turn onset 

(n=51/63 pure-left/pure-right turns). Dashed vertical line denotes average forward movement 

onset.

(F) Behavioral performance: left, average duration of forward and turning portions of pure 

turn trials (n=28 imaging sessions in 10 expert mice). Right, pure turns are more common 

after learning (p=0.003, Wilcoxon rank sum test, n=7/21 for Day-1/Expert sessions in 7 

mice).

(G) For the imaging session in B, example fluorescence traces from both cortex (top) and 

cerebellum (bottom). SD, standard deviation (fluorescence in z-scored units). Dashed 

vertical line indicates time of switch from a left-turn block to a right-turn block of trials. 

Solid vertical lines denote individual turn motions. Traces show direction-preferring cells 
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colored by their direction preference (n=20 example L5 cells and GrCs, 10 preferring each 

direction; 11 turn motions in each direction). Corresponding cell spatial filters are colored in 

B.
See Figures S1–S3 for related anatomy, methods, and necessity of imaged areas for 

behavior.
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Figure 2. Similar Task Representations in L5 Cells and GrCs in Expert Mice
(A–D) Trial-averaged activity in example L5 cells (top) or GrCs (bottom) that responded 

preferentially before and during either left- or right-turn movements (A and B), or reward 

consumption (C and D) following either successful left- or right-turn trials. Vertical lines 

from left to right in A and B denote average forward motion onset, turning motion onset, and 

average reward delivery time. Vertical lines in C and D denote average time of turning 

motion and reward delivery. Shaded areas denote SEM in this and all subsequent figures. 

(From left to right for L5 cells: 109/76/72/109 left- and 74/71/71/74 right-turn trials; for 

GrCs: n=68/97/72/109 left- and 69/99/71/74 right-turn trials).

(E) Individual neurons were scored by linearly regressing their concatenated single-trial 

activity onto a set of 8 behavioral regressors.

(F) Fraction of cells with significant coefficients for either turn direction (grey) or with 

significantly larger coefficients for one turn direction (colored) among L5 cells (left) and 

GrCs (right) (n=2,037/2417 for L5 cells/GrCs from 28 imaging sessions in 10 mice; these 

and all subsequent histogram error bars are from counting statistics).
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(G) All GrCs or L5 cells that responded preferentially prior to one turn direction were 

grouped. The discrimination index for each trial was the time-varying difference between the 

average activity of left- and right-preferring pre-turn cell groups. Traces show average 

discrimination index across all pure-turn or all error trials (sign of index was inverted on 

right trials to match sign of left trials; n=1,498 pure-turn trials and 612 error trials, on which 

incorrect lateral motion exceeded 2.5 mm, from 5 mice. Index normalized to range from – 1 

to 1). On error trials, neither ensemble discriminated turn direction prior to lateral motion 

onset (from −300 to −50 ms relative to turn onset; p=0.22/0.67 for 720/536 GrCs/L5 cells 

with pre-turn direction preference, Wilcoxon signed rank test).

(H) Time-varying trial-averaged activity of each L5 neuron was reproduced by linear 

regression from the activity of either L5 or GrC populations. Regressions performed at 

similarly high levels (R2, fraction of variance explained on held-out data; 28 sessions in 10 

mice).

(I) PCA was performed across cells, using the fluorescence concatenated across all trials of 

each individual L5 cell or GrC. Fewer principal components are needed to explain 50% of 

GrC variance than are needed for L5 (p=0.002, Wilcoxon sign-rank test, n=28 imaging 

sessions from 10 mice).
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Figure 3. Highly Correlated Single-trial L5-GrC Activity in Expert Mice
(A) Example of a highly correlated L5 cell-GrC pair. Vertical lines denote individual turning 

motion onsets.

(B and C) Cumulative distributions of correlation coefficients between each GrC or L5 cell 

and its best-matching GrC or L5 cell (mean±SEM; n=2,037/2,417 L5 cells/GrCs; computed 

over the concatenated activity on all movements from −2 to 2 s relative to turn onset).

(D) Correlations with imaging sessions grouped by the cerebellar lobule that was imaged.

(E) Example highly correlated L5-GrC pair (r=0.59). Black asterisks indicate GrC events not 

present in the L5 cell.

(F) Scatter plot of all highly correlated L5-GrC pairs (defined as r>0.4; each dot is a pair) 

showing the proportion of total L5 events that were unique to the L5 cell (x-axis), compared 

to the proportion of GrC events that were unique to the GrC (y-axis). GrC-only events were 

substantially more common (p<10−6 Wilcoxon signed rank test, n=800 L5-GrC pairs with 

r>0.4 from 28 imaging sessions in 10 mice). Red dots indicate examples from E, G, and H, 

from left to right.

(G) Top, fluorescence traces from a highly correlated L5-GrC pair (r=0.43), with onset of 

individual turn motions denoted by vertical lines. Asterisks denote L5-GrC shared events 

(green) or GrC-only events (black). Bottom, the temporal distribution (relative to forelimb 

movement) of shared events is very similar to the temporal distribution of GrC-only events.
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(H) Same as G, for a L5-GrC pair (r=0.41) in which the temporal distribution of GrC-only 

events strongly diverged from that of L5-GrC shared events.

(I) Histogram of the dissimilarity (Kullback-Leibler divergence, KL, STAR Methods) 

between the temporal distribution of shared events and the distribution of GrC-only events, 

for all highly correlated pairs. Red vertical lines indicate example pairs in G and H with KL 

divergences of 0.85 and 2.3, respectively. Most cell pairs are more similar to G than to H.

See Figure S3 for additional data analyses, and Figure S4 for theoretical analyses.
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Figure 4. Contributions of Pontine Input to GrC Representations and Correlations to L5.
(A) Schematic showing optical fibers implanted bilaterally above the basal pontine nuclei 

transduced with either of the AAVs indicated.

(B and C) Trial-averaged activity of example left- (B) or right- (C) turn-preferring GrCs 

under normal conditions or during optogenetic inhibition of the pontine nuclei (67/95 and 

17/24 laser-off/laser-on trials in B and C respectively). Vertical dashed lines show average 

forward motion onset.

(D) Fraction of GrCs significantly inhibited (n=174) or disinhibited during pontine 

photoinhibition (n=163; out of 1,681 total imaged in 21 imaging sessions in 10 mice; 

significance determined via permutation test at p<0.01).

(E) Fluorescence decrease for all inhibited GrCs, averaged over an 800 ms window centered 

on the time at which fluorescence was maximally reduced on laser-on trials relative to laser-

off trials.

(F) For all inhibited GrCs in mice with simultaneous L5 imaging, each cell’s highest 

pairwise correlation coefficient to an L5 cell is reduced during laser-on trials compared with 

laser-off trials (p<10−6, Wilcoxon signed-rank test, n=115 inhibited GrCs and 1,042 total L5 

cells from 16 imaging sessions in 6 mice). Dashed line in this panel and G shows chance 

value determined from trial-shuffles in which the trial numbers for cerebellar and cortical 

activity are randomly mismatched.

(G) For inhibited GrCs, pontine photoinhibition decreases the fraction of GrC activity 

explained by linear regression using simultaneous L5 activity (p<10−6 Wilcoxon signed-rank 

test).

See Figure S5 for methods and related data.
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Figure 5. Common L5 and GrC Task Representations Emerge Concurrently during Learning
(A and B) Example mean fluorescence images of the same L5 cells (A) and GrCs (B) 

acquired over learning. Arrowheads point to example cells that were tracked across days.

(C–F) Trial-averaged activity of example L5 cells (C and E) and GrCs (D and F) shown on 

days corresponding to early, mid, and late learning. Cells develop direction-preferring 

activity time-locked to movement (C and D) or reward (E and F) (mean±SEM; left/right 

turn trial numbers for C, D, E, F: Early: n=40/18, 24/68, 29/18, 29/18; Mid: 34/27, 57/33, 

48/36, 17/45; Late: 109/74, 24/37, 72/71, 72/71).

(G) All cells were scored on each day for direction preference and task-locking using 

regression analysis as in Figure 2E. For the set of all L5 cells (left) and GrCs (right) that had 

direction preference on the final day of imaging, activity was primarily either modulated at 

the same time but without direction preference (dark gray) or was not modulated at that time 

(light gray) on earlier days (n=183/206 L5 cells and 172/202 GrCs from early/mid-learning, 

respectively). Direction-preferring activity was only infrequently maintained (white).

(H and I) Based on regression analysis (as in Figure 2E), more cells had direction-

preference late in learning (H, p=6×10−6 and 5×10−6 for early vs. late for L5 and GrCs; 
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Wilcoxon rank sum test; n=11 early, 19 mid, and 21 late imaging sessions from 7 mice), and 

regressions more accurately reproduced each cell’s activity (I; p< 10−6 Wilcoxon rank sum 

test for early vs late in L5 and GrCs; n=1,265/1,397, 2,113/2,324, 1,666/1,647 L5/GrC 

observations early, mid, and late, respectively).

(J and K) The entire ensemble of GrCs or L5 cells was scored for its fidelity of behavioral 

encoding. The accuracy of reproducing behavioral signals shown in Figure S6A via single-

trial linear regression rose over learning (J, mean±SEM; late vs early, p=0.0009 and 

p=9×10−5 for L5 and GrC respectively; n=11 early, 19 mid, and 21 late learning imaging 

sessions from 7 mice). In addition, regression accuracy for GrC populations (x-axis) and L5 

populations (y axis) in each imaging session (colored dots) covaried over learning (K, 51 

imaging sessions from 7 mice).

(L and M) L5 and GrC ensembles both became lower-dimensional over learning, as the top 

10 principal components (as computed in Figure 2I) explained greater fractions of single-

trial variance (L, p=5×10−6 and 3×10−5 for GrCs and L5 cells, respectively), and fewer 

components were required to explain 50% of variance (M, p=4×10−5 and p=0.007 for GrCs 

and L5 cells respectively, Wilcoxon rank sum test, 11 early, 21 late sessions).

See Figure S6 for further analyses and related data.
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Figure 6. Shared Cortico-cerebellar Dynamics Emerge Over Learning
(A) Example L5-GrC pair strongly correlated late in learning was poorly correlated early in 

learning. Vertical lines denote onset of individual turn motions.

(B) L5-GrC pairs that were highly correlated on the last day were weakly correlated early in 

learning (solid trace; p<10−6 Wilcoxon signed-rank test, n=121 pairs with last-day 

correlations >0.4). Dashed trace shows the evolution of correlations for pairs with high 

correlations early in learning. The initial correlation for last-day-correlated pairs was weaker 

than the final correlation of first-day-correlated pairs (p=3 ×10−6 Wilcoxon rank sum test, 

n=61 pairs early learning correlations >0.4).

(C) The accuracy with which L5 population activity reproduced the fluorescence of each 

GrC via linear regression rose over learning (curves show mean±SEM across GrCs; p<10−6 

comparing early and late learning, Wilcoxon rank sum test).

(D) The single-trial activity of all GrCs was simultaneously reproduced via linear reduced 

rank regression using L5 population activity. Regression accuracy rose over learning (black), 

while the average rank (dimensionality) of the L5-GrC regression fell (green; curves show 

mean±SEM across imaging sessions from 7 mice).

(E) For each GrC (represented by a dot), the change in its average correlation magnitude to 

all other GrCs (x-axis) strongly covaried with the change in its correlation to all L5 cells 

(n=398 GrCs tracked over learning).

(F) Matrix of correlation coefficients between each pair of neurons for 4 days between early 

and late learning in one mouse (n=55/53 L5 cells/GrCs). K-means clustering (k=2) identified 

groups of neurons that together exhibited similar changes in correlation to all other neurons 

over learning. Clustering was applied to the differences in correlation coefficients between 

Day 17 and Day 1. The thick solid black outlines in the matrix show the resulting clusters. 

The neurons are sorted in the same order on each day. Bottom, pie charts show substantial 

contribution of GrCs and L5 cells to both clusters.
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(G) The correspondence between cluster membership and L5/GrC cell type was 

characterized via the normalized mutual information. Mutual information was generally 

close to zero, indicating that L5 cells and GrCs were recruited together into coherently 

evolving cell assemblies during learning. Boxes show median, 25/75th percentiles over 1,000 

clustering instantiations.

See Figure S6 for further analyses and related data.
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Figure 7. Coherent L5-GrC Dynamics Reflect a Learned Circuit State.
(A) Behavioral learning. Pure turns as a fraction of trials increased (left, p=0.003, n=7 mice). 

Total movement duration decreased (middle, p<10−6), reflecting briefer transitions between 

the forward and lateral motions (right, p<10−6; n=460/2,062 Day-1/late learning trials; 

19.3±1.1 days between day 1 and last day). Statistics compare all Day 1 to all late-learning 

days, using trials from all mice (2.8±0.5 expert days per mouse; Wilcoxon rank sum test).

(B, C) Behavioral encoding via linear regression in L5 (B) and GrC (C) ensembles covaried 

with behavioral performance over learning.
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(D) The fraction of GrC variance explained by L5 ensembles via linear regression also 

covaried with behavioral performance.

(E) Within each imaging session, each successful trial was ranked by its kinematic similarity 

to the average pure turn trajectory of the same direction. From an example mouse, 10 

trajectories in each direction are shown from three sets of trials: from a late-learning day, the 

subsets of trials most and least consistent with the average trajectory (left two columns), and 

from a mid-learning day, the subset of trials most consistent with the average trajectory 

(right column). Top row shows trajectories in x-y space, and middle and bottom rows show 

forward and lateral motion over time.

(F) For each late- and mid-learning imaging session, best-match L5-GrC correlations were 

computed using only trials from either the most consistent or least consistent subset (20 top- 

and bottom-ranked trials in each direction). L5-GrC correlations were not significantly 

different between most and least consistent trials on the late learning day (distributions 

shown for mouse in E; black versus grey, p=0.35, Kolmogorov-Smirnov test, n=149/152 

GrCs, and 143/134 L5 cells, from the mid-/late-learning days, respectively). By contrast, 

even the most consistent trials on the mid-learning day exhibited substantially smaller L5-

GrC correlations than did the least consistent late learning trials (p=0.0001).

(G) Schematic of evolution of L5 and GrC ensemble dynamics over learning. From an 

initially less coherent, higher-dimensional, less task-related set of activity patterns, L5 and 

GrC ensembles converge onto a more shared, low-dimensional, task-encoding set of activity 

patterns.

See Figure S7 for further analyses and related data.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Virus strains

AAV8-hSyn-FLEx-TVA-mCherry-2A-G UNC vector core N/A

EnvA-Rabies-ΔG-GFP Salk vector core Stock name: G-deleted Rabies-eGFP

AAV8-hSyn-eNpHR3.0-mCherry Stanford vector core Stock# GVVC-AAV-147

AAV8-hSyn-iC++-mCherry Stanford vector core Stock# GVVC-AAV-162

CAV-Cre Soudais 2001 N/A

Chemicals

Isoflurane Henry Schein Animal Health CAS# 26675-46-7; CHEBI:6015

C&B Metabond Quick Adhesive Cement System Parkell UN/ID# UN1247

Avertin (2,2,2-Tribromoethanol) Sigma CAS# 75-80-9; SKU# T48402

DAPI Thermo Fisher Scientific Cat# D1306

Experimental Models: Organisms/Strains

Mouse: Ai93(TITL-GCaMP6f)-D Jackson Labs Stock# 024103

Mouse: ztTA Jackson Labs Stock# 012266

Mouse: Rbp4-KL100 GENSAT Founder# KL100

Mouse: Math1-Cre Jackson Labs Stock# 011104

Mouse: GAD2-IRES-Cre Jackson Labs Stock# 010802

Mouse: Ai32 (LSL-ChR2-EYFP) Jackson Labs Stock# 012569

Software and Algorithms

MATLAB Mathworks https://www.mathworks.com

IMARIS Bitplane https://www.bitplane.com

CNMF Simons Foundation/Flatiron 
institute; Pnevmatikakis 2016

https://github.com/flatironinstitute/CaImAn-MATLAB

NoRMCorre Simons Foundation/Flatiron 
institute; Pnevmatikakis 2017

https://github.com/flatironinstitute/NoRMCorre

ScanImage Vidrio Technologies http://scanimage.vidriotechnologies.com/

LabVIEW National Instruments http://www.ni.com/en-us/shop/labview.html
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