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ABSTRACT

Background: Saturated fatty acids (SFAs) of different chain lengths
have unique metabolic and biological effects, and a small number of
recent studies suggest that higher circulating concentrations of the
very-long-chain SFAs (VLSFAs) arachidic acid (20:0), behenic acid
(22:0), and lignoceric acid (24:0) are associated with a lower risk
of diabetes. Confirmation of these findings in a large and diverse
population is needed.

Objective: We investigated the associations of circulating VLSFAs
20:0, 22:0, and 24:0 with incident type 2 diabetes in prospective
studies.

Methods: Twelve studies that are part of the Fatty Acids and
Outcomes Research Consortium participated in the analysis. Using
Cox or logistic regression within studies and an inverse-variance-
weighted meta-analysis across studies, we examined the associations
of VLSFAs 20:0, 22:0, and 24:0 with incident diabetes among 51,431
participants.
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Results: There were 14,276 cases of incident diabetes across
participating studies. Higher circulating concentrations of 20:0,
22:0, and 24:0 were each associated with a lower risk of incident
diabetes. Pooling across cohorts, the RR (95% CI) for incident
diabetes comparing the 90th percentile to the 10th percentile was
0.78 (0.70, 0.87) for 20:0, 0.84 (0.77, 0.91) for 22:0, and 0.75
(0.69, 0.83) for 24:0 after adjustment for demographic, lifestyle,
adiposity, and other health factors. Results were fully attenuated
in exploratory models that adjusted for circulating 16:0 and
triglycerides.

Conclusions: Results from this pooled analysis indicate that higher
concentrations of circulating VLSFAs 20:0, 22:0, and 24:0 are
each associated with a lower risk of diabetes. ~ Am J Clin Nutr
2019;109:1216-1223.

Keywords: saturated fatty acids, very-long-chain saturated fatty
acids, diabetes, meta-analysis, Fatty Acids and Outcomes Research
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Consortium, Cohorts for Heart and Aging Research in Genomic
Epidemiology

Introduction

Type 2 diabetes is a major cause of morbidity and mortality,
and the global burden of the disease has reached epidemic
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proportions. In 2014, the WHO estimated that 8.5% of adults 18
y of age or older have type 2 diabetes worldwide (1), and this
estimate is expected to rise with an increase in life expectancy,
global urbanization, and the adoption of Western lifestyles (2, 3).
Identification of risk factors associated with the development of
diabetes is therefore of considerable public health interest.

Circulating SFAs, which can be derived from both endogenous
metabolic processes as well as diet, provide biomarkers of
specific SFAs of different chain lengths. The very-long-chain
SFAs (VLSFAs) arachidic acid (20:0), behenic acid (22:0), and
lignoceric acid (24:0) are found in foods, such as peanuts, peanut
butter, and macadamia nuts, and are also produced endogenously
from the elongation of shorter-chain SFAs [e.g., palmitic acid
(16:0) to stearic acid (18:0) and 20:0, and then of 20:0 to 22:0
and 24:0] (4). SFAs 16:0 and 18:0 may originate from dietary and
metabolic sources; dietary sources of SFAs 16:0 and 18:0 include
red meats, hard cheeses, and tropical oil (5, 6), whereas de novo
lipogenesis in the presence of low-fat and high-carbohydrate diets
(7-10) is a major metabolic pathway for synthesis of SFAs 16:0
and 18:0.

Recent studies suggest that associations of circulating SFAs
with diabetes risk may vary by SFA chain length, likely due to
the unique metabolic and biological effects of different SFAs (11—
13). Particularly, these studies suggest that higher concentrations
of circulating VLSFAs 20:0, 22:0, and 24:0 are associated with a
lower risk of diabetes than lower concentrations of circulating
VLSFAs 20:0, 22:0, and 24:0. Although these findings are
important because circulating concentrations of VLSFAs are
at least in part modifiable through diet (e.g., intake of peanut
butter), the study designs, covariates of interest, measurement
of VLSFAs, and ascertainment of incident diabetes differed
across studies, and the generalizability of the study results is
unknown because the studies were performed among primarily
Caucasian adults in Europe (12, 13) and the United States
(11). To address this gap, we investigated the associations of
circulating VLSFAs 20:0, 22:0, and 24:0 with incident type 2
diabetes among 12 prospective cohort studies as part of the
Fatty Acids and Outcomes Research Consortium (FORCE) (14).

WHI investigators can be found at http://www.CHS-NHLBILorg, http:
/Iwww.mesa-nhlbi.org, and http://www.whi.org/researchers/Documents%
20%20Write%20a%20Paper/WHI%?20Investigator%20Long%20List.pdf,
respectively.
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interpretation of data, the writing of the report, or the decision to publish.

Supplemental Tables 1-3 and Supplemental Figures 1-9 are available from
the “Supplementary data” link in the online posting of the article and from the
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We hypothesized that higher concentrations of VLSFAs 20:0,
22:0, and 24:0 are associated with a lower risk of type 2
diabetes.

Methods

Study sample

The study sample comprised participants from 12 prospective
cohort studies that are part of the FORCE: a consortium
derived from the Cohorts for Heart and Aging Research in
Genomic Epidemiology (CHARGE) to examine the associations
of circulating fatty acids of interest with nongenetic outcomes.
Details on FORCE have been described previously (15, 16).
For the present analysis, we included all cohorts that are
part of FORCE who were interested in the project and who
had available data on VLSFAs, and whose cohorts included
participants 18 y of age or older who were free of prevalent
type 2 diabetes (as defined by self-reported diabetes, fasting
glucose >126 mg/dL, or use of diabetes drugs) at the time of
fatty acid measurement (Supplemental Figure 1). Standardized
analysis plans were developed and provided to each of the
12 participating cohorts, including inclusion and exclusion
criteria; definitions for exposures, outcomes, and covariates of
interest; and a detailed statistical analysis protocol. Contributing
studies included: the Age, Gene, Environmental Susceptibility-
Reykjavik Study (17); the Chin-Shan Community Cardiovascular
Cohort Study (CCCC) (18); the Cardiovascular Health Study
(CHS) (19); the Framingham Heart Study (20); the European
Prospective Investigation into Cancer-InterAct (EPIC-Interact)
(21); the Insulin Resistance Atherosclerosis Study (IRAS) (22);
the Kuopio Ischaemic Heart Disease Risk Factor Study (KIHD)
(23); the Melbourne Collaborative Cohort Study (MCCS) (24);
the Multi-Ethnic Study of Atherosclerosis (MESA) (25); the
Metabolic Syndrome in Men Study (METSIM) (26); the
Women’s Health Initiative Memory Study (WHIMS) (27); and
the Three City Study (3C-Study) (28). Of the 12 participating
studies, 2 (CHS and EPIC-Interact) have previously assessed
associations of VLSFAs and incident diabetes (11, 12). All
procedures followed were in accordance with the Helsinki
Declaration of 1975 as revised in 1983. Each participating
study had local institutional review board approval and written
informed consent was obtained from all participants.

VLSFA assessment

Details on the measurement of circulating fatty acid biomark-
ers for each participating cohort are described in Supplemental
Table 1. In brief, gas chromatography was used to assess
individual fatty acid concentrations in each cohort in >1 lipid
compartment including plasma phospholipids (the Age, Gene,
Environmental Susceptibility-Reykjavik Study, CHS, EPIC-
Interact, MCCS, MESA, METSIM), total plasma (CCCC, IRAS,
KIHD, 3C Study), or red blood cells (Framingham Heart Study,
WHIMS, 3C Study, METSIM). Fatty acid levels in each cohort
were expressed as a percentage of total measured fatty acids. A
list of the VLSFAs of interest available in each study is given
in Table 1; all studies had each of VLSFA 20:0, 22:0, and 24:0
available, except KIHD did not measure VLSFA 20:0, and MESA
and 3C Study did not measure VLSFA 24:0.
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Ascertainment of incident diabetes

Cohort-specific methods for assessing development of diabetes
are described in detail in Supplemental Table 1. Briefly, for
most participating cohorts, incident diabetes was defined based
on >1 criterion: fasting glucose concentrations >126 mg/dL,
nonfasting or 2-h postchallenge glucose concentrations >200
mg/dL, glycated hemoglobin >6.5%, use of insulin or oral
hypoglycemic medications, or self-report. For 3 European
studies (EPIC-InterAct, KIHD, and METSIM), diabetes was
ascertained by linkage to registries of primary care, secondary
care, medication use, hospital admissions, or mortality.

Measurement of covariates

The standardized analysis plan included detailed definitions
and categorizations for the major risk factors of interest, including
physical activity, smoking, alcohol use, prevalent hypertension,
prevalent dyslipidemia, prevalent coronary artery disease, and
self-reported health status. The standardized definitions of risk
factors were adopted to minimize heterogeneity across cohorts
(29). Details on data collection methods for covariates for each
cohort are described in Supplemental Table 1.

Cohort statistical analyses

Each cohort performed new individual-level analyses and
provided results to the lead author (AMF) using a standardized
electronic form. In 10 of the participating cohorts, Cox regression
models were used to examine the associations of each VLSFA of
interest with incident type 2 diabetes. For these study participants,
follow-up time was assessed from baseline (i.e., time of fatty
acid measurement) to date of development of incident diabetes,
death from any cause, or loss to follow-up. The MCCS and
the IRAS did not have detailed time-to-event data available for
participants, and therefore used logistic regression. For each
study, each VLSFA was incorporated in models as a continuous
linear variable in units of the study-specific interquintile range
(i.e., the difference between the 90th and 10th percentiles)
and, in separate models, as quintiles in indicator (i.e., dummy)
categorical variables with the referent group as the lowest
quintile of each circulating VLSFA: 20:0, 22:0, or 24:0. Each
cohort estimated coefficients and SEs for the associations from
3 prespecified multivariable models. The first model adjusted
for major potential confounders including age, sex, clinic, race,
education, physical activity, smoking, alcohol use, prevalent
hypertension, prevalent dyslipidemia, prevalent coronary artery
disease, and self-reported health status. A second model also
adjusted for BMI and waist circumference to better understand
if these factors influence the associations of each VLSFA with
incident diabetes (primary model). A third model (exploratory
model) further adjusted for circulating SFA 16:0 and triglycerides
(TGs) (model 3), biomarkers of hepatic de novo lipogenesis in the
presence of low-fat and high-carbohydrate diets (30, 31). In the
CHS, SFA 16:0 and TGs were shown to potentially mediate or
confound the association of VLSFAs and incident diabetes (11).

We examined the potential interactions of age, sex, and BMI
with each VLSFA of interest (modeled linearly) on risk of
incident diabetes. Participating cohorts provided coefficients and
SEs for multiplicative interaction terms for each factor of interest
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with each VLSFA of interest, after adjustment for the covariates
included in the primary model described above.

Meta-analyses

Results from each cohort were compiled and combined
using inverse-variance-weighted meta-analysis in STATA version
13.1 (Stata Corporation). Inverse-variance-weighted fixed-effects
meta-analysis approximates results that would be obtained if the
data from all studies could be analyzed together with adjustment
for study (32). Heterogeneity between studies was assessed
using the /> index derived from the Cochran Q statistic (33).
In preliminary meta-analyses, IRAS contributed 65-71% of the
sample weight in each model despite a small total sample size
(n =719) and few cases of diabetes (n = 146) owing to influential
outliers in concentrations of VLSFAs for some participants.
As the cohort was unable to provide updated results excluding
influential outliers, it was subsequently excluded from primary
analyses. In sensitivity analyses, we repeated each meta-analysis
omitting 1 cohort at a time to confirm that individual cohorts were
not overly influencing the observed levels of association. We also
performed additional exploratory meta-regression according to
lipid compartment (i.e., plasma phospholipid, total plasma, or red
blood cell measures) and region (i.e., cohorts based in the United
States, Europe, Asia, or Australia).

Results

Descriptions and baseline characteristics for each of the
12 participating cohorts are given in Tables 1 and 2. The
mean cohort age ranged from 52.3 y to 76.0 y, and BMI (in
kg/m?) from 23.2 to 28.1. Mean cohort fasting glucose ranged
from 86.4 to 104.8 mg/dL. Most cohorts included primarily
participants of European descent, although several included
significant proportions of other races/ethnicities including the
CCCC study (100% Chinese), the Cardiovascular Health Study
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(11% African American), IRAS (33.2% Hispanic, 24.5% African
American), MESA (23.9% Hispanic, 22.2% African American,
25.5% Asian), and WHIMS (6.0% African American, 2.1%
Hispanic, 1.7% Asian). Mean cohort levels of each VLSFA
ranged from 0.13% to 0.62% for VLSFA 20:0, 0.23% to 1.67%
for VLSFA 22:0, and 0.20% to 4.0% for VLSFA 24:0. For
most cohorts, VLSFA 20:0, 22:0, and 24:0 were moderately-to-
highly correlated, and each VLSFA was negatively correlated
with circulating 16:0 (Supplemental Table 2). Circulating
concentrations of fatty acids were generally similar across region
(i.e., cohorts based in the United States, Europe, Asia, or
Australia) or year of blood sampling (data not shown).

Higher circulating concentrations of 20:0, 22:0, and 24:0 were
each associated with a lower risk of incident diabetes. Across
the 11 studies, there were 14,276 cases of incident diabetes.
Pooling across cohorts, comparing the 90th percentile to the 10th
percentile, the RR of incident diabetes was 0.78 (95% CI: 0.70,
0.87) for 20:0, 0.84 (95% CI: 0.77, 0.91) for 22:0, and 0.75
(95% CI: 0.69, 0.83) for 24:0 after adjustment for age, sex, site,
race, education, occupation, physical activity, smoking, alcohol
use, hypertension, dyslipidemia, coronary heart disease, self-
reported health status, BMI, and waist circumference (Figure
1). The model without BMI and waist circumference did not
produce materially different results (Supplemental Figure 2).
In contrast, further adjustment for TGs and circulating SFA
16:0 fully attenuated observed associations with RRs across the
interquintile range of 0.93 (95% CI: 0.83, 1.04) for 20:0, 1.04
(95% CI: 0.94, 1.14) for 22:0, and 0.97 (95% CI: 0.88, 1.08)
for 24:0 (Supplemental Figure 3). Omitting 1 cohort at a time
did not materially alter RR estimates (data not shown). Results
were similar in: /) analyses that included IRAS (Supplemental
Figures 4-6) and 2) pooled analyses that assessed each VLSFA
in quintiles as indicator categories (Supplemental Figures 7-9).

We observed little evidence of effect modification for each
VLSFA with age, sex, or BMI on risk of incident diabetes
(Supplemental Table 3). Although we observed notable het-

TABLE 1 Description of 12 studies that participated in analyses of circulating very-long-chain SFAs and incident diabetes'

Study Year of blood Year follow-up
Study Country design’>  Biomarker compartment sampling Fatty acids assessed ended
AGES-Reykjavik Iceland PC Plasma phospholipid 2002-2006 20:0, 22:0, 24:0 2007-2011
CCccC Taiwan PC Total plasma 1992 20:0, 22:0, 24:0 2000
CHS United States PC Plasma phospholipid 1992-1993 20:0, 22:0, 24:0 2011
EPIC-InterAct Europe PCC Plasma phospholipid 1993-1997 20:0, 22:0, 24:0 2007
FHS United States PC Red blood cells 2005-2008 20:0, 22:0, 24:0 2015
IRAS United States PCC Total plasma 1992-1994 20:0, 22:0, 24:0 1999
KIHD Finland PC Total plasma 1998-2001 22:0, 24:0 2010
MCCS Australia PC Plasma phospholipid 1992 20:0, 22:0, 24:0 2002
MESA United States PC Plasma phospholipid 2000-2002 20:0, 22:0 2010-2012
METSIM Finland PC Plasma phospholipid 2006-2010 20:0, 22:0, 24:0 2014
WHIMS United States PC Red blood cells 1995 20:0, 22:0, 24:0 2009
3C Study France PC Red blood cells, total plasma 1999-2000 20:0, 22:0 2011-2012

' AGES-Reykjavik, Age, Gene, Environmental Susceptibility-Reykjavik Study (17); CCCC, Chin-Shan Community Cardiovascular Cohort Study (18);
CHS, Cardiovascular Health Study (19); EPIC-Interact, European Prospective Investigation into Cancer-InterAct (21); FHS, Framingham Heart Study (20);
IRAS, Insulin Resistance Atherosclerosis Study (22); KIHD, Kuopio Ischaemic Heart Disease Risk Factor Study (23); MCCS, Melbourne Collaborative
Cohort Study (24); MESA, Multi-Ethnic Study of Atherosclerosis (25); METSIM, Metabolic Syndrome in Men Study (26); PC, prospective cohort; PCC,
prospective nested case-control; WHIMS, Women’s Health Initiative Memory Study (27); 3C Study, Three City Study (28).

2Details on the design of each study are described in Supplemental Table 1.
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TABLE 2 Characteristics of participating cohorts at time of fatty acid biomarker measurement'

n (incident

cases of Sex (% Baseline fasting
Study diabetes) Age,y female) BMI (kg/m?) 20:0% 22:0% 24:07 glucose, mg/dL
AGES- 753 (28) 755 £52 59.5 27.0 £ 4.0 0.62 £ 0.10 1.67 £ 0.27 1.33 £ 0.22 99.0 £+ 8.9
Reykjavik
ccce 616 (128) 587 £ 9.7 40.0 232 £ 29 0.48 £+ 0.29 0.18 £+ 0.31 0.80 £+ 0.33 104.8 + 13.8
CHS 3107 (282) 751 £53 61.5 264 £ 45 0.50 £ 0.08 1.70 £ 0.32 1.40 £ 0.28 97.8 £ 9.8
EPIC-InterAct 27,296 (12,132)  52.3 £ 9.2 62.3 26.0 £ 4.2 0.13 £ 0.04 0.24 £ 0.08 0.23 £+ 0.07 89.3 £+ 232
FHS 1870 (95) 64.4 £ 83 57.2 278 £5.0 NA NA 0.42 £ 0.16 100.1 £ 9.1
IRAS 719 (146) 551 £ 85 55.8 284 £ 5.6 0.11 £ 0.03 0.23 £ 0.08 0.20 £ 0.08 98.1 £ 11.1
KIHD 1543 (205) 62.7 £ 6.5 52.7 27.6 £ 44 NA 0.48 £ 0.09 0.48 £ 0.12 86.4 £ 8.1
MCCS 5617 (485) 56.3 £ 8.6 53.9 27.0 £ 44 0.25 £+ 0.07 0.71 £ 0.17 0.59 £ 0.15 99.6 £ 9.2
MESA 2252 (309) 60.9 £ 9.7 53.9 27.6 £ 54 0.25 £ 0.09 0.56 £+ 0.29 NA 89.7 £ 10.7
METSIM 1302 (71) 55.0 £ 7.1 0 264 £ 35 0.38 £+ 0.07 0.74 £ 0.16 0.62 £ 0.14 102.8 + 8.3
WHIMS 6510 (502) 70.1 £ 3.8 100.0 28.1 £ 55 0.13 £ 0.06 0.16 £ 0.10 0.35 £ 0.24 947 £ 9.8
3C Study 565 (39) 76.0 £ 4.0 64.3 25.0 £ 4.0 0.46 £ 0.08 1.00 £ 0.30 NA 88.0 + 10.0

'Values are means & SDs unless otherwise indicated. AGES-Reykjavik, Age, Gene, Environmental Susceptibility-Reykjavik Study (17); CCCC,
Chin-Shan Community Cardiovascular Cohort Study (18); CHS, Cardiovascular Health Study (19); EPIC-Interact, European Prospective Investigation into
Cancer-InterAct (21); FHS, Framingham Heart Study (20); IRAS, Insulin Resistance Atherosclerosis Study (22); KIHD, Kuopio Ischaemic Heart Disease
Risk Factor Study (23); MCCS, Melbourne Collaborative Cohort Study (24); MESA, Multi-Ethnic Study of Atherosclerosis (25); METSIM, Metabolic
Syndrome in Men Study (26); WHIMS, Women’s Health Initiative Memory Study (27); 3C Study, Three City Study (28).

2Measured as percentage of total fatty acids.

erogeneity between studies (i.e., the I index for each primary
analysis of VLSFA 20:0, 22:0, and 24:0 was 78.3%, 60.5%,
and 57.2%, respectively), the heterogeneity was not explained
by region (i.e., cohorts in Europe, the United States, Australia,
or Asia) or fatty acid compartment (i.e., plasma phospholipids,
total plasma, or red blood cells) in post hoc meta-regression
analyses (data not shown). Although fixed-effects meta-analyses
have been shown to produce valid estimates of risk across
heterogeneous studies (34), in sensitivity analyses, we reran all
analyses using a random-effects meta-analysis, and results were
similar (data not shown).

Discussion

The results from this pooled analysis of new, harmonized,
individual-level analyses in 12 prospective cohort studies glob-
ally indicate that higher concentrations of circulating VLSFAs
20:0, 22:0, and 24:0 are each associated with a lower risk of
diabetes. Results were robust to adjustment for major diabetes
risk factors, including measures of adiposity. In comparison,
results were fully attenuated after adjustment for circulating 16:0
and TGs (30).

The relative contributions of metabolism and diet on circulat-
ing concentrations of VLSFAs are unknown, but studies provide
evidence that VLSFAs, as well as other SFAs, are derived from
both endogenous and dietary sources. For example, these fatty
acids can be synthesized from the elongation of 18:0 to 20:0, 22:0,
and then 24:0 (4, 35, 36). In the diet, VLSFAs 20:0, 22:0, and
24:0 are contained in meaningful amounts only in selected foods,
including peanuts, peanut butter, and Macadamia nuts (37, 38). A
previous study indicated that consumption of peanuts and peanut
butter is inversely associated with diabetes risk (39). Although
the authors attributed these findings to the high amounts of
monounsaturated fat, polyunsaturated fat, fiber, and magnesium
found in peanuts and peanut butter (39), the findings reported

herein suggest that VLSFAs 20:0, 22:0, and 24:0 contained in
these foods may also partly explain these associations. In other
words, circulating VLSFAs may be a marker of peanut, peanut
butter, or Macadamia nut consumption—which is associated with
diabetes risk.

Compared to other long-chain SFAs, VLSFAs possess prop-
erties that appear to have distinct effects on specific biological
processes, although these processes are complex and not com-
pletely understood (40-44). For example, circulating VLSFAs
are major components of ceramides and sphingomyelins, and
it is possible that the inverse associations of VLSFAs and
incident diabetes reported herein may be explained at least
in part by the impact of ceramides and sphingomyelins on
diabetes-related pathways. Both animal and in vitro studies
suggest that /) ceramides play a role in insulin resistance and
glucose homeostasis (40, 41) and 2) effects of ceramides and
sphingomyelins on cardiometabolic outcomes may be dependent
on the chain length of the incorporated fatty acids. For instance,
ceramides of different chain lengths differentially permeabilize
mitochondria (43), and studies in animal and in vitro models have
indicated that ceramides containing SFA 16:0 induce apoptosis in
B-cells (42, 44), whereas ceramides containing fatty acids 20:0
and 22:0 inhibit apoptosis in S-cells (42, 45-47). Apoptosis may
influence type 2 diabetes by means of S-cell death and reduced
insulin secretion (48-51).

The findings in the present investigation were fully attenuated
after adjustment for SFA 16:0 and TGs in exploratory models.
This attenuation may be due to potential mediation by SFA
16:0 and TGs of observed associations of VLSFAs with diabetes
risk (11). Alternatively, as SFA 16:0 is inversely associated
with VLSFAs 20:0, 22:0, and 24:0, it has been proposed
that this attenuation may be a result of residual confounding
due to an unhealthy lifestyle. This theory is based on the
premise that SFA 16:0 may be a marker of poor diet quality
(i.e., diet high in red meats, processed meats), and thus low
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Lipid Diabetes %

Cohort Fraction Cases ES (95% Cl) Weight
20:0

FHS RBC 95 € 0.30 (0.18, 0.53) 3.68
AGES-Reykjavik PP 28 ¢ 0.36 (0.12, 1.11) 0.87
EPIC-InterAct PP 12,132 ¢+—— 0.55 (0.44, 0.69) 22.51
CHS PP 282 ———— 0.59 (0.43, 0.80) 11.62
3C Study RBC 39 ¢ 3 0.75(0.35, 1.63) 1.84
MCCS PP 485 —t— 0.93 (0.75, 1.15) 23.78
WHIMS RBC 502 —_— 0.93 (0.69, 1.26) 12.00
cccee PL 128 - 3 0.97 (0.62, 1.51) 5.55
MESA PP 309 > 1.01(0.58, 1.75) 3.67
METSIM PP 71 ——— 1.23(0.93, 1.62) 14.49
Subtotal < 0.78 (0.70, 0.87) 100.00
22:0

AGES-Reykjavik PP 28 ¢ 0.42 (0.15, 1.17) 0.67
KIHD PL 205 - 0.53 (0.35, 0.79) 4.32
FHS RBC 95 ——— 0.59 (0.33, 1.04) 2.18
EPIC-InterAct PP 12,132 —_— 0.68 (0.58, 0.80) 28.13
CHS PP 282 —_— 0.77 (0.56, 1.04) 7.45
3C Study RBC 39 ¢ o > 0.78 (0.35, 1.76) 1.07
MESA PP 309 o 3 0.92 (0.51, 1.65) 2.04
MCCS PP 485 —_—— 0.95 (0.76, 1.19) 13.74
ccce PL 128 —_— 1.01(0.84, 1.21) 21.94
METSIM PP 71 —%——  1.02(0.75,1.39) 7.28
WHIMS RBC 502 —+——  1.05(0.82, 1.35) 11.17
Subtotal < 0.84 (0.77,0.91) 100.00
24:0

AGES-Reykjavik PP 28 — 0.34 (0.13, 0.93) 0.92
EPIC-InterAct PP 12,132 ——— 0.61(0.52,0.72) 33.06
KIHD PL 205 ———— 0.68 (0.46, 0.99) 6.29
cccee PL 128 ¢ 0.72 (0.43, 1.20) 3.41
CHS PP 282 —_—— 0.72 (0.52, 0.99) 9.03
FHS RBC 95 ¢ 0.73 (0.43,1.24) 3.25
METSIM PP 71 ¢ o 3 0.77 (0.39, 1.51) 2.04
MCCS PP 485 _ 0.82 (0.65, 1.04) 16.06
WHIMS RBC 502 —_— 1.01 (0.84, 1.22) 25.95
Subtotal < 0.75 (0.69, 0.83) 100.00

[ [
0.5 1 15
RR

FIGURE 1 Forest plots of prospective associations of circulating very-long-chain SFAs with incident diabetes in 11 studies. RR and 95% ClI per interquintile
range (medians of the first and fifth quintile in each cohort) are represented by a filled circle and horizontal line for each cohort, and by a diamond for the overall
pooled results. Cohort-specific associations were assessed in multivariable models adjusted for age, sex, clinic, race, education, physical activity, smoking,
alcohol use, prevalent hypertension, prevalent dyslipidemia, prevalent coronary heart disease, self-reported health status, BMI, and waist circumference. The size
of the shaded square is a marker of study weight in the inverse-variance-weighted meta-analysis. AGES-Reykjavik, Age, Gene, Environmental Susceptibility-
Reykjavik Study (17); CCCC, Chin-Shan Community Cardiovascular Cohort Study (18); CHS, Cardiovascular Health Study (19); EPIC-Interact, European
Prospective Investigation into Cancer-InterAct (21); ES, effect size; FHS, Framingham Heart Study (20); IRAS, Insulin Resistance Atherosclerosis Study
(22); KIHD, Kuopio Ischaemic Heart Disease Risk Factor Study (23); MCCS, Melbourne Collaborative Cohort Study (24); MESA, Multi-Ethnic Study of
Atherosclerosis (25); METSIM, Metabolic Syndrome in Men Study (26); PC, prospective cohort; PCC, prospective nested case-control; PL, total plasma; PP,
plasma phospholipid; RBC, red blood cell; WHIMS, Women’s Health Initiative Memory Study (27); 3C Study, Three City Study (28).

concentrations of circulating VLSFAs may reflect metabolic
dysfunction associated with poor diet quality (31). In addition,
high TGs are a major risk factor for insulin resistance [and
a marker of an unhealthy diet high in simple carbohydrates
and processed meats, and low levels of physical activity (52)],
and VLSFAs have been shown to be associated with lower
concentrations of fasting TGs in previous studies (11, 53). These

theories are hypothesis-generating, and more studies are needed
to better understand the interplay of VLSFAs, 16:0, TGs, and
diabetes risk.

To date, only a handful of studies have assessed the associa-
tions of VLSFAs 20:0, 22:0, and 24:0 with diabetes risk (11-13).
In the CHS and EPIC-Interact, both included in the present study,
20:0, 22:0, and 24:0 were each associated with a lower risk of
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diabetes (11, 12). Our analysis builds upon and greatly extends
these prior findings by pooling data from 12 prospective studies
from 13 countries and 4 continents—and incorporates data on an
additional 22,000 participants not previously included in previous
reports (11, 12).

Our study has several strengths. To our knowledge, this is
the largest and most complete analysis to date to examine
the associations of VLSFAs with incident diabetes. Owing
to the richness of the data available for each participating
study, we were able to employ a standard analysis plan to
perform de novo individual-level analyses and adjust for major
potential confounders and mediators. The 12 participating studies
also represent a broad range of ages, geographical regions,
and background diets, increasing generalizability. Compared to
reports of individual studies, for which positive results are much
more likely to be published, our methods for identifying and
including studies reduce the possibility of publication bias.

This study also has potential limitations. Circulating fatty acids
were only measured at a single time, and we were unable to
adjust for changes in VLSFA concentrations over time in this
meta-analysis. Given the prospective design, changes in VLSFA
concentrations over time would likely attenuate results toward
the null. Our study sample comprised primarily participants of
European descent, although several of the cohorts included sig-
nificant numbers of other races/ethnicities. Although we adjusted
for several factors that may be associated with SFAs and diabetes,
residual confounding by imprecisely measured or unknown
factors is possible. In addition, the intercorrelations of VLSFAs
make it challenging to interpret the independent associations of
each individual VLSFA with risk of diabetes. Finally, because our
primary interest was in circulating concentrations of VLSFAs,
analyses of the relations of foods that contain VLSFAs with
incident diabetes were beyond the scope of this project.

In conclusion, the results of this study suggest that higher
concentrations of circulating VLSFAs 20:0, 22:0, and 24:0 are
each associated with a lower risk of diabetes, perhaps because
of their association with lower de novo lipogenesis. This study
adds to the growing body of evidence that supports positive health
outcomes with higher concentrations of VLSFAs (11, 12, 37,
54) and highlights the need for additional research studies to
identify relevant biological mechanisms and pathways that may
contribute to observed associations.
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