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Abstract

Midbrain dopamine seems to play an outsized role in motivated behavior and learning. Widely associated with
mediating reward-related behavior, decision making, and learning, dopamine continues to generate controversies
in the field. While many studies and theories focus on what dopamine cells encode, the question of how the
midbrain derives the information it encodes is poorly understood and comparatively less addressed. Recent
anatomical studies suggest greater diversity and complexity of afferent inputs than previously appreciated,
requiring rethinking of prior models. Here, we elaborate a hypothesis that construes midbrain dopamine as
implementing a Bayesian selector in which individual dopamine cells sample afferent activity across distributed
brain substrates, comprising evidence to be evaluated on the extent to which stimuli in the on-going sensorimotor
stream organizes distributed, parallel processing, reflecting implicit value. To effectively generate a temporally
resolved phasic signal, a population of dopamine cells must exhibit synchronous activity. We argue that
synchronous activity across a population of dopamine cells signals consensus across distributed afferent
substrates, invigorating responding to recognized opportunities and facilitating further learning. In framing our
hypothesis, we shift from the question of how value is computed to the broader question of how the brain
achieves coordination across distributed, parallel processing. We posit the midbrain is part of an “axis of agency”
in which the prefrontal cortex (PFC), basal ganglia (BGS), and midbrain form an axis mediating control,
coordination, and consensus, respectively.

Key words: coherence; dopamine; phasic dopamine; striatum; synchronous dopamine activity

(s )

Dopamine is widely associated with providing value-related signals that serve activational and teaching func-
tions. We shift focus from computing value-related signals and develop a hypothesis that suggest midbrain
dopamine is sampling and integrating distributed neural activity to recognize and signal consensus across
distributed, parallel processing. We posit each dopamine cell acts like an index of afferent activity and serves as
a Bayesian unit detecting opportunity reflected in activity across distributed substrates. When cells across a
dopamine population converge on the same temporal patterns, dopamine cell synchrony emerges generating a
consensus signal that facilitates responding and learning. In this view, the fundamental role of dopamine is to
Ksignal consensus across parallel processing to facilitate unified behavioral responding. /
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Introduction
The midbrain dopamine system is integral to mediating
value-based neural activity underlying adaptive behavior
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(Wise, 2004; Schultz, 2007; Berridge, 2007; Salamone
and Correa, 2012). Evidence continues to accumulate that
midbrain dopamine can signal (1) obtained value, (2) value
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prediction, and (3) value prediction errors (Watabe-Uchida
et al.,, 2017; Berke, 2018). Dopamine activity has been
shown to be sufficient for mediating learned associations
between stimuli and reward (Steinberg et al., 2013), dem-
onstrating it can serve a crucial role as a value teaching
signal (Schultz, 1998; Hart et al., 2014; Eshel et al., 2016;
Kishida et al., 2016; Sharpe et al., 2017). Dopamine has
been shown to modulate value-based behavioral choice
and to increase (energize) responding to value predictive
stimuli (Roitman, 2004; Hamid et al., 2016; Ko and Wanat,
2016; da Silva et al., 2018; Saunders et al., 2018). Dopa-
mine has long been believed to provide a simple, scalar
signal broadcast widely across the brain (Schultz, 1998;
Bar-Gad et al., 2003; Joshua et al., 2009), essentially
uniform across dopamine cells (Schultz, 1998; Eshel et al.,
2016). Insofar as decision making is distributed across
neural substrates, value must be mapped onto those
distributed processes. By widely broadcasting a uniform,
scalar signal, dopamine is commonly believed to deliver
value information across neural substrates, mediating
value-based modulation of processing and plasticity in
target regions.

The nature of dopamine’s contribution to value-based
adaptive behavior continues to be contentious. While ev-
idence demonstrates that dopamine can encode predic-
tion errors (Hart et al., 2014; Eshel et al., 2015; Watabe-
Uchida et al., 2017), dopamine can signal value per se as
well, described by Hamid et al. (2016; Berke, 2018) as an
instantaneous value signal. Dopamine signals are not re-
stricted to reward. Bromberg-Martin has proposed that
dopamine can provide alerting, reward and aversive sig-
nals (Bromberg-Martin et al., 2010), although these can be
construed as value related. Dopamine responds to nov-
elty (Horvitz, 2000; Overton et al., 2014), although this can
be construed as an “information bonus” (Kakade and
Dayan, 2002). Dopamine signals have been linked to mo-
tor activity independent of reward (Pasquereau and
Turner, 2015; Dodson et al., 2016; Howe and Dombeck,
2016). Other evidence suggests that moment-to-moment
motivational states can modulate dopamine (Satoh et al.,
2003; Syed et al., 2016). Dopamine prediction error sig-
nals are intimately linked to timing of events (Pasquereau
and Turner, 2015; Takahashi et al., 2016; Starkweather
et al.,, 2017; Coddington and Dudman, 2018; Langdon
et al., 2018), and conversely, changes in dopamine have
been demonstrated to affect timing (Soares et al., 2016).
Dopamine has been demonstrated to play a role in
arousal (Eban-Rothschild et al., 2016), suggesting an ad-
ditional dimension in dopamine signaling. The notion that
dopamine cells provide a uniform, broadly distributed
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signal is increasingly contested (Willuhn et al., 2012; Ro-
eper, 2013; Lammel et al., 2014; Sanchez-Catalan et al.,
2014; Morales and Margolis, 2017; Saunders et al., 2018),
with data supporting both homogeneity across dopamine
cell activity (Eshel et al., 2016) and diversity in dopamine
signals in target regions (Matsumoto and Hikosaka, 2009;
Lerner et al., 2015; Parker et al., 2016). In computational
models, dopamine signals have been construed to repre-
sent abstracted value information divorced from details of
stimuli and actions, i.e., “model-free” (Montague et al.,
1996). It is becoming increasingly clear, however, that
dopamine encodes and responds to features of stimuli
and reward (Keiflin et al., 2019; Takahashi et al., 2017) and
can be “model-based” (Daw et al., 2011; Daw, 2012;
Langdon et al., 2018).

Many excellent reviews discuss the various issues out-
lined (Schultz et al., 2017; Berke, 2018; Watabe-Uchida
et al., 2017). Here, we will describe an alternative view of
dopamine function, shifting from the contentious question
of what dopamine encodes to the comparatively less
examined question of how dopamine encodes the infor-
mation contained in its signals. Our hypothesis will posit
that instead of serving an informational function of distrib-
uting reward-related information per se, dopamine can be
construed as delivering a signal that serves to coordinate
distributed, parallel processing by providing a “consen-
sus” signal. We briefly review key characteristics of the
midbrain dopamine system relevant to our hypothesis
before tackling the task at hand.

Current Ideas on Derivation of Dopamine
Value-Related Signals: The Problem of

Anatomy

How is the dopamine signal derived? Earlier models
were based on variants of the algorithmic actor-critic
model (Barto, 1995). These models presupposed dopa-
mine to encode a prediction error and so the task was to
determine how the quantities necessary for that compu-
tation (e.g., expected reward V,, obtained reward r,) were
delivered to the midbrain. These models centered around
the basal ganglia (BGS) connections with the midbrain
(Houk et al., 1995; Brown et al., 1999; Contreras-Vidal and
Schultz, 1999). While elegant, the models did not align
with anatomy (Joel et al., 2002). Subsequent models in-
corporated additional anatomic features, such as the
“spiraling” connectivity (Haber et al., 2000) of midbrain
dopamine and striatal territories (Haruno and Kawato,
2006), a role for the pedunculopontine tegmental nucleus
in value representations (Kawato and Samejima, 2007)
and the pathway from striatal matrix projection neurons to
dopamine cell dendrites in the substantia nigra reticulata
(Tan and Bullock, 2008), or simply including more contrib-
uting regions (Vitay and Hamker, 2014). Hazy and col-
leagues built a model around substrates known to
contribute to Pavlovian learning (Hazy et al., 2007, 2010).
More recently, Eshel et al. (2015) proposed that GABAe-
rgic cells in the midbrain receive expected reward infor-
mation that ramps up as reward approaches and drives
local inhibition of dopamine cells, providing a simple sub-
tractive mechanism for deriving a reward prediction error
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(RPE). Although elegant, the Eshel model begs the ques-
tion of where the expected value signal in midbrain GABA
cells is derived, effectively returning us to prior models
with an added layer of complexity.

What every proposed model to date shares in common
is the premise that discrete quantities, such as expected
value and received reward, are computed in specific af-
ferent regions and delivered to the midbrain to be used in
computing value-related signals, typically construed as an
RPE. However, this tidy compartmentalization and as-
signment of computational terms to discrete afferents is
not supported by evidence. In recent years, a spate of
elegant anatomic studies has reinvestigated the connec-
tivity of midbrain dopamine using newer tracing methods,
including tracing input/output relationships. In these stud-
ies, what stands out is the extent to which the inputs to
the dopamine cells, regardless of their projection targets,
arise widely from across the brain (Watabe-Uchida et al.,
2012; Yetnikoff et al., 2014; Beier et al., 2015; Lerner et al.,
2015; Carta et al., 2019). That is, it is the diversity and
apparent non-specificity of afferent inputs that is most
striking (Yetnikoff et al., 2014). How is this to be recon-
ciled with the notion of discrete regions computing and
delivering, for example, expected reward? What are the
rest of the afferent inputs doing? A recent study by Tian
et al. (2016) further highlights this problem. The authors
recorded from different afferent inputs to the midbrain, as
well as midbrain dopamine cells, and correlated firing
patterns in afferent projections with task activities (cue,
receiving reward, etc.). Rather than any clear segregation
in afferent regions of specific quantities, reward, pre-
dicted value, error signals, they found that all of these
quantities were distributed across the inputs tested with
many regions and even individual cells showing mixed
patterns of phasic activity (e.g., both cue and reward
activation), seemingly belying any notion of tidy segrega-
tion of discrete quantities being computed in localized
neural substrates and sent to the midbrain. It seems a little
like everything is everywhere.

Aside from the diversity of inputs and the promiscuity of
value-related afferent information, there is a more funda-
mental problem facing models that propose discrete
quantities are computed in specific afferent regions and
delivered to the midbrain. Most of the regions contributing
afferents to the midbrain operate with ensemble encod-
ing; that is, information is differentially encoded in various
patterns of neural activity. Dopamine neurons, in contrast,
are believed to act largely en masse and collectively
encode a value-related signal delivered as a uniform sca-
lar. How is a representation of a stimulus or action en-
coded in a patterned subset of cells (a CS+, for example)
in a region such as the amygdala translated into a single
quantity (e.g., expected value) and then distributed
broadly across a population of dopamine cells? Short of
every neuron in an ensemble within a particular afferent
region being connected with every dopamine cell, it is not
clear how this ensemble->scalar translation could be
achieved and uniformly deliver the required quantity
across the midbrain.
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Together, these issues argue that the notion that dis-
crete quantities are computed in particular afferent re-
gions and delivered to the midbrain is not consistent with
the anatomy and largely untenable. Instead, it appears
that the midbrain is integrating a highly diverse set of
inputs drawn broadly from across the brain and that these
inputs may contain various, non-segregated value-related
information. While this provokes the question of what
information is being integrated, how and to what end,
before considering this we have to consider the particu-
larities of the output side of the dopamine system.

The Necessity of Dopamine Cell

Cooperation: The Problem of Synchrony

The midbrain dopamine nuclei contain a modest num-
ber of neurons, in rodents ~20,000-40,000 tyrosine hy-
droxylase expressing neurons, estimated to be between
400,000 and 600,000 in humans (Bjérklund and Dunnett,
2007). Each neuron projects extensively across a large
territory of target region(s). Individual SNC dopamine neu-
rons are estimated to make 100,000-250,000 synapses in
the rat and 1-2 million in humans (Bolam and Pissadaki,
2012), cover 6% of striatal volume and affect ~75,000
medium spiny neurons (MSNs) (Matsuda et al., 2009).
Conversely, each MSN synapses with a few hundred to
over a thousand dopamine terminals (Arbuthnott and
Wickens, 2007; Bolam and Pissadaki, 2012) and each
MSN is estimated to be under the influence of 100-200
different dopamine neurons (Matsuda et al., 2009). This
broad axonal distribution with overlapping spheres of influ-
ence is characteristic of volume transmission attributed to
dopamine (Agnati et al., 1995; Zoli et al., 1998). Rather than
releasing neurotransmitter discretely in a synapse, which then
transmits an ultra-targeted intra-synaptic signal quickly termi-
nated by reuptake, dopamine operates by modulating its ex-
tracellular concentration (Garris et al., 1994; Gonon, 1997;
Cragg and Rice, 2004; Moss and Bolam, 2008; Dreyer et al.,
2010). These characteristics of midbrain dopamine suggest
that to effectively transmit a signal, dopamine cells must work
cooperatively.

A dopamine signal encoded through modulation of cell
spiking is decoded in target regions by modulation in recep-
tor occupancy: thus, encoding-decoding fundamentally
reflects a transformation from spike rate (frequency modu-
lation) to fluctuations in extracellular dopamine concentra-
tion (amplitude modulation). While many factors can
modulate this transformation, the critical determinant is the
degree of synchrony among spiking neurons relative to the
clearance rate of the dopamine transporter (Dreyer et al.,
2010; Dreyer and Hounsgaard, 2013; Dreyer, 2014). When
spike activity is correlated between neurons on a timescale
similar to K, /Vmax (corresponding to 100 ms in nucleus
accumbens and 40 ms in dorsal striatum), release will inte-
grate and generate temporally resolved peaks and troughs
in extracellular dopamine that maximize information transfer
to postsynaptic targets. When spike activity is asynchro-
nous, including asynchronous bursting activity, dopamine
concentration will be distributed across time, reflecting the
average spike rate. We will refer to “tonic” and “phasic” in
terms of whether population spiking activity generates tem-
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porally resolved fluctuations in extracellular dopamine (pha-
sic, in phase) or a distributed averaging of activity (tonic,
dopamine tone). Rather than reflecting two distinct modes of
signaling, tonic and phasic represent two ends of a spec-
trum in temporal partitioning of dopamine cell activity. Pha-
sic dopamine signaling has been construed as arising from
uniformity in bursting activity, consistent with electrophysi-
ological evidence where dopamine cell recordings show a
high percentage of tested cells exhibit similar and consistent
responses to stimuli (Eshel et al., 2016), as well as with
electrochemistry recordings of released dopamine, which
fundamentally reflect the combined activity of hundreds of
terminals (Dreyer et al., 2016).

While initially it was thought that dopamine cells are in
some way coupled generating obligate synchrony, accu-
mulating evidence favor emergent synchrony in which
cells function autonomously, but independently come to
generate the same temporal patterns of activity. Gap
junctions between dopamine cells (Grace and Bunney,
1983) have been proposed to mediate uniformity in do-
pamine cell activity. These direct cell to cell connections
may be less prevalent than originally thought, with esti-
mates suggesting only ~20-25% of dopamine cells are
connected by gap junctions (Vandecasteele, 2005). These
connections may provide a low-pass filter such that the
activity in one neuron can influence firing rate in a con-
nected neuron, but without transmitting yoked action po-
tentials; no spike synchrony was observed in recorded
pairs and mutual information was weak (Vandecasteele,
2005). There is little evidence that these gap junction
connections induce an obligate synchrony, although such
gap junctions could entrain network activity (Komendan-
tov and Canavier, 2002) and may play a role in promoting
emergent synchrony.

In studies examining pairs of dopamine cells, roughly 25%
of dopamine cell pairs show significant correlation in spiking
rate (Wilson et al., 1977; Hyland et al., 2002; Morris et al.,
2004; Li et al., 2011) with little evidence of direct spike-to-
spike correlation (Morris et al., 2004). The degree of corre-
lation can be modulated by reward associated stimuli,
learning and pharmacological manipulations. Using noise
correlation analysis (correlation between two cells in their
trial-to-trial variation from average response), Joshua et al.
(2009) demonstrate that correlation in spike variability be-
tween dopamine cells increases with salient stimuli (cue,
outcome). Kim et al. (2012) show an increase from 34%
(noise) correlated cell pairs on initial exposure to a task to
49% and 66% after eight and 16 weeks of training, re-
spectively. Finally, Li et al. (2011) demonstrated that ap-
plication of nicotine increase the percentage of correlated
dopamine cell pairs from 21% to 44%. These data sug-
gest emergent rather than obligate synchrony. Many have
previously suggested that synchronous dopamine cell
bursting activity is necessary to generate temporally re-
solved extracellular dopamine signals in target regions
(Venton et al., 2003; Arbuthnott and Wickens, 2007;
Dreyer et al., 2010; Owesson-White et al., 2012), an idea
we will place at the center of our hypothesis.
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Shifting Frameworks: From Value to
Coordination of Distributed, Parallel
Processing

We are presented then with a stark contrast between
midbrain dopamine input, highly diverse afferent inputs
drawn broadly from across brain regions in which value-
related information does not appear to be neatly compart-
mentalized by region but rather widely distributed and
intermixed, and the dopamine output system, which relies
on relative uniformity of spiking activity across dopamine
cell populations to transmit a simple scalar to target re-
gions. It is this transformation from heterogeneity of input
to homogeneity of output that will concern us: we propose
the transformation from polyglot to monosyllable is fun-
damental to dopamine’s function within the brain, and
that the emergence of dopamine cell synchrony is the
core mechanism mediating this function.

Before describing our hypothesis, we want to tenta-
tively reframe the putative problem the dopamine system
evolved to solve. Widely viewed as the “reward transmit-
ter,” various theories of dopamine describe a system that,
in one way or another, helps the organism recognize and
act on opportunities for value. In its most simplistic terms,
the core evolutionary problem addressed is helping an
organism to engage in actions that are advantageous,
specifically by signaling value in some form (e.g., value
per se, errors in value prediction).

We wish to consider dopamine in the context of a
different core evolutionary problem. A fundamental ques-
tion in neuroscience is how distributed, parallel processes
are integrated into a functional “whole-brain” model to
generate unitary organismal action (Breakspear, 2017;
Christophel et al., 2017). The brain must process a con-
tinuous stream of on-going sensory information and from
this parse actionable stimuli and emit advantageous re-
sponses, and do so rapidly (Cisek and Kalaska, 2010).
Distributed, parallel processing facilitates rapid, efficient
responding in the face of computational complexity. Each
region/substrate forms its own, partial model of self-in-
world. Simplistically, the hippocampus forms a spatial
model: where actionable stimuli and events are located
(Gauthier and Tank, 2018; Mamad et al., 2017; Stachen-
feld et al.,, 2017). The amygdala forms a model of the
valence of stimuli in relation to the organism (Beyeler
et al., 2018; O’Neill et al., 2018; Pryce, 2018). The parietal
cortex forms a model of egocentric sensorimotor space
(Buneo and Andersen, 2006; Cui, 2014; Whitlock, 2014;
Takiyama, 2015) and so on. Given that there is only one
motor plant, these parallel models or representations
must somehow be integrated into decision making that
determines unitary organismal behavior, an organism
cannot go right and left at the same time. Commonly
construed as a simple scalar distributing value-related
information, here we will entertain the possibility that do-
pamine provides a signal that coordinates rather than
informs distributed, parallel processing, facilitating unitary
self-in-world action from a multiplicity of neural represen-
tational models.
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Searching for the Ghost in the Machine:

A Case for Implicit Value

The function broadly associated with dopamine involves
recognizing available reward opportunities, weighting decision
making to act on opportunity, energizing responding and
facilitating learning about the context and predictors in
which the reward occurred: in short, to facilitate adaptive
choices in the face of opportunity. Is this not what the
entire brain evolved to do? “Value” is a (perhaps the)
fundamental organizing principle of the brain. It is not
merely that value is reflected in on-going neural process-
ing broadly across neural substrates (e.g., primary visual
cortex, hippocampus) but that the brain is structurally
shaped and modified by value. During early development,
synapses are pruned to select those that yield function-
ality (i.e., value) to the organism. Throughout life, neural
plasticity shapes circuits and weights synapses to benefit
the organism, i.e., obtain value.

The challenge is ascertaining the root of the evaluative
mechanisms that guide this value organization. How does
the brain know what is good for it? While there are many
potential answers to this question, one common answer is
that dopamine distributes value information. Indeed, that
is the core role of the reward transmitter regardless of
one’s view on the form in which this information is deliv-
ered. But this immediately begs the question “how does
midbrain dopamine ‘know’?” Who teaches the teacher?
That is, how is this signal derived? All extant theories
suggest that the midbrain obtains value information from
afferent regions, but this quickly becomes circular. If do-
pamine is the teacher, how do afferent regions learn about
value to inform the midbrain, and if afferent regions al-
ready recognize value, what need is there for a teaching
signal in the first place? In short, the notion that dopamine
distributes value information across the brain begs the
question of how and where value is originally determined.
Where is the ghost in the machine?

While the brain must select stimuli to which to direct its
attention and generate advantageous responses, the
most fundamental selection process is how the brain
represents self and world in the first place. That is, it is
neural activity itself that must be selected to create adap-
tive, productive self-in-world models that, in turn, yield
adaptive behavior. This assertion does not resolve the
question posed above about how value is determined, but
simply restates it in neural terms. However, doing so
provides a different perspective. Rather than construe
value as some quantity computed somewhere, we view
the brain as being in a constant process of selecting
productive and diminishing non-productive neural activ-
ity. While we cannot pretend to explain how this happens,
we do not know where the “ghost” resides, we can draw
a tentative corollary: value is implicit in neural activity.
While this may sound radical, it is consistent not only with
a broad construal of the fundamental function of the brain
in mediating adaptive behavior, it is consistent with em-
pirical studies that tend to find value information, in a
variety of forms, distributed broadly across the entire
brain (e.g., Tian et al., 2016, but many others). From here
we will sketch out our hypothesis of midbrain dopamine
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function, building around the core ideas that dopamine is
(1) integrating diverse afferent activity that reflects implicit
value and (2) generating a scalar output signal when this
value information from different afferents temporally con-
verges signaling “agreement,” or consensus across dis-
tributed, parallel processing, that something important is
happening now; that is, the whole brain is in agreement,
here is an opportunity, time to act.

Reconceptualizing Midbrain Dopamine as
Sampling-Distributed Activity across the
Brain

Watabe-Uchida et al. (2012) note that afferents into the
midbrain, rather than reflecting distinct connectivity be-
tween functional brain regions seems to arise in diagonal
bands across the brain that do not respect functional
regions. Rather than try to find order in afferent connec-
tivity to the midbrain, we propose the midbrain randomly
samples activity broadly across the brain and functions as
an index of that activity, much in the way that a sample of
stocks in the stock market serves as an index of the
market. Consider the axons streaming from each afferent
region to the midbrain as a vector where each axon
delivering a continuous, rate-based signal is an element in
the vector and the vector represents the total output to
the midbrain from that afferent region. We posit that these
axons, each an element in the afferent vector, are distrib-
uted randomly to dopamine neurons (Fig. 1A). If each
dopamine neuron is, in turn, viewed as a vector com-
posed of its various inputs, each dopamine cell repre-
sents a random sample of afferent activity where the
afferent vectors from input regions collectively comprise a
multidimensional space (Fig. 1B). We construe this space
as event driven, i.e., that neural activity is continuous and
constantly responding to on-going sensorimotor informa-
tion. An event such as a cue-light, then, would be repre-
sented in this multidimensional space as a composite of
the vectors representing individual afferent regions. Stim-
uli, actions, events, memories, everything encoded by the
brain, would generate a unique composite in this multidi-
mensional space.

Each individual dopamine cell represents a random
sample of this multidimensional space. In inferential sta-
tistics, we use probability theory to ask “how likely is it
that this difference arose as chance and if | repeated the
study over and over would this effect persist?” An alter-
native strategy, although impractical, would be simply to
simultaneously replicate a study thousands or millions of
times always with a new randomly drawn sample. So, we
argue, with dopamine. A single dopamine cell may in-
crease its firing in response to increased afferent activity,
but this could arise spuriously from the particular ran-
domly distributed afferents it receives without reflecting
something important arising in the multidimensional input
space overall, such as a cue-light that comes to organize
neural activity across multiple brain regions. Fortuitously,
when a single dopamine cell starts bursting independent
of the population, it will have little effect on output at
target regions. Indeed, phasic activity is not a rare event
correlated only with value. Dopamine cells continuously
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Figure 1. Random distribution of afferents to dopamine cells as sampling the input space. A, Projections from each afferent region
construed as a vector randomly distributed to individual dopamine cells. B, Afferent projections to midbrain comprise a total
vectorized input space from which individual dopamine cells represent random samples of that space.

intermix tonic and phasic activity (Marinelli and McCutch-
eon, 2014) with dopamine output determined by popula-
tion activity (Dreyer et al., 2010); that is, when they fire
synchronously. Thus, the 40,000 dopamine cells in the rat
midbrain could be construed as 40,000 random samples,
40,000 “studies” occurring concurrently, and when a large
percentage of them are driven to burst firing simultane-
ously, this generates a temporally resolved dopamine
signal in target regions that carries value-related informa-
tion. Because this multi-dimensional afferent input space
is comprised of activity arising in parallel, distributed pro-
cessing, for a stimulus such as a cue-light to generate
population-based, synchronous phasic activity in mid-
brain dopamine, the stimulus must presumably have a
widespread effect across neural regions. Because of this,
we construe the emergence of temporally resolved phasic
dopamine signals that arise from synchronous bursting
activity as signaling consensus, a consensus across af-
ferent regions about the importance of on-going sensori-
motor information being processed in parallel across
distributed substrates.

March/April 2019, 6(2) e0345-18.2019

Axis of Agency: Sketching a Broader
Hypothesis of Coordination across

Distributed Processing

Our purpose here is to initially formulate a novel hypoth-
esis of dopamine function. Because we shift our frame-
work from the problem of computing and delivering value
information to the problem of facilitating coordination
across distributed, parallel processing, we must neces-
sarily put our discussion of dopamine into this broader
context and provide a rough sketch of how the brain
achieves coordinated distributed processing, in which we
posit the midbrain plays a specific role.

We posit four levels of substrate in describing coordi-
nation across distributed processing (Fig. 2). We posit
four levels of substrate in describing coordination across
distributed processing. The first is primary processing in
individual neural regions, such as the amygdala, hip-
pocampus and so on. Although these are intricately inter-
connected (e.g., frontal and parietal regions), each region
specializes in capturing some aspect of an overall model
of self-in-world. A second substrate level would be where
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disparate processing converges onto a substrate that
does not have its own assigned task but is assigned to
ensure that the work of the various parallel processing
does not begin to conflict or go in different directions
viewed collectively as a whole. We posit that the BGS
serve this function (elaborated below), which we describe
as integrative discriminative selection. “Integrative” be-
cause they integrate disparate inputs from across distrib-
uted processing and “discriminative selection” because,
in turn, they modulate efferent targets (generally the same
regions providing afferents) by selecting which activities
to facilitate and which to inhibit (selection), doing so by
discriminating which afferent inputs facilitate positive out-
comes and which do not. This substrate can effectively
modulate the activity of individual primary substrates “in
the context” of other primary substrates: integrative dis-
criminative selection. Third, we posit a signal that indi-
cates when there is agreement across distributed
processing to mobilize action and facilitate learning, a
function we attribute to midbrain dopamine. We would
describe this function as integrative consensus: integra-
tive because multiple, diverse inputs are being integrated
in a polling manner (“sampled”) and consensus because
the goal is to determine when something appears in the
on-going sensorimotor stream that is recognized across
multiple substrates as being of value and broadcasting a
signal when this occurs. Finally, there needs to be some
primary control structure that steers this “ship of coordi-
nation,” which we attribute to the prefrontal cortex (PFC).

We will briefly describe this view of the BGS as it is
central to elaborating our hypothesis of dopamine. It is
difficult to cogently discuss the function of either dopa-
mine or the BGS without taking both in account as they
are densely interconnected (Watabe-Uchida et al., 2012;
Guo et al., 2015) and their respective functions profoundly
intertwined. We will not discuss primary processing or
associated interconnectivity nor will we elaborate on the
role of the PFC as “steering the ship” as much has already
been written on the PFC as an executive locus.

The BGS: Selection of Composite
Representations

The primary input nucleus of the BGS, the striatum, has
been thought to be an integrative substrate for decades
(Hikosaka et al., 2014; Kemp and Powell, 1971). Process-
ing convergent information from multiple sources, the
BGS in turn modulate the regions that provide afferent
input, illustrated best by the cortico-BGS-cortical loops.
Considered in the context of facilitating coordination
across distributed, parallel processing, we propose that
the BGS function analogous to a hidden layer in neural
networks. Inputs are distributed across units in a combi-
natorial fashion allowing the discriminative selection of
those combinatorial units associated with positive out-
comes. Across learning, this combinatorial selection pro-
cess progressively modulates those same brain regions
that provide afferent input. Because the striatum is inte-
grating information from across distributed, parallel pro-
cessing into these combinatorial units, this provides a
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substrate in which activity in one region can be modulated
“in the context of” other regions. We elaborate this briefly.

The mosaic: substrate for combinatorial integration
and selection

Da Cunha et al. (2009) liken the striatum to a “mosaic of
broken mirrors.” This is to say that cortical representa-
tions are not mirrored directly in the striatum but are
broken up, with fragments of cortical representations dis-
tributed broadly across striatal MSNs. Each MSNSs, in
turn, receives fragments of cortical representations in a
combinatorial manner. Thus, discrete cortical representa-
tions become fragmented and intermixed: mosaic of bro-
ken mirrors. This is consistent with known anatomy. A
single MSNs receives ~5000 cortical afferents (Alexan-
der, 1994), although individual cortical axons will make
only one to two contacts with a single MSNs (Tepper
et al., 2007), suggesting both tremendous distribution and
convergence. Conversely, a single cortical axon can in-
nervate up to 14% of the striatum (Zheng and Wilson,
2002). While the striatum has been associated with
dimension reduction (Bar-Gad et al., 2003), this fragmen-
tation and expansion of cortical representations into com-
binatorial units (the mosaic) could be view as dimension
enhancement. Introducing combinatorial dimensions al-
lows a more expansive and powerful substrate for dis-
criminative selection compared to faithfully recapitulating
or mirroring cortical representations discretely in the stria-
tum.

At the crossroads: integrating distributed, parallel
processing in selection

Noting that the inputs from multiple afferent regions
(amygdala, hippocampus, PFC) intersect in the ventral
striatum, Humphries and Prescott (2010) characterized
this intersection as a “crossroads” where the activity from
disparate regions come together and interact, integrating
their activities in the output of the ventral striatum. This
convergence of afferents from disparate regions is ob-
served across the striatum (Choi et al., 2017). Building on
the mosaic idea above of expanded, fragmented and
distributed cortical representations, the crossroads notion
provides a basis whereby the selection and modulation of
these fragmented cortical representations can be modu-
lated by inputs from other regions, providing a substrate
where distributed parallel processing across multiple af-
ferent regions are integrated into a combinatorial “mo-
saic” in which what is being selected is not discrete
actions or stimuli per se, but combinations of neural
activity across distributed substrates that reflect parallel
processing of stimuli and actions: a composite represen-
tation. In essence, the BGS select when concurrent ac-
tivity across distributed substrates is productive and
facilitates that concurrent activity in target/afferent re-
gions.

A little bit of everything, everywhere

While most brain regions have been associated with
particular kinds of information, the striatum exhibits re-
markable malleability in its encoding. In virtually every
task in which striatal activity has been monitored, every
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Figure 2. Schematic of “axis of agency.” Primary processing substrates (distributed, parallel processing) represented abstractly in
gray as either top-down or bottom-up substrates with reciprocal connections to the prefrontal cortex (PFC) and basal ganglia system
(BGS), not detailed here. The three conceptual nodes in the axis of agency are indicated in boxes with their hypothetical role in
mediating coordinated activity across distributed substrates noted in bold below. Only the inputs/outputs of dopamine, the focus of
this perspective, are colored, with green and orange representing excitatory and inhibitory inputs and blue dopamine outputs. The role

of the BGS and midbrain dopamine is elaborated below.

aspect of the task has been represented: stimuli/cues,
actions, rewards as well as putative predicted value as-
sociated with these representations. Moreover, medium-
spiny neurons will come to represent whatever is relevant
in a task. If spatial locations are relevant, spatial locations
will be represented in phasic MSN activity (Shibata et al.,
2001; Chang et al., 2002). If time is important, time will be
represented (Taha et al., 2007; Day et al., 2011). In short,
across learning the striatum appears to form a represen-
tation of any task where salient aspects of the task are
differentially represented in phasic activity in subsets of
MSNs. This malleability is consistent with the notion of
discriminative selection on a combinatorial substrate in-
tegrating disparate afferents, as we propose.

Different kinds of integration

In our characterization of the BGS and midbrain dopa-
mine, we suggest both are integrating disparate afferents
drawn broadly from across the brain, but the function of
this integration is essentially opposite. During learning,
dopamine cell activity becomes increasingly synchronous
and homogeneous across a population of dopamine cells
(Eshel et al., 2016). In contrast, MSNs develop differential
patterns of phasic activity in response to discrete stimuli
and task events (Tremblay et al., 1998; Hikosaka et al.,
19893, b,c; Nicola et al., 2004; Day et al., 2006; German
and Fields, 2007), suggesting discriminative learning. In
short, while dopamine cells in a population converge in
their signaling, striatal cells diverge, facilitating a discrim-
inative selection process.

Striatal composite representation modulates
distributed processing

Gerraty et al. (2018) demonstrate that learning to asso-
ciate a visual cue with reward involves dynamic changes
in the coupling between striatum and multiple brain re-
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gions, including frontal and visual cortices, and that these
changes are correlated with learning rate (see also den
Ouden et al., 2010; van Schouwenburg et al., 2010; Horga
et al., 2015). Thus, returning to our larger perspective of
assigning the BGS a role in mediating coordinated activity
across distributed, parallel processing, we suggest that
the BGS, via the striatum, create a mosaic or combinato-
rial composite of activity from multiple, disparate neural
regions (integrative) and use this composite substrate to
discriminatively select those combinatorial units (analo-
gous to hidden units) that are associated with positive
outcomes to broadly modulate distributed processing
across the brain, facilitating coordination across distrib-
uted processing that is advantageous to the organism. A
critical aspect of this function is that it operates via dis-
inhibition; that is, the BGS exert a tonic inhibition that is
selectively released, an operational characteristic we will
further build on below. A central requirement for this
proposed striatal/BGS function is some mechanism by
which selection is guided, a teaching signal. Dopamine
has long been believed to provide this teaching signal
(Schultz et al., 1997; Schultz, 1998; Wise, 2004), returning
us to midbrain dopamine.

Midbrain Consensus Signaling: Emergent
Synchrony in Dopamine Cell Activity as a

Bayesian Selector

We propose that midbrain dopamine functions at the
intersection of two axes (Fig. 3): (1) a largely excitatory
axis “sampling” distributed, parallel activity that drives
dopamine activity, particularly bursting and (2) an inhibi-
tory axis derived from the striatum that gates dopamine
cells as a function of striatal integrative discriminative
selection process we described above. We propose that
these two axes can be construed as “advocate” and
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Figure 3. Two axes model of dopamine integrative consensus signaling. A, Overall conceptual rendering of proposed model where
midbrain dopamine integrates two primary axes of input, (1) a (dis)inhibitory axis arising from the BGS (ventral pallidum, striosomes,
accumbens) and (2) a largely excitatory axis arising from distributed afferents across the brain, reflecting both top-down (e.g., cortical
inputs, amygdala, hippocampus, BNST) and bottom-up information processing (e.g., collicular, multiple brainstem afferents). B, A
more anatomic rendering incorporating cortical and subcortical loops through the BGS. For detailed cataloging of dopamine inputs,
see Watabe-Uchida et al. (2012), Lerner et al. (2015), and Beier et al. (2015). Basal ganglia system (BGS), bed nucleus of stria
terminalis (BNST), pedunculopontine tegmental nucleus, (PPTg), laterodorsal tegmental nucleus (LTDg).

“skeptic” in implementing a Bayesian selection process at
the level of individual dopamine cells. Congruence in
these two axes, that is, excitatory drive is complemented
by selective disinhibition, facilitates increased dopamine
cell activity. When this arises across a large percentage of
dopamine cells, a product of learning, synchrony emerges
facilitating a population based phasic signal.

In our Bayesian construal, the computational goal is to
determine the probability, the posterior, that distributed,
parallel processes are responding to the same events in
the on-going sensorimotor stream (e.g., a cue light pre-
dicting reward or the absence of an expected reward),
reflecting the ability of those events to broadly organize
neural activity, reflecting in turn implicit value; that is, to
determine the probability that disparate primary sub-
strates are organizing around and responding to the same
events, consensus. Taking the excitatory (E) and inhibitory
(I) axes proposed above as advocate and skeptic, respec-
tively, we formulate our Bayesian construal as follows
(Fig. 4):

The prior is comprised of the excitatory drive, P(E),
reflecting the sampling of distributed processing dis-
cussed above. This afferent activity reflects “prior belief”
because, as events enter the sensorimotor stream, the
response of distributed afferents is shaped by prior expe-
rience and learning (response to novel stimuli addressed
below). Thus, when multiple afferent regions respond to a
sensorimotor event, this increases P(E), reflecting the
prior probability that this event has an organizing impact
on distributed processing.

The likelihood, P(I | E)/P(l), is a function of striatal inhi-
bition of dopamine. The denominator, P(l) reflects tonic
inhibitory tone; this is the skeptic, maintaining a basal,
inhibitory non-belief that diminishes the excitatory prior.
This basal inhibitory tone is modulated by afferent input to

March/April 2019, 6(2) e0345-18.2019

the striatum (from many of the same regions contributing
to the midbrain), P(I | E); that is, striatal inhibitory tone
given the excitatory drive on the striatum. Thus, as events
in the sensorimotor stream, such as a cue light, disinhibit
striatal inhibition of the midbrain, the skeptic is diminished
granting greater weight to the prior. We note that the “E”
in P(E) and P(l | E) reflect the excitatory drives on the
midbrain and striatum, respectively, and are not strictly
the same quantity. We construe them as serving the same
function in our construal, reflecting activity across distrib-
uted, parallel processing, i.e., primary processing, fun-
neled to both the striatum and midbrain for different
purposes.

We propose that this Bayesian selector operates both
at the level of individual cells and the population level. We
suggested above that each dopamine cell is sampling
afferent activity and serving as an index; here we elabo-
rate this as a Bayesian index. As greater numbers of
individual dopamine cells respond to the same events,
emergent synchrony will increase, and with it a temporally
defined phasic dopamine signal. Thus, the selector oper-
ates at the population level simply as a summation across
cells, an index of indices, the sum of posterior probabili-
ties from a population of afferent samples.

While we present here apparent mathematical quanti-
ties, P(E), etc., these are very different from discrete quan-
tities proposed in prior models, such as expected reward,
V.. P(E) can be construed as evidentiary without con-
straining the representational content of the afferent ac-
tivity. Such activity, as Tian et al. (2016) demonstrated,
can reflect value, prediction, prediction errors or, more to
the point, activity arising entirely independent of value
as an abstract quantity, such as signals reflecting propri-
oceptive or motor activity, motivational state/choice,
arousal and so on. That is, as “evidence in favor of prior
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Figure 4. lllustration of midbrain dopamine as a Bayesian selector.

Random distribution of vectorized inputs from an afferent input

space, as illustrated in Figure 1, where each dopamine cell samples on-going activity, mapped onto a Bayesian construal. The
excitatory axis (green) is assigned as the prior (the advocate) and the (dis)inhibitory axis (orange) is assigned as the likelihood (the
skeptic). The posterior (blue) arises from the integration of these two axes (i.e., Fig. 3) at both the level of individual dopamine cells
(firing rate) and at a population level, where synchrony determines the degree to which increases in firing rates in individual cells sum
to produce a population-based phasic signal, which we construe as a consensus index, both consensus across dopamine cells as
Bayesian units and consensus across the sampled input space, reflecting widespread afferent activity in response to current stimuli.

belief” the representational content of afferent input can be
broad rather than constrained to a single quantitative repre-
sentation such as value or prediction error. This is an initial
conceptual sketch. How such Bayesian operations could be
implemented at the cellular level would require further formal
theoretical development and empirical testing of the hypoth-
esis (for the challenges inherent in developing neural imple-
mentations, see Potjans et al., 2011, 2009).

In sum, we propose that midbrain dopamine is con-
stantly sampling distributed neural activity monitoring for
occasions when the input from both the advocate, P(E)
and the skeptic, P(l | E)/P(l) agree that the current activity
distributed across the brain reflects coordinated neural
activity in response to an event in the sensorimotor
stream that organizes distributed, parallel processing, re-
flecting implicit value: and as such, likely an opportunity to
be acted on and learned about. When a large percentage
of dopamine cells arrive at the same “conclusion,” syn-
chrony arises and a temporally resolved fluctuation in
extracellular dopamine emerges and encodes opportunity
to act and learn.

Distributed Cascading Learning: Midbrain
Dopamine, the Last to Learn

The notion that phasic dopamine signals consensus
may at first seem contradictory to the widely accepted
idea that dopamine provides a teaching signal. In our
hypothesis, it appears that midbrain dopamine is the last
to learn, not the teacher. This is consistent with studies
that observe dopamine prediction errors emerge follow-
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ing, not preceding learning (Coddington and Dudman,
2018). We will briefly describe a whole-brain learning
scheme in which learning occurs in a cascading, inter-
leaved fashion along three axes (Fig. 5).

First, primary learning occurs in afferent regions con-
tributing to midbrain dopamine, such as the PFC,
amygdala, hippocampus; that is, across the distributed
substrates we called primary processing and identify as
the prior, P(E). Second, learning occurs in the striatum and
BGS system, altering inhibitory drive on dopamine, the
likelihood, P(l | E)/P(l). Finally, learning occurs in the mid-
brain itself via synaptic plasticity, selectively strengthen-
ing and weakening particular synaptic inputs. We view
this learning as cascading because it occurs in an inter-
leaved fashion where each axis of learning modulates the
others. For example, as primary substrates undergo learn-
ing, this alters the input driving both the BGS and mid-
brain, modulating both P(E) and P(l | E) in our Bayesian
construal. Learning and activity in the primary substrates
are, in turn, modulated by both BGS output and dopamine
signals. Similarly, learning in the BGS alters inhibitory
input to the midbrain, and modulated dopamine in turn
alters learning in the striatum. The core idea here is that
learning does not occur discretely in one substrate and
then get transferred to another as a teaching signal, but
that learning occurs simultaneously across all substrates
in an interdependent fashion.

A crucial objective for learning in distributed substrates
is to coalesce into an organized whole-brain model to
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substrates, both top-down and bottom-up (blue), (2) in a secondary, integrative selection model in the basal ganglia system (BGS,
orange), and (3) in the midbrain dopamine system itself (green). Arrows indicate how learning at different levels influences learning at

other levels.

facilitate unitary action. The interleaving of BGS and
midbrain learning contributes to the development of this
coordinated organization. Midbrain dopamine signals grow-
ing consensus as learning progresses, arising through emer-
gent synchrony (Kim et al., 2012), increasing agreement
across dopamine cells in their Bayesian computations,
which facilitates and accelerates learning as well as mo-
bilizes resources and responding. The ability of midbrain
dopamine to modulate learning and responding is effec-
tively titrated by the degree of synchrony that contributes
to a temporally resolved phasic signal. In this sense,
dopamine has its greatest impact when it is maximally
reflecting consensus. That is, the emergence of a phasic
dopamine signals reflects the cumulative, convergent ef-
fects of cascading learning broadly distributed across the
brain, consistent with observations that changes in dopa-
mine signals can lag behind adaptive behavior (Codding-
ton and Dudman, 2018).

This provides an alternative perspective on the emer-
gence of prediction errors. Learning is initiated when an
animal encounters known value (e.g., food pellet) at an
unexpected place and time. The prediction error hypoth-
esis argues that surprise, the unexpectedness of that
initial encounter, generates the dopamine teaching signal.
Our hypothesis focuses on the known value aspect of that
initial encounter: the encountered food pellet is well
known to distributed neural substrates and induces a
consistent, organizing response in those substrates that
drives a dopamine consensus signal to facilitate further
learning about the features of time and place that yielded
the food opportunity, such as a cue light predicting the
reward. We would further suggest that the emergent pha-
sic dopamine response to the cue light does not reflect
dopamine teaching target regions about the value of the
cue light but, rather, that the “rest of the brain” has
learned the value of the cue light and, as the cue light
becomes a stimulus of “known value” across the brain,
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dopamine now signals consensus regarding the cue light:
the last to learn.

Predicted Rewards and Novel Stimuli

We wish to briefly touch on two possible objections to
our notion that dopamine signals consensus. In one, a
lack of phasic dopamine can be observed when one
might, according to our hypothesis, expect it. In the other,
conversely, dopamine cell bursting is observed when
there would seem to be no basis for consensus across
distributed processing.

First, sometimes a well-predicted reward does not gen-
erate a phasic dopamine response. If the reward induces
an organized, consistent response across distributed
substrates, consensus, why does the dopamine signal
disappear? We note first that this is not always the case,
perhaps mostly not the case, and that a persistent dopa-
mine signal in response to reward, even in well-learned
tasks, has been repeatedly observed (Hamid et al., 2016,
and many others). Nevertheless, when the loss of phasic
dopamine in response to reward is observed, this arises
when a task is overlearned. We would argue that this
reflects automation where discrete stimuli (e.g., cue-
response-reward) are “chunked” into a sequence as a
single entity (Graybiel, 1998), where only the beginning of
the sequence generates a phasic dopamine response,
unless the outcome varies from how the sequence is
expected to end. That is, the value of the reward is
absorbed into the sequence rather than treated as a
distinct event. In a sense, this is the same as saying the
reward is predicted, only the proposed mechanism is
different. Rather than a computation subtracting expected
and received reward generating an error of zero when the
reward is perfectly predicted, our hypothesis would argue
that once a sequence of events (stimuli, actions, out-
comes) have become automatized, the individual steps in
the sequence no longer organize distributed processing
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nor drive the dopamine response; essentially, they are
taken for granted until something goes awry, bringing
non-automatic distributed processing back online to pro-
cess the error, modulating dopamine.

Second, novelty is known to induce increased dopa-
mine cell activity (Horvitz, 2000; Overton et al., 2014),
which seems inconsistent with the notion that dopamine
is signaling consensus: how can there be consensus
across substrates with a newly encountered stimulus or
context? Novel sensory information entering the brain
does not have a learned path of propagation determined
through prior experience; instead, we assume the novel
information generates widespread activity across regions
as the brain tries to process this new encounter based on
prior experience and knowledge, with features of new
stimuli partially activating memory of previous stimuli en-
countered as the brain uses its existing models to learn
about the unfamiliar. We would expect this increased
activity across distributed brain regions to drive the excit-
atory axis and generate bursting and small dopamine
transients; however, we would not expect synchronous
firing phase-locked with stimuli but randomly distributed
bursts/transients throughout exploration and examination
of novel stimuli. That is, this increased activity does not
generate a temporally resolved signal arising from syn-
chronous dopamine activity but instead the bursts/tran-
sients are distributed across time, effectively increasing
tonic dopamine facilitating increased activity, exploration
and plasticity. If new stimuli are repeatedly paired with
value, they will come to evoke a clear, temporally resolved
phasic signal arising from synchronous activity across a
population of dopamine cells. If not, the animal will habit-
uate and tonic dopamine will return to basal levels without
acquiring a phasic response. In both cases, our argu-
ments could be elaborated and refined, but space pre-
clude exhaustive discussion.

So, What Does Dopamine Encode?
Temporal-difference theories of dopamine have been
largely based on the idea that dopamine signals arise from
a model-free system (Montague et al., 1996). The values
associated with a state (e.g., “cue light on”) are derived
from experience in which the basis of that value is inac-
cessible, i.e., there is no model of how that value was
derived, sometimes called a “cached” value. As a conse-
quence, dopamine provides a “pure” value-related signal
in a “common currency” that is independent of distinct
sensory features of experience; that is, two rewards of
equal value should be substitutable and generate the
same dopamine signal. However, it has become increas-
ingly clear that dopamine does not provide a pure, model-
free signal of value (Takahashi et al., 2017; Keiflin et al.,
2019); rather, it appears that dopamine signaling may be
model-based (Daw et al., 2011; Daw, 2012; Langdon
et al., 2018) such that not only changes in value, but the
identity and characteristics of sensory information asso-
ciated with that value can modulate the signal. Moreover,
evidence is accumulating that midbrain dopamine may
not be restricted solely to value-related signals. As dis-
cussed in the introduction, phasic dopamine activity has
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been shown to correlate to motor movement (Dodson
et al., 2016; Howe and Dombeck, 2016), arousal (Eban-
Rothschild et al., 2016), motivational state (Satoh et al.,
2003; Syed et al., 2016), and timing (Pasquereau and
Turner, 2015; Soares et al., 2016). How do we account for
this apparent diversity in the “content” of dopamine sig-
nals, i.e., that dopamine does not correlate only to ab-
stract value but can be correlated with a multiplicity of
phenomena? Our hypothesis suggests the following.

Primacy of temporal encoding

We suggest the crucial characteristic of dopamine sig-
naling is when, not what. Dopamine mobilizes and ener-
gizes responding and facilitates learning. As a consensus
signal, phasic dopamine is effectively saying “now,”
which serves to activate and coordinate diverse target
regions to collectively respond rapidly and vigorously in
order to seize upon an opportunity. The crucial question,
when is now?, can be answered with varying degrees of
temporal precision: from a cue light indicating reward in
one second to contextual stimuli, such as being in an task
environment with a higher rate of reward availability
(Howe et al., 2013; Hamid et al., 2016; Beeler and Mouirra,
2018). In our consensus signaling theory, the precision of
when is determined by the degree of synchrony among
dopamine neurons, such that high synchronous activity
leads to temporally resolved phasic signaling while asyn-
chronous activity, even if bursting, leads to increased
dopamine distributed across a period of time, i.e., in-
creased tonic, as might occur in a high reward context.
That timing is an integral part of dopamine signaling is an
established idea, particularly with prediction error theories
(Pasquereau and Turner, 2015; Soares et al., 2016; Stark-
weather et al.,, 2017; Langdon et al., 2018). Here, we
suggest temporal characteristics are more than a feature
of dopamine signaling, but its fundamental, primary func-
tion: the conductor’s baton signaling to distributed pro-
cessing “this we know, act now.”

Bayesian model of opportunity

The point above begs the question, temporal model of
what? We argue the “what” is when an event in the
sensorimotor stream impacts neural activity and process-
ing across multiple afferent substrates indicating the
event has an organizing effect on distributed, parallel
processing, reflecting implicit value. Such implicit value
may correspond to the traditional economic sense, such
as when a cue light predicts the imminent arrival of a
delectable, tasty treat, but may also reflect implicit value
in stimuli that organize neural activity to achieve non-
traditional value, such as the ability to run the rotarod
without falling off, or to execute a killer tennis serve. In
essence, it is the neural activity itself that is being
assigned a valuation for its utility in achieving some
goal rather than valuation of what it is that neural
activity is putatively representing. In short, the what
corresponds to “when this neural activity arises, it re-
flects an opportunity for advantage and should be pro-
moted and acted upon.”
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Representational content embedded in dopamine
signal is unconstrained

In our view, dopamine cells are collecting evidence, the
midbrain is an evidentiary system, and that the represen-
tational nature (the content) of that evidence is uncon-
strained: basically, it can be anything and reflect whatever
representational content is being processed in afferent
regions driving midbrain dopamine activity. In our meta-
phor of a dopamine cell as analogous to an index of
stocks, if one stock has a disproportionate effect on the
index, say an automobile company, this does not mean
that the index is “signaling automobile,” but if you look at
what the index corresponds to in economic activity, it will
correspond to increased car sales. Similarly, midbrain
dopamine may generate a phasic response, signaling
consensus and implicit value, that may correlate with any
number of events, stimuli and actions depending upon the
task. During a motor task such as the rotarod, dopamine
cells may correlate to proprioceptive, vestibular and mo-
tor activity. During a task with visual cues, visual informa-
tion may be embedded in and even dominate dopamine
cell activity while in a task with auditory cues, auditory
information dominates. In short, rather than encoding an
abstracted value associated with different events, stimuli
and actions, we propose that these appear in dopamine
cell activity precisely to the extent to which they organize
distributed, parallel processing in afferent regions, reflect-
ing implicit not abstracted value.

Areas for Further Development and

Research

As noted above, many aspects of our hypothesis are
consistent with extant data, including heterogeneity of
afferents from distributed brain regions, the requirement
for dopamine cells to fire synchronously to generate a
temporally resolved phasic signal, evidence that dopa-
mine cell synchrony can increase with learning, evidence
that various types of value information are mixed and
distributed across multiple afferent substrates, the mixed
nature of the dopamine value signals (value, prediction
errors), as well as accumulating evidence that dopamine
signals can correlate to diverse phenomena beyond ab-
stracted value (i.e., are multifaceted or multiplexed), in-
cluding both features of stimuli associated with value
(model-based signals) as well as “non-value” related ac-
tivity, such as observed in non-reward related tasks (e.g.,
motor tasks). What we offer is a different framework in
which to interpret these data and an alternative hypothe-
sis on what the “basic function” of dopamine might be,
shifting from signaling and teaching about reward or value
to mediating coordination across distributed, parallel pro-
cessing.

This initial description of our hypothesis, laying out the
basic ideas and claims, lacks the rigor of a formal theory,
which will emerge over time as the ideas presented are
further developed. Nonetheless, the hypothesis does yield
many predictions that can be tested empirically. For ex-
ample, the notion that “dopamine is the last to learn” can
be tested in a design similar to Tian et al. (2016), except
looking at the progression of the mixed value signals in
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afferents compared to midbrain dopamine across learn-
ing. Similarly, optical tools can facilitate comparing inhib-
itory striatal inputs, P(I | E)/P(l), to excitatory inputs, P(E) to
begin to empirically test and dissect our Bayesian formu-
lation. Readers can discern such testable predictions
themselves. Given the nascent nature of our hypothesis,
we use available space here to note some limitations in
our initial discussion and areas for further development,
consideration and research.

Limitations

First, it is becoming increasingly evident that both do-
pamine and midbrain GABA neurons form a functional
midbrain unit (Brown et al., 2012; van Zessen et al., 2012),
including the recent hypothesis that the dopamine predic-
tion error arises as a subtractive computation between
GABA and dopamine cells in the midbrain (Eshel et al.,
2015). A more comprehensive hypothesis of “midbrain
dopamine” may require inclusion of GABA neurons. Sec-
ond, we have glossed over the extent to which midbrain
dopamine may consist of functionally separate subpopu-
lations that signal independently, possibly through differ-
ent “channels” with distinct, segregated projection targets
(Willuhn et al., 2012; Roeper, 2013; Lammel et al., 2014;
Sanchez-Catalan et al., 2014; Dreyer et al., 2016; Morales
and Margolis, 2017). Third, our hypothesis would naturally
lead to the question of a role for synchronized oscillations
at various frequencies between the midbrain and other
brain regions. Dreyer et al. (2016) demonstrate that co-
caine induces 0.5-Hz oscillations in dopamine release in
the nucleus accumbens. Fujisawa and Buzsaki (2011)
have demonstrated 4-Hz oscillatory activity in the VTA
that couples with prefrontal oscillations. The authors sug-
gest that midbrain dopamine may play a role in synchro-
nizing this oscillatory activity across brain regions. Such
oscillatory activity in the midbrain has been surprisingly
little studied and could be introduced into the current
hypothesis. Fourth, dopamine cells release multiple trans-
mitters (Trudeau et al., 2014), including glutamate, GABA
and sonic hedgehog (Gonzalez-Reyes et al., 2012), not
addressed here. Our hypothesis is built around dopamine
volume transmission. What role intrasynaptic neurotrans-
mission at dopamine synapses may play is not clear.
Interestingly, Fujisawa and Buzsaki (2011) suggest that
glutamate release from dopamine terminals may play a
role in regulating oscillatory synchronization. Although not
incorporated into our hypothesis, this notion is certainly
consistent with midbrain dopamine serving a role in co-
ordinating distributed, parallel processing.

Areas for development

Our hypothesis posits that dopamine cells comprise a
layer in cascading learning. While dopamine cells exhibit
synaptic plasticity, this plasticity and its regulation has not
been as extensively characterized as, for example, corti-
costriatal plasticity. We suggest here that synaptic plas-
ticity in dopamine cells is regulated by inhibitory GABA
inputs from the striatum, analogous to how dopamine
regulates corticostriatal plasticity. In this way, selective
activity-dependent long-term potentiation of excitatory
synapses would be gated by disinhibition of striatal in-
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puts. Although there is evidence for this notion (Tan et al,
2010), it has not been exhaustively investigated and char-
acterized. Synaptic plasticity within the midbrain has not,
in general, figured prominently into theories of dopamine;
knowledge of its mechanisms, regulation and function
remain limited and underexplored. While dopamine has
been suggested to provide an instructional signal to the
striatum, we suggest that the striatum in turn provides an
instructional signal to the midbrain. In this construal, this
striatal teaching signal, the likelihood, gates plasticity at
excitatory synapses, modifying transmission of excitatory
drive, the prior, from primary processing, in future en-
counters.

Another area for exploration is how different inputs are
actually integrated at a cellular level. Our Bayesian con-
strual would on first glance suggest that inhibitory inputs
from the striatum and excitatory inputs from distributed
afferents should be multiplicative, but this is not exactly
right. The likelihood, P(l | E)/P(l) is not computed in the
midbrain where excitatory activity, P(E) is multiplied by P(l
| E) and both quantities divided by P(l). Rather, in our
construal, the likelihood is computed in the striatum and
delivered as a single quantity of disinhibition to the mid-
brain; mathematically, P(E) is not divided directly by P(l).
The question might be whether P(E) + P(l | E)/P(l), likely a
more accurate rendering, is functionally equivalent. Using
cortical activity as an example, if specific cortical activity
(say that encoding a cue light) contributes afferent drive to
both midbrain, i.e., P(E) and the striatum, i.e., P(l | E),
could an increase in this cortical activity transmitted to the
midbrain both directly and via disinhibition be multiplica-
tive in the degree to which that specific cortical activity
drives midbrain dopamine? The answer is unknown.
Demonstrating how mathematical operations comprising
formal theories are implemented in neural machinery is a
continuing challenge (Potjans et al., 2009, 2011).

Finally, our initial description of the hypothesis provided
here requires more formal theoretical elaboration. How-
ever, doing so entails rethinking what a normative de-
scription of dopamine function might mean if its primary
role is construed as mediating coordination across dis-
tributed processing rather than signaling value per se. As
long as dopamine is viewed in some fashion as the reward
transmitter, computational approaches can build formal
algorithms whose functional goal is maximizing value. Our
hypothesis posits “maximizing value” as a distal goal
mediated by multiple neural substrates where the proxi-
mal problem is getting those substrates to function in a
coordinated manner to achieve maximal value. If dopa-
mine is construed as a solution to that proximal problem
of coordination, then thinking through formal models of
this idea requires developing notions on how “coordina-
tion” is maximized or even quantified and evaluated. We
believe our Bayesian construal of dopamine and notion of
cascading, distributed learning offers some initial fodder
for more formal efforts.

Conclusion
A good hypothesis should provoke novel investigations
and generate deeper understanding, whether ultimately
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proven true or not. The prediction error hypothesis makes
clear, simple predictions: that phasic dopamine signaling
will correspond to discrepancies in expected and actual
outcomes. Nonetheless, twenty years later we are still
testing this hypothesis (Watabe-Uchida et al., 2017),
which has proven to be a rich driver of experimental
investigation giving rise to a deeper, more complex un-
derstanding of midbrain dopamine (Eshel et al., 2015;
Hamid et al., 2016; Langdon et al., 2018), although the
extent to which it is correct continues to be subject to
debate (Berke, 2018).

Various theories of dopamine function have been pro-
posed. Data have accumulated supporting each of these
theories and, strictly speaking, falsifying each other. If a
value instead of error signal is observed, then strictly
speaking the prediction error hypothesis cannot be a
complete account. The taste for pitting these different
accounts of dopamine against each other seems to be
waning, with a growing appreciation that each likely cap-
tures some aspect of dopamine signaling. Increasingly,
the most pressing question seems to be how to conceive
of a framework where these different theories can be
integrated rather than viewed as competing accounts.

By shifting from a presupposition that dopamine funda-
mentally signals value information in some fashion, the
reward transmitter, to positing that dopamine plays a role
in mediating coordination across distributed, parallel pro-
cessing, the hypothesis outlined here provides an alter-
native perspective in thinking about how to assimilate and
interpret the diverse data that have accumulated for de-
cades on dopamine. Moreover, it suggests new avenues
for both theoretical and empirical exploration and model
development. This is particularly true in light of data
emerging in recent years showing much greater richness
and complexity to dopamine signals, as well as its con-
nectivity, architecture and physiology, than originally
imagined. As it becomes increasingly difficult to shoehorn
this apparent complexity into one or another extant the-
ories, the need for alternative frameworks, perspectives
and accounts may grow. Although only an initial descrip-
tion, we offer the current hypothesis in the spirit of this
need for new perspectives.
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