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ARTICLE INFO ABSTRACT

Keywords: Background: Sample size calculations are critical to the planning of a clinical trial. For single-arm trials with
Clinical trial time-to-event endpoint, standard software provides only limited options. The most popular option is the log-rank
Exact test test. A second option assuming exponential distribution is available on some online websites. Both these ap-
Single-arm proaches rely on asymptotic normality for the test statistic and perform well for moderate-to-large sample sizes.
3\1/13]311;111 Methods: As many new treatments in the field of oncology are cost-prohibitive and have slow accrual rates,

researchers are often faced with the restriction of conducting single arm trials with potentially small-to-moderate
sample sizes. As a practical solution, therefore, we consider the option of performing the sample size calculations
using an exact parametric test with the test statistic following a chi-square distribution. Analytic results of
sample size calculations from the two methods with Weibull distributed survival times are briefly compared
using an example of a clinical trial on cholangiocarcinoma and are verified through simulations.

Results: Our simulations suggest that in the case of small sample phase II studies, there can be some practical
benefits in using the exact test that could affect the feasibility, timeliness, financial support, and ‘clinical novelty’
factor in conducting a study. The exact test is a good option for designing small-to-moderate sample trials when
accrual and follow-up time are adequate.

Conclusions: Based on our simulations for small sample studies, we conclude that a statistician should assess
sensitivity of his calculations obtained through different methods before recommending a sample size to their

collaborators.

1. Introduction

Two-arm randomized clinical trials are the gold standard in bio-
medical research as they allow performance assessment of a new ex-
perimental treatment relative to a standard control. However, there are
situations where conducting a two-arm trial is not possible and a single-
arm trial may be the preferred choice. For single-arm trials with a time-
to-event endpoint, surprisingly few options for sample size calculation
are available in literature or in standard software. The most popular
option is the log-rank test [1] and its weighted versions. It has been
used for sample size calculations by Finkelstein et al. [2], Kwak and
Jung [3], Jung [4], Sun et al. [5] and more recently by Wu [6]. Like-
wise, sample size calculations for exponentially distributed survival
times have been proposed by Lawless [7] (available as online calcula-
tors; see SWOG [8]). Both approaches rely on asymptotic normality of
the test statistic and perform well for moderate-to-large sample sizes. As
many new treatments in the field of oncology are cost-prohibitive and
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have slow accrual rates, researchers are often restricted to conducting
single-arm trials with small-to-moderate sample sizes.

The sample size formula proposed by Wu [6] is based on the exact
variance of the test statistic and hence is an improvement on the earlier
versions of the logrank test. Wu [6] has mentioned in his concluding
remarks that his one-sample logrank test is conservative when dealing
with small samples and that the correctness of its use depends on the
correct specification of the underlying distribution of the standard po-
pulation. In this context, we bring to the reader's attention that a
parametric method of calculating sample size for exponentially dis-
tributed times was first published by Epstein and Sobel [9]. This
method uses a test statistic that follows a chi-square distribution. Later,
Narula and Li [10] have shown how to extend the calculations to the
case of gamma, Weibull, and Laplace distributions in the uncensored
case. One important point to note is that an iterative search algorithm
may be needed to calculate the sample size given the value the other
fixed parameters using their approach and to avoid this Narula and Li
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Table 1
Number of events/sample size for exact vs Wu's method (administrative censoring adjustment by equation [4]) for different values of Weibull shape parameter 3,
accrual time a, and follow-up time f.

Study specific parameters: median time under Hy = 2.5 months; median time under H, = 3.75 months;
alpha = 0.05 (one-sided); target power = 0.80;
Shape parameter a Method f=1 f=2 f=4 f=6 f=9 f=12
a=0 Exact 148/492  148/373  148/290  148/254  148/225  148/209
Wu 144/478  145/365  147/287  148/254  149/227 151/212
a=3 Exact 148/350  148/307  148/262  148/238  148/216  148/203
Wu 146/344  147/303  148/261  149/239  150/219  151/207
a=6 Exact 148/300  148/274  148/245  148/227  148/209  148/198
Wu 147/297  147/273  149/245  150/229  151/213  152/203
B =050
a=9 Exact 148/272  148/255  148/232  148/218  148/204  148/194
Wu 148/271  149/255  149/234  150/221  151/208  152/199
a=12  Exact 148/254  148/241  148/223  148/211  148/199  148/191
Wu 149/254  149/242  150/226  151/215  152/204  152/196
a=15  Exact 148/241  148/230  148/216  148/206  148/196  148/188
Wu 149/242  150/233  150/219  151/210  152/200  153/194
a=0 Exact 66/292 66/188 66/128 66/106 66/90 66/82
Wu 62/273 63/179 66/105 66/105 68/92 69/85
a=3 Exact 66/169  66/139 66/97 66/97 66/86 66/79
Wu 64/163  64/135 67/97 67/97 68/88 69/83
a=6 Exact 66/134  66/118 66/91 66/91 66/82 66/78
Wu 65/131 66/117 68/93 68/93 68/85 70/82
B =075
a=9 Exact 66/117 66/106 66/87 66/87 66/80 66/76
Wu 66/116 67/107 68/89 68/89 70/84 70/80
a=12 Exact 66/107 66/99 66/84 66/84 66/78 66/75
Wu 67/107  67/100 69/87 69/87 70/82 71/80
a=15  Exact 66/100 66/94 66/81 66/81 66/77 66/74
Wu 68/101 68/96 69/85 69/85 70/81 71/79
a=0 Exact 37/220 37/120 37/71 37/56 37/46 37/42
Wu 34/199 35/112 36/69 38/56 39/48 40/45
Lawless 184 103 64 52 45 42
a=3 Exact 37/103 37/79 37/59 37/50 37/44 37/41
Wu 35/97 36/76 37/59 39/52 40/47 41/45
Lawless 90 71 55 48 44 42
a=6 Exact 37175 37/64 37/53 37/47 37/42 37/40
p=1 Wu 36/73 37/64 38/54 39/49 41/46 41/44
Lawless 68 59 50 46 43 41
a=9 Exact 37/63 37/56 37/49 37/45 37/41 37/40
Wu 37/63 38/58 39/51 40/48 41/45 42/44
Lawless 59 53 47 44 42 41
a=12 Exact 37/56 37/52 37/46 37/43 37/41 37/39
Wu 39/58 39/54 40/49 41/47 42/45 42/44
Lawless 54 50 46 43 42 41
a=15  Exact 37/52 37/49 37/45 37/42 37/40 37/39
Wu 40/55 40/52 40/48 41/46 41/44 42/44
Lawless 51 48 45 43 41 41
a=0 Exact 24/193 24/89 24/46 24/34 24/28 24/26
Wu 21/166 21/79 23/44 24/34 26/30 28129
a=3 Exact 24/72 24/52 24/36 24/30 24/27 24/25
Wu 22/66 23/49 24/36 26/32 27/29 28/29
B =125
a=6 Exact 24/48 24/40 24/32 24/28 24/26 24/25
Wu 24/47 24/40 25/33 27/31 27/29 28/29
a=9 Exact 24/39 24/35 24/30 24/27 24/26 24/25
Wu 25/40 25/36 26/32 27/30 28/29 28/29
a=12 Exact 24/35 24/32 24/29 24/27 24/25 24/25
Wu 26/37 26/34 27/31 28/30 28/29 29/29
a=15 Exact 24/32 24/30 24/28 24/26 24/25 24/24
Wu 26/35 27/33 27/31 28/30 28/29 29/29
a=0 Exact 16/176 16/68 16/30 16/22 16/18 16/17
Wu 14/151 14/61 16/30 17/23 19/21 21/21
a=3 Exact 16/52 16/35 16/23 16/19 16/17 16/17
Wu 15/48 16/34 17/25 19/22 20/21 21721
B =150 a=6 Exact 16/32 16/26 16/21 16/18 16/17 16/17
Wu 17/33 17/28 18/23 19/21 20/21 21/21
a=9 Exact 16/26 16/23 16/19 16/18 16/17 16/17
Wu 18/28 18/25 19/22 20/21 21/21 21721
a=12  Exact 16/23 16/21 16/18 16/17 16/17 16/17
Wu 19/26 19/24 20/22 20/21 21/21 21/21
a=15 Exact 16/21 16/20 16/18 16/17 16/17 16/16
Wu 19/25 19/23 20/22 20/21 21/21 21/21

a = accrual time in months, f = follow-up time in months.
‘Exact’ refers to the exact calculations done using the chi-square distribution.
Note: The calculations given by Lawless [6] were done using an online calculator by SWOG [7] and only show the total sample size and not the number of events.
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[10] also mention five different closed-form solutions based on a
normal approximation. Surprisingly, popular statistics software does
not have options for such calculations though PASS [11] has in-
corporated the logrank calculations of Wu [6].

2. Methods

The Weibull distribution is a two-parameter distribution with its pdf

given by:
F(t) = Lif1e-w0F 6,8>0, t>0

6f (@]
here 6 is a scale parameter and f is a shape parameter that determines
the shape of the hazard function (8 > 1 gives hazard that is increasing
over time, and, 8 < 1 gives hazard that is decreasing over time with
B =1 representing the special case of exponential distribution with
constant hazard).

With modern computational tools, we can write an efficient SAS
program for an iterative approach using the formula given in Narula
and Li [10] accounting for administrative censoring. That is, following
Narula and Li [10], the problem of calculating sample size n (without
censoring) in the Weibull case to test the hypothesis Hy: 6 = 6, against
the alternative Hy: 6 = 6;( < 6) at level of significance @ and prob-
ability of type II error y reduces to solving for § using

§= )(12,7 (V)/X; W) 2

with 6§ = 6p/6; and v = 2n. Our program then adjusts their method for
administrative censoring accounting for study-specific accrual and
follow-up times in the following way:

Assuming a uniform accrual, the censoring distribution function
G(t) is given by

1 ift<f
_ Ja+f-t .
G) = — iff<t<a+f
0 otherwise 3)

where a and f are the accrual and follow-up time respectively. Then the
probability that a subject experiences a failure during the study is given
by

d= [fG@). f,(Hat

0o “@
where f (t) is f (t) with 8 = 6,. Dividing the number of events by d gives
the sample size adjusted for administrative censoring. Alternatively, d
can be calculated using Simpson's rule by

d=1-— %{Sl(f) + 45, (f + 0.50) + S, (f + a)} (5)

where S;(¢) is the survival function of the Weibull with 6 = 6,

For the Weibull, this allows comparison with Wu [6] and for the
special case of the exponential, this allows comparison with Lawless
[7]. To do so, we consider a real-life example about designing a phase II
clinical trial for treating patients suffering from chemotherapy re-
fractory advanced metastatic biliary cholangiocarcinoma, a “rare” but
aggressive neoplasm. Such patients have metastatic disease and un-
dergo an initial treatment followed by a second-line treatment which
has a progression-free survival (PFS) rate of 5-10% by 1 year. Oncol-
ogists are therefore working towards improving the PFS by using new
combination therapies. Historically, published literature mentions a
median PFS of 2.5 months with an IQR of around 2-5 months. Due to
dismal survival rates, they consider an improvement in 25th, 50™" and
75th percentile of PFS by a factor of 1.5 as clinically meaningful and
holding promise for future large sample studies. The rarity of disease
poses recruitment problems with typical accrual rates being approxi-
mately 12-15 patients/year. Based on financial and administrative
limitations, researchers envision a study with an accrual time of 2 years
and follow-up time of 3 years. Loss to follow-up is anticipated to be
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15-20%. It should be noted that as the researchers hypothesize a con-
sistent improvement in PFS for all quantiles of the survival curve - of
the historical controls by a factor of 1.5, the Weibull distribution is a
good choice for performing the sample size calculations as is evident
from the definition of § in (1). Following Wu [6], the shape parameter 8
for the Weibull is estimated from the historical controls as 1.25 (in-
creasing hazard).

3. Results

For the study-specific design features in this example, Table 1 shows
the comparisons between the two methods for various values of the
shape parameter 3 ranging from 0.5 to 1.5. The conservative nature of
the logrank test can be studied by observing how in Table 1 the sample
sizes vary as a function of accrual and follow-up time (keeping other
design parameters fixed) for the different values of the shape para-
meter. When § = 0.5, we see that Wu's logrank test gives smaller
sample sizes compared to the exact method only when both a and f are
small in magnitude. On the other hand, as either a or f increases, the
exact test yields smaller sample sizes. This general pattern is even more
accentuated as § increases from 0.5 to 1.5. In fact, for 3 = 1.5, only
a < 3 and f < 3 allow the logrank test to have smaller sample sizes than
the exact method. As in the cholangiocarcinoma example under con-
sideration, researchers hypothesize improvement in median PFS by a
factor of 1.5, small values of a and f are impractical as based on the
accrual rate, very few patients can participate in this study.

For this example, where § = 1.25 is chosen, the exact method gives
a sample size of 24 when a > 15 and f > 12 whereas the logrank test
finds a lower bound at 29 no matter how big a and f are chosen. That
is, even with the flexibility to follow patients for a hypothetically large
amount of time and thereby observe all events, Wu's method does not
go below a threshold value of 29 events. Through simulations (we used
10,000 simulations) using the Weibull distribution, it can be shown that
with large follow-up times, 80% power is achieved only with 24 sub-
jects and the exact method is analytically able to yield a sample size of
24. By adopting the popular ad-hoc method of inflating the sample size
to accommodate drop-outs (conservatively assuming they provide no
extra information), the adjusted sample size can be calculated as 24/
0.8 = 30. That is, if the researcher's ‘optimistic’ estimate of accruing 15
patients/year is true, it appears likely that this study can be completed
within the stipulated timeframe. A similar ad-hoc adjustment for Wu's
method would require 37 patients to be enrolled, which is outside the
practical timeframe of the study. However, by assuming that drop-outs
occur randomly over the study period (assuming a uniform distribu-
tion), for an anticipated drop-out rate of 20%, our simulations gave a
sample size of n = 28 with 80.6% power. Thus, a combination of ana-
lytical calculations using the exact method aided by further simulations
can enable a statistician to design a small sample trial with adequate
power. If additional information from similar such studies is available, a
statistician can also incorporate other drop-out mechanisms (such as
exponentially distributed drop-out times with a specific mean).

Similar comparisons can be performed for other values of 8 such as
B = 0.75 (decreasing hazard) and § =1 (constant hazard - ex-
ponential distribution). In the case of § =1, it can be seen that the
normal approximation proposed by Lawless [7] gives smaller n than the
exact method for small-to-moderate values of follow-up time. However,
with large values of follow-up time, this is no longer the case and the
normal approximation cannot yield sample sizes below n = 41.
Through simulations (we used 10,000 simulations) using the ex-
ponential distribution, it can be shown that with large follow-up times,
80% power is achieved only with 37 subjects and the exact method is
analytically able to yield a sample size of 37 whereas the normal ap-
proximation method and the logrank test yield sample sizes of 40 and
43 respectively.

Though the exact method yields smaller sample sizes for many si-
tuations, it is necessary to assess whether or not the empirical type I
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Table 2
Evaluation of empirical type I error and empirical power using the exact method for the cholangiocarcinoma study with Hy: t.q < 2.5 months and effect size equal to
improvement in median time by a factor of 1.5 - using 10,000 simulations (nominal type I error 5%, target power 80%).

Shape Accrual time Follow-up Total Average # Empirical Average # events  Empirical
parameter a in months time fin sample events observed  type | error observed under power
B months sizen under Hg Ha

f=1 492 174.80 0.0453 148.17 0.8245

a=0 f=3 321 170.73 0.0452 148.25 0.8259

f=6 254 167.21 0.0457 148.33 0.8247

f=12 209 163.18 0.0472 148.50 0.8193

f=1 350 171.64 0.0454 148.39 0.8235

f=3 280 168.57 0.0434 148.07 0.8169

a=3 f=6 238 166.01 0.0477 148.43 0.8186

f=12 203 162.31 0.0446 148.41 0.8169

B =0.50

f=1 300 169.53 0.0448 148.44 0.8218

f=3 257 166.99 0.0466 148.11 0.8214

a=6 f=6 227 165.15 0.0456 148.59 0.8139

f=12 198 161.44 0.0485 148.22 0.8191

f=1 254 166.59 0.0458 148.53 0.8141

f=3 231 164.95 0.0461 148.37 0.8179

a=12 f=6 211 162.78 0.0441 148.01 0.8096

f=12 191 160.49 0.0472 148.38 0.8099

f=1 291 85.72 0.0452 66.13 0.8425

f=3 149 81.74 0.0454 66.12 0.8366

a=0 f=6 106 78.21 0.0512 66.55 0.8425

f=12 82 73.34 0.0494 66.36 0.8227

f=1 169 82.41 0.0513 66.17 0.8432

f=3 122 79.86 0.0467 66.43 0.8403

a=3 f=6 97 76.82 0.0471 66.62 0.8296

f=12 79 72.17 0.0472 66.01 0.8210

B = 0.75

f=1 134 80.26 0.0448 66.49 0.8418

f=3 108 78.10 0.0484 66.49 0.8394

a=6 f=6 91 75.54 0.0459 66.57 0.8235

f=12 78 72.39 0.0499 66.84 0.8230

f=1 106 77.05 0.0490 66.56 0.8347

f=3 93 75.06 0.0460 66.13 0.8234

a=12 f=6 84 73.83 0.0485 66.70 0.8284

f=12 75 71.06 0.0505 66.58 0.8236

f=1 220 5341 0.0475 37.22 0.8509

f=3 87 49.18 0.0418 37.08 0.8405

a=0 f=6 56 45.40 0.0439 37.55 0.8343

f=12 42 40.51 0.0535 37.46 0.8419

f=1 103 50.09 0.0471 39.33 0.8413

f=3 67 47.24 0.0478 37.52 0.8436

a=3 f=6 50 43.60 0.0485 37.36 0.8359

f=12 41 40.02 0.0446 37.60 0.8236

B=1

f=1 75 47.35 0.0490 37.40 0.8377

(continued on next page)
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Table 2 (continued)
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f=3 57

a=6 f=6 47
f=12 40

f=1 56

f=3 49

a=12 f=6 43
f=12 39

f=1 193

f=3 59

a=0 f=6 34
f=12 26

f=1 72

f=3 42

a=3 f=6 30
B =125 f=12 25
f=1 48

f=3 35

a=6 f=6 28
f=12 25

f=1 35

f=3 30

a=12 f=6 27
f=12 25

f=1 176

f=3 41

a=0 f=6 22
f=12 17

f=1 52

f=3 28

a=3 f=6 19
B=15 f=12 17
f=1 32

f=3 23

a=6 f=6 18
f=12 17

f=1 23

f=3 19

a=12 f=6 17
f=12 17

44.93 0.0455 37.27 0.8299
42.70 0.0489 37.66 0.8359
39.32 0.0482 37.41 0.8250
43.77 0.0453 37.38 0.8257
42.85 0.0446 37.73 0.8260
40.68 0.0481 37.35 0.8277
38.60 0.0487 37.33 0.8201
38.32 0.0513 24.06 0.8843
34.33 0.0494 24.15 0.8664
29.73 0.0448 24.25 0.8545
25.80 0.0494 24.67 0.8415
34.96 0.0480 24.25 0.8596
31.61 0.0512 24.17 0.8595
27.93 0.0505 24.08 0.8491
24.91 0.0490 24.17 0.8218
31.73 0.0467 24.13 0.8516
29.48 0.0445 24.13 0.8419
26.81 0.0524 24.09 0.8372
24.94 0.0490 24.43 0.8208
28.62 0.0506 24.58 0.8438
27.49 0.0494 24.49 0.8400
26.40 0.0547 24.81 0.8409
24.97 0.0489 24.68 0.8228
28.41 0.0506 16.05 0.8803
24.58 0.0487 16.09 0.8731
20.33 0.0483 16.60 0.8537
16.99 0.0449 16.67 0.8224
25.23 0.0495 16.28 0.8719
22.30 0.0451 16.52 0.8609
18.39 0.0456 16.21 0.8401
17.00 0.0439 16.84 0.8209
21.88 0.0464 16.21 0.8560
20.28 0.0453 16.59 0.8442
17.69 0.0507 16.30 0.8288
17.00 0.0446 16.90 0.8216
19.28 0.0470 16.61 0.8358
17.86 0.0495 16.11 0.8282
16.85 0.0442 16.14 0.8181
17.00 0.0446 16.95 0.8222

error rate and empirical power are close to their nominal values. To do
this, a simulation study (with 10,000 simulations) was conducted with
the study-specific design parameters of the cholangiocarcinoma study.
For varying values of a and f for § ranging from 0.5 to 1.5, time-to-
event data was simulated with the sample sizes calculated by the exact
method and the results are displayed in Table 2. From this table it can
be see that for almost all scenarios the empirical type I error rates were
close to the nominal 5% alpha level. Likewise, empirical power always

slightly exceeded the target 80% power. Except for seemingly im-
practical values such as a = 0 (all subjects are available for recruitment
at the start) and f = 1 (a very short follow-up time for the study under
consideration), there was not much difference in the magnitude by
which empirical power exceeded the target power. As the results dis-
played in Table 2 are in the context of a specific example with a fixed
effect size, a similar evaluation of empirical type I error and power was
conducted for the hypothetical example discussed in Wu [6] where in
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Table 3
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Comparing empirical type I error (a) and empirical power with Wu's method for the example in Wu (2015 — accrual time = 3, follow-up time = 1, nominal type I
error 5%, nominal power 90%)) using the exact adjustment for administrative censoring given by equation (4) — number of simulations = 10,000.

p Method §=1.2 §d=1.4

n a Power n a Power

p=0.1 Exact 551 0.0458 0.9195 180 0.0503 0.9294
Wu 534 0.048 0.9030 169 0.044 0.907

p =0.25 Exact 504 0.0459 0.9191 164 0.0468 0.9297
Wu 492 0.047 0.904 156 0.046 0.907

p =0.5 Exact 438 0.0450 0.9177 141 0.0434 0.9258
Wu 432 0.047 0905 137 0.046 0.909

=1 Exact 351 0.0476 0.9096 110 0.0460 0.9158
Wu 356 0.047 0.907 112 0.044 0.912

p=2 Exact 289 0.0470 0.9092 87 0.0485 0.9145
Wu 306 0.046 0910 97 0.042 0.922

B=5 Exact 267 0.0495 0.9024 79 0.0475 0.9036
Wu 288 0.046 0.912 91 0.042 0.925

6=1.6 §=1.8 6=2

n a Power n a Power n a Power
104 0.0495 0.9432 73 0.0472 0.9485 58 0.0492 0.9640
93 0.044 0909 63 0.041 0911 47 0.041 0.909
94 0.0507 0.9430 66 0.0506 0.9480 52 0.0510 0.9600
85 0.045 0.908 58 0.042 0.913 44 0.041 0.915
81 0.0520 0.9382 56 0.0486 0.9489 44 0.0529 0.9763
75 0.042 0913 50 0.041 0.912 38 0.041 0.915
62 0.0478 0.9324 42 0.0511 0.9434 33 0.0460 0.9474
61 0.042 0.916 41 0.040 0.921 31 0.040 0.925
47 0.0455 0.9186 31 0.0467 0.9285 23 0.0475 0.9325
53 0.040 0929 36 0.038 0.938 27 0.038 0.942
42 0.0487 0.9176 27 0.0464 0.9121 20 0.0473 0.9241
50 0.039 0.935 34 0.040 0.943 25 0.036 0.943

Note: In Wu’s notation, & = (m,/m,)? where m, = 1 and m; are the median times under the null and alternate hypotheses respectively

a = 3 and f = 1 was kept fixed, but the effect size was varied from small
to large, for § = 0.1, 0.25, 0.5, 1, 2, and 5. The results of these si-
mulations are shown in Table 3 with target power at 90% and median
time under the null hypothesis fixed at 1. Here too, for all scenarios,
empirical type I error was close to the nominal level, and likewise,
empirical power always slightly exceeded the 90% target level. For
B <1, the exact method yielded somewhat higher empirical power
compared to Wu's method, while the converse was true for §> 1.
Though at first glance Table 3 suggests that the exact method yields
smaller sample sizes than the logrank test (with both methods having
comparable empirical type I error and power) only for 8 > 1, it should
be noted that the combination of a = 3 and f = 1 represent values that
are quite small compared to the magnitude of the hypothesized im-
provement in median lifetime under the alternate hypothesis. For ex-
ample, the combination of 8 =0.25 and 6 = 1.6 indicates that the
median under the alternate hypothesis is 6.55 times the median under
the null (which is fixed at 1). Likewise, the combination of 8 = 0.10 and
6 = 2 indicates that the median under the alternate hypothesis is 1024
times the median under the null (which is fixed at 1). Thus, in such
scenarios, it would be impractical to choose small values of a and f. As
the values of a and f increase, compared to the logrank test, the exact
method gives smaller sample sizes for 8 > 0.5 and same sample sizes for
B = 0.25 (see results in Table 4). Though the logrank test gives smaller
sample sizes for 8 = 0.1, such a small value of the shape parameter
would require a very strong justification in a real life clinical trial.

For all results discussed in this section we used equation (4) to
adjust for administrative censoring. For all scenarios shown in Table 3,
we got very similar sample sizes (mostly same, sometimes differing by
1, rarely differing by 2) whether we used equation (4) or Simpson's rule
mentioned in equation (5) except in the case when § = 5. In this case,
adjustment by Simpson's rule yielded sample sizes of 284, 84, 44, 27
and 20 for 6= 1.2, 1.4, 1.6, 1.8 and 2 respectively. We thus recommend
adjusting for administrative censoring using equation (4).

4. Conclusion
For large phase II or III trials, it would not make much difference if

any of these three methods were used for sample size calculations.
However, in the case of small sample phase II studies, there could be

practical differences that would affect the feasibility, timeliness, fi-
nancial support, and ‘clinical novelty’ factor (the challenge faced by
clinicians to be the first to conduct a clinical trial using a novel idea) of
the study. Additionally, both Wu's method and Lawless' method do not
yield sample sizes below a certain threshold no matter how long the
accrual and follow-up times are. On the other hand, the exact method
does not suffer from this shortcoming. As for the concluding remark by
Wu [6] about correctly specifying the underlying distribution, we fully
agree with this assertion. In this context, we provide two insights. The
first is the possibility to extend the framework presented in Narula and
Li [10] to using a generalized gamma distribution (a family of dis-
tributions with exponential, Weibull, lognormal, gamma, inverse-Wei-
bull, and inverse-gamma, as special cases) to model the historical
controls in the case where definitive well-established large sample
studies have been conducted on such historical controls and then use
the estimates of these parameters to design the current single-arm
study. Just like the gamma, Weibull and Laplace distributions, the
sample size calculation could be done using the framework presented in
Narula and Li [10] as it would allow calculation of nk (in place of n in
equation (1)) where k > 0 is the extra shape parameter estimated from
historical controls. Then dividing by k would yield the sample size re-
quired for current single-arm study. The second insight is to conduct
simulations during the design phase of a study to assess how, in the case
of Weibull, partial information available from historical data impacts
the sample size calculation for the current study. Often, historical
control information is available in published literature in the form of a
Kaplan Meier curve, or as point estimates of median and/or inter-
quartile range. It would therefore be interesting to assess the sensitivity
of using this partial information from prior studies on the sample size
calculations of the current study. Additionally, the role of random
censoring due to drop-outs/loss to follow-up needs to be addressed in a
comprehensive manner.

In some disease-specific areas, single-arm trials are inevitable. For
example, conducting a randomized controlled trial (RCT) may prove
impractical when recruiting a small target population (rare disease).
Ethical or practical considerations may dictate that researchers conduct
a single-arm trial with all enrolled patients receiving the experimental
treatment. Another example of a single-arm trial is the “window-of-
opportunity” trial in which patients diagnosed with a disease are
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Table 4
Sample size comparison of exact vs Wu's method for the example in Wu (2015)
— with a = 18, f = 18 (all other parameters same as Table 3).

p Method Total Sample Size n
6=12 6§=14 6=16 6§=18 §=2

f=0.1 Exact 467 151 87 61 48
Wu 457 145 79 53 40

p =0.25 Exact 352 112 63 43 34
Wu 355 112 61 41 31

p=0.5 Exact 272 82 44 30 22
Wu 288 90 49 33 24

p=1 Exact 258 76 40 26 19
Wu 279 88 48 32 24

p=2 Exact 257 75 39 25 18
Wu 279 88 48 32 24

=5 Exact 257 75 39 25 18
Wu 279 88 48 32 24

Note: In Wu’s notation, § = (m, /m,)# where m, = 1 and m; are the median times
under the null and alternate hypotheses respectively

awaiting subsequent surgery and can be enrolled only in this waiting
period. The number of such patients may be small requiring a single-
arm study. Likewise, there are situations where the standard drug has
been so well studied and documented that researchers may consider
published results about its performance as reliable historical data. In
this case, they may prefer a single-arm trial. Further, in the case of some
rare diseases, it may be ethical to treat only those subjects with a new
experimental drug who have stabilized on the standard-of-care treat-
ment, thereby warranting a single-arm study.

Overall, we feel that statisticians should be aware of the issues we
have discussed in planning a single-arm trial for time-to-event data. Our
calculations and simulation study suggests that the exact method is a
good option for designing small-to-moderate sample trials when accrual
and follow-up time is adequate. Thus, in cancer trials where accrual
rates are low, it may be necessary to have longer accrual times and in
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such trials, the exact method may be preferred as it yields smaller
sample sizes with sufficient power while maintaining the type I error
rate. The statistician should strive to use the most appropriate method
considering various practical considerations in consultation with the
researchers. Especially, in the case of small sample studies, they should
assess sensitivity of their calculations obtained through different
methods.
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