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Abstract

It is largely unknown whether there is functional role difference between cortical gyral and sulcal 

regions. Recent advancements in neuroimaging studies demonstrate clear difference of structural 
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connection profiles in gyral and sulcal areas, suggesting possible functional role difference in 

these convex and concave cortical regions. To explore and confirm such possible functional 

difference, we design and apply a powerful deep learning model of convolutional neural networks 

(CNN) that has been proven to be superior in learning discriminative and meaningful patterns on 

fMRI. By using the CNN model, gyral and sulcal fMRI signals are learned and predicted, and the 

prediction performance is adopted to demonstrate the functional difference between gyri and sulci. 

By using the Human Connectome Project (HCP) fMRI data and macaque brain fMRI data, an 

average of 83% and 90% classification accuracy has been achieved to separate gyral/sulcal HCP 

task fMRI signals at the population and individual subject level respectively; 81% and 86% 

classification accuracy for resting state fMRI signals at the group and individual subject level 

respectively. In addition, 78% classification accuracy has been achieved to separate gyral/sulcal 

resting state fMRI signals in macaque brains. Importantly, further analysis reveals that the 

discriminative features that are learned by CNNs to differentiate gyral/sulcal fMRI signals can be 

meaningfully interpreted, thus unveiling the fundamental functional difference between cortical 

gyri and sulci. That is, gyri are more global functional integration centers with simpler lower 

frequency signal components, while sulci are more local processing units with more complex 

higher frequency signal components.
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I. Introduction

The cerebral cortex is a continuous 2D sheet of interleaving convex gyri and concave sulci. 

Modern neuroimaging techniques such as magnetic resonance imaging (MRI) allow a clear 

delineation and differentiation of the different shape and morphology patterns of gyri and 

sulci, e.g., cortical segmentation of gyri/sulci based on structural MRI images in the past few 

decades [1–9]. However, anatomical differentiation and segmentation of gyral and sulcal 

regions does not tell much information about the potential functional role difference of gyri 

and sulci. In the neuroscience literature, neuroscientific communities from sundry 

disciplines have proposed many hypotheses for the mechanisms behind gyrification, for 

example, differential laminar growth [10, 11], genetic regulation [12, 13] and axonal tension 

or pulling [9, 14]. But it has been still rarely asked whether there are functional role 

differences between gyral and sulcal regions or not, and thus it has been traditionally 

assumed that there is no functional role difference between cortical gyri and sulci [15–17].

Thanks to advanced neuroimaging techniques, such as diffusion tensor imaging (DTI) and 

functional magnetic resonance imaging (fMRI), we can observe the structural and functional 

profiles of cortical gyri and sulci in unprecedented details in vivo. A growing number of 

studies show differences in gyral and sulcal regions, including structural and functional 

connectivity patterns [7,18–21]. For example, neuroimaging and bioimaging studies revealed 

that DTI-derived streamline fiber terminations mainly concentrate on gyri [21, 22]. Other 

studies have also made efforts to study the difference between gyri and sulci from the 

functional perspective [18, 20, 23, 24]. In [18], author demonstrated that the functional 
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connectivity is strong among gyri, weak among sulci, and moderate between gyri and sulci. 

These results suggest that gyri are functional connection centers that exchange information 

among remote structurally-connected gyri and neighboring sulci, while sulci communicate 

directly with their neighboring gyri and indirectly with other cortical regions through gyri. 

In [23], Jiang found that the identified THFRs (task-based heterogeneous functional regions) 

locate significantly more on gyral regions than on sulcal regions, suggesting gyri may focus 

more on the tasks or natural stimulus. In [20], Liu pointed out that gyri are more functionally 

integrated, while sulci are more functionally segregated. Above-mentioned findings suggest 

that functional difference between gyri and sulci indeed exist. In addition, frequency domain 

is an important research field to study and understand the functional characteristics of the 

brains [25–27]. For example, in [25], Stephan reported that committing to the different 

frequency galvanic vestibular stimulation (GVS) with alternating currents, the activation 

areas on the brain cortical surfaces are different, i.e., different brain regions may respond to 

different frequency stimuli. To our best knowledge, no research result has directly focused 

on exploring the functional characteristics of gyri and sulci in frequency domain. In 

conclusion, previous studies suggest the potential for functional difference between gyri and 

sulci. However, due to the complexity and variability of the structure and function of the 

cerebral cortex [15, 28–30], the functional role difference between cortical gyral and sulcal 

regions is largely unknown, nor the mechanisms that characterize and underlie such 

differences are understood.

In order to address the above mentioned complexity and variability of the structure and 

function of the cerebral cortex and to discover the intrinsic functional difference between 

gyri and sulci based on the fMRI signals, we need a powerful computing algorithm which 

has both computing power and learning power to handle the hundreds of thousands of fMRI 

signals in an individual brain. Recently, deep learning methods such as convolutional neural 

network (CNN) have attracted increasing attention in the field of machine learning and data 

mining [31–37], and they have been proven to be very powerful for learning discriminative 

and meaningful features from raw data. In particular, CNN has been applied to image 

classification and text classification problems, and promising results have been achieved 

[38–45]. Recently, deep learning algorithms have been also applied on the fMRI studies [46–

49]. For example, deep learning algorithms have been adopted to differentiate brain network 

maps derived from fMRI scans [50], better results are achieved compared with traditional 

methods. Another example is that we recently developed a Deep Convolutional Auto-

Encoder (DCAE) [46] to model task-based fMRI (tfMRI) data by taking the advantages of 

both data-driven approach and CNN’s hierarchical feature abstraction ability for learning 

mid-level and high-level features from complex tfMRI time series in an unsupervised 

manner. These successes inspired us to model and analyze fMRI time series data of gyri/

sulci by one dimensional CNNs and to learn discriminative features that can potentially 

differentiate cortical gyri and sulci from a functional perspective. Thus, in this study, we 

propose a new strategy by adopting one dimensional CNN model to differentiate temporal 

fMRI signals on gyri and sulci. Our hypothesis is that fMRI signals of gyri and sulci have 

fundamental differences. These differences can be represented through fMRI signals and be 

well characterized and classified by the proposed CNN model. Importantly, the CNN model 
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can also learn the discriminative features that can be used to characterize and interpret such 

functional role differences between gyri and sulci.

The carefully designed CNN models are then applied on multiple fMRI datasets, including 

both task-based fMRI and resting state fMRI of human and monkey brains, and our 

experimental results consistently showed that gyral and sulcal fMRI signals can be 

differentiated and accurately classified across species (both macaque and human), across 

tasks and resting state situations (7 HCP tasks and resting state), and across populations 

(both individual level and group level). These overwhelming results confirmed the true 

functional differences of cortical gyri and sulci. Our further interpretations of the learned 

features by CNN models and their frequency distributions in gyri/sulci suggest that low 

frequency and high frequency features play different roles to differentiate gyri and sulci, and 

that gyral regions might have more basic and global functions while sulcal regions might 

have more complex and local functions. In general, our works revealed the fundamental 

functional role differences of gyri and sulci, and provide a new window to study the complex 

functions of the cerebral cortex.

II. Materials and Methods

The framework of 1D CNN to classify gyral and sulcal fMRI signals includes four major 

steps (marked as (A)-(D) in Fig. 1). First, we extract gyral and sulcal fMRI signals 

separately from the whole brain. We annotate each extracted fMRI signal with either gyrus 

or sulcus label by checking the label of the corresponding vertex on the cortical surface. 

Assume the landmark j is a vertex on the brain, and kj is the candidate location in its 

morphological neighborhood. The maximum principal curvature of kj is represented by P, if 

P≥0, j belongs to gyri, and if P<0, j belongs to sulci. For more details, please refer to [51]. 

Second, we aggregate gyral or sulcal fMRI signals from all the studied subjects together and 

then divide the aggregated signals into training and testing datasets, respectively. Third, we 

use the 1D CNNs to train the model and classify the gyral and sulcal signals. The last step is 

result presentation and analysis, in which the learned features by CNNs are explained and 

interpreted within a neuroscientifically meaningful context.

A. Data acquisition and preprocessing

The Human fMRI data—In this study, the high-resolution task-based fMRI (tfMRI)/

resting state fMRI (rsfMRI) from the HCP datasets [16, 52, 53] are used. In the Q1 release 

of HCP fMRI dataset, 77 participants are scanned. Specifically, 58 are female and 19 are 

male, 3 are between the ages of 22–25, 27 are between the ages of 26–30, and 47 are 

between the ages of 31–35. In the publicly released dataset, 60 subjects are available and 

used in this paper. For individual level study, each subject will be studied separately. For the 

group level study, 10 subjects will be treated as one group, thus we have 6 groups in total. So 

our experiments are based on the seven tasks and one resting state fMRI data of 60 subjects. 

The acquisition parameters of tfMRI data are as follows: 90 × 104 matrix, 220 mm FOV, 72 

slices, TR = 0.72 s, TE = 33.1 ms, flip angle = 52, BW= 2290 Hz/Px, in-plane FOV = 208 × 

180 mm, 2.0 mm isotropic voxels. The tfMRI data consist of seven task paradigms, 

including emotion, gambling, language, motor, relational, social, and working memory 
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(WM) tasks. The HCP tasks were designed to identify core functional nodes across a wide 

range of the cerebral cortex. For tfMRI images, the preprocessing pipelines included skull 

removal, motion correction, slice time correction, spatial smoothing. All of these steps are 

implemented by FSL FEAT, and more details please refer to [53]. For the rsfMRI data, the 

pre-processing steps include skull removal, motion correction, slice time correction, spatial 

smoothing. More detailed rsfMRI preprocessing steps can be referred to the literature report 

[52, 54]. In this paper, the Q1-release HCP dataset (60 subjects) is used to develop and 

evaluate our 1D CNN models.

Monkey fMRI data—The macaque subjects were members of a colony in the Yerkes 

National Primate Research Center (YNPRC) at Emory University in Atlanta, Georgia. All 

imaging studies were approved by the IACUC of Emory University. Six 6-month-old 

macaques with multimodal T1-weighted MRI, DTI and rsfMRI scans were used as a testbed 

in this study. The main imaging parameters are as follows. For T1-weighted MRI, repetition 

time/inversion time/echo time is 3000/950/3.31 msec, flip angle = 8°, matrix is 

192×192×128, and resolution is 0.6×0.6×0.6 mm3 with 6 averages. For DTI, b value is 1000 

sec/mm2, 62 directions of diffusion-weighting gradients, repetition time (TR)/echo time 

(TE) is 5000/90 msec, FOV (field of view) is 83.2×83.2 mm2, matrix size is 64×64×43 

covering the whole brain, and resolution is 1.3×1.3×1.3 mm3. Ten runs of DTI scans were 

performed for each subject. One image without diffusion weighting (b=0 sec/mm2) was 

acquired with matching imaging parameters for each average of diffusion-weighted images, 

DTI data is used to generate cortical surface. For rsfMRI, TR/TE is 2060/25 msec, matrix is 

85×104×65, resolution is 1×1×1 mm3, and there are 400 time points.

B. Extract gyral and sulcal fMRI signals and prepare the training/testing samples

In order to separate the gyral/sulcal fMRI signals in an individual brain, a crucial step is to 

differentiate the neuroanatomic gyral/sulcal areas and then to extract the corresponding 

fMRI signals, which is shown in Fig.1A. Here, three steps are included in Fig.1A. First, we 

reconstruct the cortical surface of each human brain based on the individual’s DTI data (the 
fMRI and DTI sequences are both EPI (echo planar imaging) sequences, and thus their 
distortions tend to be similar and the misalignment between DTI and fMRI images is much 
less than that between T1 and fMRI images [57]. Co-registration between DTI and fMRI 
data can be robustly performed using FSL FLIRT). Second, we use linear registration 

algorithm to register the individual fMRI data to its own DTI space, and we want to 

emphasize that both the registered fMRI and cortical surface are under the subject’s 

individual DTI space. The reason to register fMRI onto DTI space is that we want to keep its 
original anatomical and structure information. Third, we assign the fMRI temporal signals to 

each vertex on the cortical surface. We will match each vertex on the cortical surface with its 

nearest fMRI voxel from registered fMRI data and assign the signal of that fMRI voxel to 

that cortical surface vertex. In this way, all the vertices on the cortical surface will have their 

own fMRI signals. After the standard fMRI signal pre-processing for each subject, the next 

step is to aggregate all the fMRI signals together as shown in Fig.1B and then to divide them 

into training samples and testing samples, respectively. For the high-quality HCP dataset, not 

all the vertices on the surface are used for training and testing. About 30% vertices with the 

highest maximum principal curvature values are labelled as gyri and another 30% vertices 
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with the lowest curvature values are labelled as sulci. So in total, 60% vertices from each 

subject will be used. The vertices with values in the middle will not be used and not be 

labelled in this paper to avoid ambiguity (for more details about the middle vertices, please 
see the supplemental materials). Based on the selected vertices, 80% of those labelled gyral/

sulcal vertices from each subject are used as training data, and the rest 20% are used as 

testing data. Training data is used to train the model and testing data is used to examine the 

performance of the learned model. The assumption that we make for the task fMRI 

experiment in a group level is that fMRI signals in different brains have relatively good 

consistency under the same task performance. The assumption that we make for the rsfMRI 

experiment in a group level is that although we know that the functional signals could be 

quite different from different subjects under the resting state, the differences between fMRI 

signals of gyri/sulci should exist and be quite consistent. In addition, deep CNN model is 

more powerful and effective based on larger dataset, e.g., more training samples will 

contribute to better chance to discover consistent and common differences between gyral and 

sulcal fMRI signals. Meanwhile, for each individual, we expect that greater classification 

accuracy can be achieved.

C. Structure of 1D CNN model

In this section, A CNN model is usually composed of alternate convolutional and pooling 

layers to extract hierarchical features to represent the original inputs, subsequently with 

several fully connected layers followed to perform classification. In this paper, we 

specifically deal with 1D temporal fMRI time series signals using CNN, as shown in Fig 1c. 

Inspired by previous deep CNN studies [46], as shown in Fig.2, we designed a deep 1D 

CNN architecture to differentiate gyral/sulcal fMRI signals to explore the intrinsic 

differences between gyri and sulci from a functional perspective. For the input layer, the 

fMRI signals are obtained by the method we mentioned above with two labels to represent 

gyri and sulci. Based on the different subjects and different tasks or resting state fMRI data, 

the dimension of the inputs could be varying, however the structure of the inputs is the same, 

which is N*T, where N is the total number of used vertices from a group number of subjects, 

and T is the time points of current fMRI data. For the network architecture, as shown in Fig.

2, the convolutional layer (C), pooling layer (P), and global average layer (GA) are included 

accordingly. In total, we use 64 filters in the first and second C layers, and employ 32 filters 

in the third and fourth C layers. 32 neurons in the GA layers and 2 neurons in the output 

layer. Specifically, the 2 neurons in the output layer represent the gyrus and sulcus labels, 

respectively, denoted as the red and blue dots in Fig.2. For the parameter settings, we set the 

length of the filter fixed as 21 across the layers. Similar to the traditional CNN structure, a 

filter is only connected with certain local area from the previous input data. In this paper, the 

filter size is defined as a window with the range of 21 time points. So using one fMRI time 

series from the input data as an example, a small part of this input fMRI signal Itl, tl + 20
within the window (as shown in the Fig.2 layer 1) will be sent to the filters in the first layer, 

where l represents one time point from fMRI signals. Then, the window will change a little 

by moving one time point down, the new input is Itl + 1, tl + 21
, then this new local 

information will be sent to the filters again, which is repeated until the window reaches tL 

where L is the length of the fMRI time series. For the next layer, filters do not directly reach 
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to the input fMRI time series and they are connected with the previous layer, and inputs are 

the output from the previous layer. The structure is shown in the Fig.2.

Epoch is generally defined as “one pass over the entire dataset”. After one epoch is trained, 

another epoch will start by doing what we mentioned above again, repeat this until training 

process is stopped. In this paper, epoch is set to 30 and then our approach will check 

whether the loss function has converged to decide whether training process is complete. So, 

here 30 epochs mean, during training, the whole input data are trained one epoch after one 

epoch to achieve classification performance and repeated for 30 epochs. After each epoch, 

the model of current stage will be saved, that is, all the parameters and filters will be saved, 

the logging and periodic evaluation of current epoch will be recorded too. So, by picking up 

the best epoch, we can obtain the corresponding model and then obtain all the parameters, 

filters and features’ information from that model. So, after going through all 30 epochs, if 

the loss function is already converged, we will use model evaluation to examine the models 
and the best one will be picked up. Then we use the best model to examine the testing data. 
If not, we will keep training more epochs. In this paper, experiments are well trained within 

30 epochs.

In this work, the “Relu” activation function is used due to at least two reasons: one major 

benefit is the reduced likelihood of the gradient to vanish and it is faster than many other 

activation functions. Another one is that ReLUs is sparse, and sparse representations seem to 

be more beneficial than dense representations, because a very dense distributed 

representation can be difficult to learn and overwhelm true dependencies, which will have an 

undue influence on the result. Specifically, in this paper, we would like to know the true 

differences between gyral signals and sulcal signals, thus we need to remove the noise, 

distant dependencies and etc. For those input fMRI signals, the dense representations will 

include more nuisance dependencies, and these nuisance dependencies could overwhelm 

true dependencies. For the loss function, we used “categorical_crossentropy” function from 

Keras tool.

In order to investigate the performance of classification from input to output and understand 

the progress of deep learning layer by layer, we design a pipeline to explore the performance 

of each layer from the back to the front. By preforming this process, details of the whole 

CNN structure are better understood. Here, we take Fig.2 as an example to show how the 

pipeline works to achieve the objective. From Fig.2 we can see that the whole structure is 

divided into four layers, each layer containing one convolutional layer. Among these 4 

layers, layer 4 is a special one, since it already has the global average layer and output layer, 

and the performance of classification of this layer can be easily obtained. Compared with 

layer 4, other three layers do not have GA and L. So the performance is not directly clear. 

However, since the model is already trained, in order to assess the performance of layer 3, 

we keep the model fixed and just delete the layer inside layer 4 and then add GA and L 

connected to the C3. Here, we want to mention that the output dimension of each of 

convolutional layer is different, but there is no mismatch in dimension for GA and L layer in 

our model. Because we design our GA and L layer based on their previous layer. So if the 

previous layer changed, GA layer will be changed automatically to fit for the whole model. 

Similarly, to assess the performance of layer 2, we delete layer 3 and 4, and add GA and L 
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connected to the C2. In this way, we let the input to go through the new structure, and thus 

the classification results of the exact layer can be unveiled.

D. Classification performance analysis and visualization

To understand the CNN’s output layer L, we need to carefully examine the CNN model that 

is trained already. If the input is n*t fMRI signals from one subject, then the output will be a 

matrix of n*2, meaning that for each vertex, 2 values can be obtained and compared. These 

two values are corresponding to the labels from layer L, and the label with the larger value 

will be given to the vertex. After predicting the labels for each vertex’s fMRI signal, the 

labels can be mapped back onto the cortical surface, in that the output of the CNN’s last 

layer and the input of the CNN have vertex-to-vertex correspondence. The distribution 

pattern of the spatial map will informatively show the CNN’s classification accuracy, and 

thus the accurate classification and misclassification can be understood and interpreted in a 

meaningful context of neuroanatomic regions.

To unveil the progress of classification layer by layer, we need to explore the features from 

each convolutional layer, which is presented by C1-C4 in this paper. To our best knowledge, 

the classification capability of different layers could be quite different and they are decided 

mainly by the filters. Thus, filters are the units that we will pay special attention to. Using 

layer 4 from Fig.2 as an example, within this convolutional layer, 32 filters are contained. In 

each filter, 32 features are recorded due to that the last convolutional layer in layer 3 has 32 

filters. In addition, GA is global average layer based on the previous convolutional layer. GA 

and L layers are fully connected layer, GA has the same number of nodes as the filter 

numbers from previous convolutional layer, and L has two nodes, as they are designed as 

gyri and sulci in this work. Thus, for each node in the GA layer, it represents a filter from 

the previous layer and it has two connections to the two nodes in the L layer, respectively. 

Weight value of each connection represents the possibility of this GA node belonging to, 

maximum weight value among two values was picked up and the corresponding connection 

will represent the label of that GA node, either gyri or sulci. For example, if the connection 

between GA node and L gyri node is picked up, it means the corresponding filter is gyri 

filter. In this way, filters can be labelled as well as vertices.

So three types of analyses are performed for filters and layers. The first one is the 

characteristics of features from gyral/sulcal filters, by directly extracting features from gyral 

filters and sulcal filters. Feature here is defined as the pattern of the weights we obtained 

from the filter. This will provide us with intuitive observations about the differences between 

gyral features and sulcal features. The second analysis method is frequency analysis by 

studying the frequency distribution of those features. The frequency domain of features can 

be converted by its original temporal signals by applying fast Fourier transform (FFT), and 

then a vector will be used to present its frequency and magnitude maps. The third analysis is 

the Pearson correlation among all the features within one filter, and we define the average 

Pearson correlation of filter i as Ci. So the equation of obtaining Ci is shown as follows:

Zhang et al. Page 8

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2020 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Ci = (∑x, y = 1..n, x ≠ y
cov(x, y)

σxσy
)/(n(n − 1)) (1)

where x and y are the features, and n is the number of the features in the filter i. Then 

average Pearson correlation of one layer can be easily calculated by averaging all the 

Pearson correlations of filters within this layer.

III. Results

A. Gyral and sulcal fMRI signals are largely different at the population level

When applying the 1D CNN algorithm on the HCP 7 tasks dataset, for each task, we group 

10 subjects’ fMRI data as the testbed to train the model and test the classification 

performance. Typically, 10 subjects’ tfMRI data contain around 1,000,000 tfMRI time series 

in total (about 100,000 for each). After 30% vertices with the highest curvature values and 

about 30% vertices with the lowest curvature values are picked up, so there are around 

600,000 tfMRI time series in total. Among those 600,000 signals, 80% tfMRI time series are 

used as training samples and the rest are used for testing. Training samples are used to train 

the model and testing samples are used to examine the performance of the model on the new 

data (no overlap between training and testing samples). In order to intuitively present the 

testing classification results for each task, we showed them in Table 1. After we identify the 

best model and its parameters and weights, all the fMRI signals of used vertices from 

corresponding subject will be picked up to generate an input. We put this input into the best 

model and the outputs from the model will be the labels it predicted for each vertex, and 

then predicted labels will be shown on the cortical surface for each vertex as we mentioned 

in the method part D. Then the classification performance for the corresponding subject can 

be obtained and visualized like the examples shown in Fig.3. According to the Table 1, the 

testing classification accuracies are as high as nearly 80% in the testing, meaning that about 

80% of vertices from gyri and sulci can be differentiated correctly. In addition, the average 
dice scores for gyri and sulci from task EMOTION are recorded accordingly, and they are 
0.74 and 0.70, respectively. To show the performance of classification results more 

intuitively, we map the labels of vertices we obtained back onto the cortical surface 

individually. In this way, for each task, every individual has a spatial map to visually 

represent the classification performance. We represent 10 subjects from task EMOTION as 

an example in Fig.3. Other six tasks are shown in the supplemental materials (Supplemental 

Figures 1–6). From Fig.3, the green vertices are predicted as gyri by the CNN model we 

trained and the red vertices are predicted as sulci. We can clearly see from Fig.3 that 

misclassification occurred in some locations, for example, some red vertices can be found on 

the gyri and some green vertices are detected on the sulci, which are the misclassified 

vertices, but the majority of the classified gyral/sulcal areas are accurate and clear, especially 

for some local areas, like the central sulcus, precentral sulcus, inferior frontal sulcus and 

superior temporal sulcus. Thus, we conclude that 1D CNN model did successfully 

differentiate between gyral and sulcal fMRI signals.
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In addition to presenting the classification performance of the output layer of the CNN 

model, we further investigated and interpreted the 1D CNN structure and explored why it 

achieved such high classification performance. In particular, we are interested in how each 

layer of the CNN model performs and contributes to classification accuracy. As mentioned 

in the method section, we use multiple layers to represent the neural network architecture of 

the 1D CNN. By adopting the architecture analysis algorithm designed in the method part, 

performance of each layer is observed and analyzed. Fig.4 shows an example of EMOTION 

task from one randomly selected subject. Similar results for other 6 tasks are shown in the 

supplemental materials (Supplemental Figure 7). On this subject, the testing classification 

accuracy of layer 1 to 4 are 54.97%, 58.81%, 62.35% and 88.26%, respectively. As shown in 

Fig.4, we can clearly observe that from layer 1 to 3, the performance of the classification is 

not very good and not very consistent neither. For instance, gyral and sulcal regions cannot 

be differentiated in large areas across the whole brain, especially for the frontal lobe and 

occipital lobe. Then, when the layer reaches to 4, the testing classification accuracy raises to 

about 88% and most cortical areas can be classified correctly. Thus, we can see that the 

differences between gyral and sulcal fMRI signals truly exist, however, they are buried in the 

deeper layers of the CNN architecture and thus are difficult to be captured if using 

traditional shallow data mining and machine learning algorithms, such as independent 

component analysis and sparse dictionary learning. Using the previous study [20] as an 

example, sparse coding and online dictionary learning method is used to differentiate the 

difference between the gyri and sulci signals. Due to that it is hard to measure the signals 

directly, they use the dictionary learning to learn the dictionary atoms of gyri/sulci signals 

separately and then analyze the functional connectivity among those atoms. On average, the 

functional connectivity among gyri atom-gyri atom, gyri atom-sulci atom and sulci atom-

sulci atom connection patterns account for a percentage of 41.2%, 36.4% and 22.4%, 

respectively. However, restricted by the method, they cannot map the feature to effectively 

and efficiently classify real gyri/sulci vertices. Instead, they only focus on the correlation of 

those gyri atoms and sulci atoms learned from dictionary learning method. Thus, there is no 

discriminative signal pattern and classification performance reported in the paper. That is the 

reason that we designed and employed 1D CNN model in this paper. Fortunately, the 

designed deep learning method 1D CNN architecture can effectively reveal such deeply 

buried differences. We used the same 1D CNN architecture for the different 6 tasks and all 

of them can achieve quite similar promising results shown in Table 1 and Supplemental 

Figure 7.

In addition to its superior classification performance, CNN is also powerful in extracting 

meaningful features during the model training process. Thus, the investigation of the learned 

filters in each layer of the 1D CNN model can potentially offer a window to understand how 

CNN discriminate the gyral and sulcal fMRI signals. In order to do this, we pull out the 

features from each convolutional layer and conduct statistical analysis on the filters layer by 

layer, and present the results of task EMOTION in Fig.5. The results of other six tasks are 

shown in the supplemental materials (Supplemental Figure 8–13). In order to test the 

robustness of our method, all available Q1-release subjects are divided equally into 6 groups 

to repeat the experiment at group level, and quite consistent classification performances are 

shown in the supplemental materials (Supplemental Table 1).
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As shown in Fig.5, two major aspects are explored to represent the progresses of classifying 

the gyral/sulcal fMRI signals through different layers. First, according to the frequency 

analysis, the average distribution of frequencies for all the filters in one layer is summarized 

and presented in Fig.5B. From layer 1 to 3, the distribution of frequency domain is more 

inclined to high frequency and the higher frequency exhibits the largest magnitudes, like the 

frequency range of 0.4–0.7 HZ. However, the classification accuracies of those layers are 

relatively low. When the layer reaches 4, the distribution of frequency domain is quite 

different from the first three layers. That is, the lower frequency range has the largest 

magnitudes, and in the meanwhile, the higher frequency keeps relatively high magnitudes 

and the middle frequency exhibits the lowest magnitudes. In this way, a good classification 

accuracy (88.26% from Fig. 5) is achieved from the same layer (layer 4). Interestingly, this 

frequency pattern is observed from all other six tasks and good classification accuracies are 

all achieved from the corresponding layer. Thus, we infer that certain distribution of 

frequency will represent certain pattern of features and those features will have the ability to 

differentiate the gyri/sulci. To elucidate the relationship between the distribution of 

frequency and classification accuracy, we went through all of the filters and features in each 

layer and present typical patterns for the last layer, as shown in Fig.5C. Two typical 

frequency patterns of the filter features are observed in the last layer: one has low frequency 

as shown in Fig. 5C, and another is quite high and the pattern is presented in Fig.5E. Their 

original features are extracted and presented in Fig.5F and Fig.5G, respectively. In contrast 

with the last layer, the pattern with low frequency is not discovered in the first three layers, 

hence both patterns are indispensable to our classification, meaning they both contribute to 

the good classification performance. It is worth noting that in the Fig. 5, features in the 

yellow frame represent the pattern from gyral filter, while features in the purple frame 

represent the pattern from sulcal filter. It is clear that features with lower frequency are 

observed in the gyral filters, but much higher frequency features are identified in the sulcal 

filters. In addition, the average Pearson correlation of features in each filter is analyzed using 

the methods shown in the equation (1). In the last layer, the average correlation of features in 

gyral filter is about 0.42, standard deviation is 0.03, but the average correlation is about 0.35 

in the sulci filters and standard deviation is 0.035. That means the features in the gyral filter 

are simpler and more consistent than the features in sulcal ones. Here is one more thing that 

needs to be mentioned. In the training process, weights in the filter of each layer is 

optimized through the backpropagation strategy and the features (generated by weights) are 

revised automatically. So the magnitudes of the features could be varying from different 

layers. Thus, it is fine that some features have strong magnitudes, but some features have 

very weak magnitudes to represent certain local patterns of the input (different scales can be 

observed from the layers in the Fig 5B), which are generated to be representative and to have 

the best classification performance for the inputs.

Based on all the 7 different tasks and available HCP Q1 release subjects, plenty of 

experiment results are observed. After we did the similar analysis as we mentioned above, 

two interesting phenomena are consistently obtained. One is the typical average distribution 

of frequency for filter features, as we showed in the layer 4 from Fig 5B. This pattern is 

shown in every experiment and it is always observed after the last convolutional layer with 

the best classification performance. By checking their corresponding features, features with 
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lower frequency are observed in the gyral filters, but much higher frequency features are 

always identified in the sulcal filters. Another phenomenon is that features in the gyri filters 

always have higher average correlation than the sulci. From the CNN model, we know that 

the CNN has strong advantages in learning discriminative and meaningful features, and local 

pattern of original inputs is revealed by the features from filters. So the differences identified 

by the filter features are the true differences between gyral and sulcal fMRI signals, we 

believe. Thus, two conclusions can be made from our results. First, low frequency is an 

important characteristic for gyral signals and high frequency is closely related to sulcal 

signals. Second, fMRI signals from gyri are more consistent and simpler than the sulcal 

signals.

In addition, in order for better generalization of functional difference between gyri and sulci, 

we conduct an additional experiment. In detail, we trained the functional signals from the 

left hemispheres of the brains and then tested the classification performance on the right 

hemispheres of the brains. The experiments and results are summarized as follows. We used 

fMRI signals from 5 left hemispheres as the input for the training and then used fMRI 

signals from 5 right hemispheres as the testing data. The testing classification accuracy is 

about 79%, which is relatively high according to our experiences. That is, differences in 

functional patterns of gyri and sulci have group-level consistency across different brain 

regions and across individual subjects. The results can give an insight on the group 

difference in functional patterns of gyri and sulci and could validate the assumption of 

group-level consistency.

B. Gyral and sulcal fMRI signals are largely different at the individual level

Similarly, gyri and sulci can be differentiated on each individual brain by adopting the 1D 

CNN architectures as well. The differences between group level and individual level are the 

amount of training data and the depth of the 1D CNN model. According to the different 

numbers of the training data, the number of the convolutional layers within the architecture 

could be varying. Following the structure, we mentioned in the method part, 1D CNN model 

in this section has 3 layers, and the number of the filter in each layer is 64, 32 and 32, 

respectively. The main reason to decide the number of the layers is to consider receptive 

field of the filters, as receptive field usually means the range of the input data which filters 

could reach. So receptive field will become more global when the layers go deeper. And 

appropriate receptive field will help filters to learn better features. The model with 3 layers is 

chosen because it fits the input and better classification performance was achieved. Other 

parameters are kept the same. Training and testing data are organized for each individual, 

and thus about 60,000 tfMRI temporal signals with hundreds of time points from one subject 

are further used as training and testing dataset (80% tfMRI time series belong to the training 

samples and the rest are the testing samples, no overlap between training and testing 

samples).

To present the classification performance, we pick up the same individual from each task 

and list the testing accuracy in Table 2. As we can observe from Table 2, quite high 

classification performances (nearly 90%) are achieved under different tasks. In addition, the 
average dice scores for gyri and sulci from task EMOTION are recorded accordingly, and 
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they are 0.83 and 0.80. The classification performance of the individual brain is shown in 

layer 3 of Fig.6. In addition, the performance of each layer is also explored and summarized 

in Fig.6 to better understand the 1D CNN architecture. Other six tasks results are shown in 

the supplemental materials (Supplemental Figure 14). From Fig.6, we can see that most of 

the vertices we used can be differentiated correctly. The misclassified areas are varying on 

the different tasks and subjects. Similar to the analysis at group level, at the individual level, 

the architecture analysis algorithms are also adopted and results are interpreted for better 

understanding of how the CNN model discriminates gyral and sulcal fMRI signals. The 

architecture analysis of task EMOTION is shown in the Fig.7, and other six tasks achieved 

similar results, which are presented in supplemental materials (Supplemental Figure 15–20). 

In addition, to demonstrate the effectiveness and robustness of our model on the individual 

level, we applied our method to all the available individual subjects (60 subjects available in 

this work) for the HCP EMOTION task, and every subject shows consistently good 

classification performance. The average testing classification accuracy is about 0.913, and 

the standard deviation is 0.0071. This is another strong support that the functional 

differences of gyri/sulci truly exist, not only in the groupwise level, but also shown in the 

individual level.

Similar to the analysis at the group level, to elucidate the relationship between the 

distribution of frequency and classification accuracy, we went through all of the filters and 

features in each layer and present typical patterns for the last layer, as shown in Fig.7C-G. 

Two typical frequency patterns of the filter features are observed in the last layer: one has 

low frequency as shown in Fig. 7C, and another is relatively high with the pattern shown in 

Fig.7E. Their original features are extracted and presented in Fig.7F and Fig.7G, 

respectively. In contrast with the last layer, the pattern with low frequency is not discovered 

in the first two layers, hence, both patterns are indispensable to our classification, suggesting 

that they both contribute to the good classification performance in this experiment. 

Comparing with the results in Fig.5, quite consistent results are observed. Features with low 

frequency are observed in the gyral filters, but many higher frequency features are identified 

in the sulcal filters. In addition, the correlation coefficient of features in gyral filter is 0.67, 

however, the correlation coefficient is about 0.29 in the sulci filters. That means, at the 

individual level, the features in the gyral filter are much simpler and more consistent than the 

features in sulcal ones. This finding is quite consistent with conclusions we made from the 

group level.

C. Gyral and sulcal fMRI signals are largely different in resting state

We are interested in not only the task fMRI data but also the resting state fMRI (rsfMRI) 

data. To our knowledge, compared with task fMRI signals, the resting brain exhibits large 

scale functional oscillations among connected regions. Thus, we would like to explore 

whether gyral and sulcal fMRI signals are different in rsfMRI signals as well. We group 10 

subjects’ rsfMRI data as the testbed to train the model and test the classification 

performance. In total, 10 subjects’ rsfMRI data (containing 600,000 rsfMRI time series with 

1200 time points) are composited into a big data matrix to evaluate our CNN models (80% 

rsfMRI time series belong to the training samples and the rest are the testing ones, no 

overlap between training and testing samples). Following the structures, we mentioned in the 
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method part, due to the huge dataset we are dealing with, the 1D CNN model in this section 

has 5 convolutional layers. The number of the filters in each layer is 64, 64, 64, 32 and 32, 

respectively. The main reason to use 5 layers is still about receptive field. The length of the 

inputs for the resting state fMRI is 1200 time points, which is 3–4 times longer than the task 

fMRI. In order to observe the differences among gyral/sulcal fMRI signals, more global 

receptive field for the filters may be needed. Usually, receptive field will become wider 

when the layers go deeper. Thus, one more layer is added in this section. Results 

demonstrated that a model with 5 layers works better. The parameters we used here are the 

same as those in the previous experiments.

In the rsfMRI dataset, about 80.9% classification accuracy is observed at the group level. In 
addition, the average dice scores for gyri and sulci are recorded accordingly, which are 0.71 
and 0.68. We map the predicted labels back onto each vertex, and then the classification 

performance of each individual is shown in Fig.8. Similar to the previous experiments, to 

unveil the characteristics of filter features in each layer, we went through all of the filters and 

features in each layer and presented typical patterns for the last layer. The results are 

presented in the Fig.9. As we can see from Fig.9, two typical patterns can be identified from 

Fig.9B and Fig.9D, and their original features are extracted and presented in Fig.9E and Fig.

9F. Compared with the tfMRI dataset, quite similar patterns of filter feature in the last layer 

are observed. Notably, the correlation coefficient of features in gyral filter is 0.32, however, 

the correlation coefficient is about 0.22 in the sulci filters. That means, even in the rsfMRI 

dataset, the features in the gyral filter are much simpler and more consistent than the features 

in sulcal ones.

On the other hand, to demonstrate the effectiveness and robustness of our model at the 

individual level, we applied our method to all the available individual subjects (60 subjects 

available in this work) for the resting state fMRI, and every subject shows consistently good 

classification performance. The average classification performance is about 0.864, and the 

standard deviation is 0.0157, which consistently supports our conclusions. That is to say, no 

matter using tfMRI or rsfMRI, fMRI signals of gyri and sulci can be differentiated 

successfully. From what has been discussed above, we can draw a conclusion that gyri/sulci 

functional roles are fundamentally different in human brains, regardless of the brain 

conditions (e.g., task-based or task-free states). It is worth noting that the frequency 
differences between gyri and sulci are global across the whole cortical surface and our 
findings imply a systematic difference between gyrus and sulcus. Thus, even though the 
resting state fMRI signals from different individuals are considered as unique ones, features 
with frequency differences are robustly observed, and the powerful deep learning algorithms 
will learn the frequency differences and then summarize the meaningful features to 
differentiate the fMRI signals.

D. Gyral and sulcal fMRI signals are largely different in macaque brains

After analyzing the fMRI data of human brains, we also examined whether fMRI signals 

from their gyri and sulci are largely different in macaque monkey brains. In order to have 

larger dataset, in this experiment, we aggregated 6 macaques’ whole-brain fMRI signals 

together and there are about 80,000 rsfMRI temporal signals with hundreds of time points in 
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total. We divided this big data matrix into training and testing samples (80% temporal 

signals are training samples and the left belongs to the testing samples, no overlap between 

training and testing samples). Here, the 1D CNN model in this section has 3 layers, and the 

number of the filters in each layer is 64, 32 and 32, respectively. Other parameters are the 

same as those used in the previous experiments.

The testing accuracy of fMRI signals from gyri and sulci in macaque brains at group level is 

about 78.4%, which is reasonably good and consistent when compared with human brains. 

Furthermore, the average dice scores for gyri and sulci are recorded accordingly, which are 
about 0.64 and 0.58. As we can see the results from Fig.10, the classification performances 

are mapped back onto cortical surfaces of macaque brains, respectively. It is worth noting 

that here we predicted the whole brain cortical vertices with our trained CNN model for 

macaque brains since they have less complex folding patterns. The good classification 

performance strongly supports that there are fundamental functional differences between 

gyral signals and sulcal signals.

Like what we did in the previous sections, to explore the classification performance layer by 

layer, the performance of each layer is also explored and summarized in Fig.11 for better 

understanding of the 1D CNN architecture. From the Fig.11, we can see that the 

classification accuracy from layer 1 to 3 is 52%, 57% and 78%, respectively. The spatial 

maps of classification performance are also provided as the neuroanatomic reference. 

Similar as previous sections, the architecture analysis is adopted and the results are shown in 

Fig.12.

Two typical frequency patterns of the filter features are still observed in the last layer: one 

has low frequency as shown in Fig. 12C, and another is relatively high with the pattern 

demonstrated in Fig.12E. Their original features are extracted and presented in Fig.12F and 

Fig.12G, respectively. Compared with the results in Figs.5, 7 and 9, consistent results are 

observed. Features with low frequency are observed in the gyral filters, but high frequency 

features are identified in the sulcal filters. However, different from the results of human 

brains, the correlation coefficient of features in gyral filter is about 0.3, which is a 5% 

smaller than the correlation coefficient of features in sulcal filter. This is reasonable as in the 

resting state fMRI scans, brains are not under specific tasks, and thus their gyral signals may 

not quite follow certain global functions and then their gyral signals may not be that globally 

consistent. Another possible reason might be that these macaque brains are still growing, 

and the gyral filters may become more globally consistent after the macaques are grown up. 

Generally speaking, gyral signals and sulcal signals still can be distinguished very well even 

in the six-month macaque brains. It reveals again that gyri and sulci have fundamentally 

different functional roles and they are differentiable by CNN deep learning models.

IV. Conclusion

In this paper, we proposed a data-driven computational framework of 1D CNN to classify 

and interpret the gyral and sulcal fMRI signals in multiple different experiments. An average 

of 83% and 90% classification accuracy has been achieved to separate gyral/sulcal HCP task 

fMRI signals at the population and individual subject level; 81% and 86% classification 
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accuracy for resting state fMRI signals at the group and individual subject level. 78% 

classification accuracy has been achieved to separate gyral/sulcal resting state fMRI signals 

in macaque brains. In addition, we explored the trained CNN models layer by layer and 

interpreted the features learned by CNN. Our results demonstrated that the CNN models 

have the ability to differentiate gyral and sulcal fMRI signals, and gyral features are simpler 

and more related to the lower frequency features when compared with the fMRI signals on 

sulci. That is, frequency of fMRI signals in gyri is lower. The possible reason is that gyri 
exchange information among remote structurally connected gyri. On the contrary, sulci have 
higher frequency since sulci communicate directly with their neighboring gyri and indirectly 
with other cortical regions through gyri. Thus, to communicate with others, gyri usually 
have a lower frequency but sulci have higher ones.

By using the 1D CNN algorithm to differentiate the gyral/sulcal fMRI signals, we don’t 

need to manually design any feature, deep learning will automatically perform the high-level 

feature abstractions, which includes much more meaningful and less noisy features. And 

those features from different layers can represent the typical pattern of the inputs somehow 

(even features are hard to discover directly). Hence, using the feature from the deeper layers 

to classify the inputs into categories are the key step to pursuit the desirable classification 

performance. Our future works will focus on the exploration of the possible mechanisms that 

underlie the different functional roles of gyri and sulci on more specific regions. Another 

possible future work will be the investigation of how such difference is altered in brain 

disorders such as Autism and Schizophrenia.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig 1. 
The pipeline of the proposed computational framework of using 1D CNNs to classify gyral/

sulcal fMRI signals. (a) Extract gyral and sulcal signals across the whole brain. Here n is the 

total number of gyral and sulcal vertices in the whole brain, and t is the time points 

according to the specific task. Color lines in the matrix represent the BOLD time-series 

corresponding with the same color vertex shown on the cortical surface. (b) Aggregate all 

the matrices into a big one and label each vertex with label 1 (gyrus) or 0 (sulcus). (c) The 

1D CNN is applied to train the model and classify the gyral/sulcal fMRI signals. (d) Further 

analysis and interpretation based on the features learned by 1D CNN.
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Fig 2. 
The structure of the 1D CNN model (4 convolutional layers as an example). C means 

convolutional layer, P is short for max pooling, GA means global average layer, and L is the 

output layer which contains 2 labels (gyri/sulci). The length of filter is fixed as 21.
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Fig 3. 
The classification performance of 10 subjects in task EMOTION. Each vertex on the surface 

is given a predicted label. Green vertices are predicted as gyri, red vertices are predicted as 

sulci, and blues ones are vertices that not used. Zoom-in figures are used to show the 

performance of one case in 3 different directions.
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Fig 4. 
The classification performances of 4 convolutional layers in task EMOTION at a group 

level. Each vertex is given a predicted label. The spatial maps of 2 different views are used 

to show the classification performance of each layer. Classification accuracies are recorded, 

respectively. Green vertices are predicted as gyri, red vertices are predicted as sulci and 

blues ones are vertices that not used.
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Fig 5. 
Filter feature analysis for task EMOTION. (A) Classification performance from layer 1 to 4. 

(B) The distribution of frequency for filter features in average level from layer 1 to 4. (C) 

The distribution of frequency for features from gyral filters. N is the length of the features. 

The distribution of frequency for the last layer is provided using bold blue line. (D) 

Distribution of frequency for the last layer. (E) The distribution of frequency for features 

from sulcal filters. N is the length of the features. The distribution of frequency for the last 
layer is provided using bold blue line. (F) Original features which are corresponding to (C), 

and the correspondence is presented by color. (G) Original features which are corresponding 

to (E), and the correspondence is presented by color.
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Fig 6. 
The classification performance of 3 convolutional layers in task EMOTION at individual 

level (one subject from task EMOTION). Each vertex is given a predicted label. Spatial 

maps of 2 different view angles are used to show the classification performance of each 

layer. Green vertices are predicted as gyri, red vertices are predicted as sulci, and blues ones 

are vertices that are not used.
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Fig 7. 
Filter feature analysis for task EMOTION. (A) Classification performance from layer 1 to 3. 

(B) The distribution of frequency for filter features in average level from layer 1 to 3. (C) 

The distribution of frequency for features from gyral filters. The distribution of frequency 
for the last layer is provided using bold blue line. (D) Distribution of frequency for the last 

layer. (E) The distribution of frequency for features from sulcal filters. The distribution of 
frequency for the last layer is provided using bold blue line. (F) Original features which are 

corresponding to (C), correspondence is presented by color. (G) Original features which are 

corresponding to (E), correspondence is presented by color.
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Fig 8. 
The classification performances of 10 subjects in resting state. Each vertex on the surface is 

given a predicted label. Green vertices are predicted as gyri, red vertices are predicted as 

sulci, and blues ones are vertices that are not used. Zoom-in figures are used to show the 

performance of one case in 3 different directions.
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Fig 9. 
Filter feature analysis for resting state. (A) The distribution of frequency for filter features in 

average level from layer 1 to 5. (B) The distribution of frequency for features from gyral 

filters. The distribution of frequency for the last layer is provided using bold blue line. (C) 

Distribution of frequency for the last layer. (D) The distribution of frequency for features 

from sulcal filters. The distribution of frequency for the last layer is provided using bold 
blue line. (E) Original features which are corresponding to (B), and the correspondence is 

presented by color. (F) Original features which are corresponding to (D), and the 

correspondence is presented by color.
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Fig 10. 
The classification performances of 6 macaque brains. Each vertex on the surface is given a 

predicted label.
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Fig 11. 
The classification performances of 3 convolutional layers. (One subject from macaque 

brains). Each vertex will be given a predicted label, and gyral label is blue and sulcal label is 

yellow.
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Fig 12. 
Filter feature analysis for macaque monkey brain. (A) Classification performance from layer 

1 to 3. (B) The distribution of frequency for filter features in average level from layer 1 to 3. 

(C) The distribution of frequency for features from gyral filters. The distribution of 
frequency for the last layer is provided using bold blue line. (D) Distribution of frequency 

for the last layer. (E) The distribution of frequency for features from sulcal filters. The 
distribution of frequency for the last layer is provided using bold blue line. (F) Original 

features which are corresponding to (C), and the correspondence is presented by color. (G) 

Original features which are corresponding to (E), and the correspondence is presented by 

color.
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Table 1.

Testing classification accuracy of each task at the group level.

Task Classification accuracy Task Classification accuracy

EMOTION 83.3% GAMBLING 84.4%

LANGUAGE 83.3% MOTOR 84.6%

RELATIONAL 86.4% SOCIAL 86.8%

WM 82.3%
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Table.2

Classification accuracy of each task at individual level.

Task Classification accuracy Task Classification accuracy

EMOTION 92.1% GAMBLING 89.2%

LANGUAGE 90.0% MOTOR 89.0%

RELATIONAL 91.7% SOCIAL 90.9%

WM 88.2%
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