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Alkaloids are among the natural phytochemicals contained in functional foods and nutraceuticals and have been suggested for the
prevention and/or management of oxidative stress and inflammation-mediated diseases. In this review, we aimed to describe the
effects of alkaloids in angiogenesis, the process playing a crucial role in tumor growth and invasion, whereby new vessels form.
Antiangiogenic compounds including herbal ingredients, nonherbal alkaloids, and microRNAs can be used for the control and
treatment of cancers. Several lines of evidence indicate that alkaloid-rich plants have several interesting features that effectively
inhibit angiogenesis. In this review, we present valuable data on commonly used alkaloid substances as potential angiogenic
inhibitors. Different herbal and nonherbal ingredients, introduced as antiangiogenesis agents, and their role in angiogenesis-
dependent diseases are reviewed. Studies indicate that angiogenesis suppression is exerted through several mechanisms;
however, further investigations are required to elucidate their precise molecular and cellular mechanisms, as well as potential
side effects.

1. Introduction

Alkaloids are among the natural phytochemicals contained
in functional foods and nutraceuticals [1] and have been sug-
gested for the prevention and/or management of oxidative
stress and inflammation-mediated diseases [1, 2]. In this
review, we aimed to describe the effect of alkaloids on angio-
genic vessel formation from a previous existing capillary, a
process that is implicated in many physiological conditions
such as wound healing and menstrual cycle and pathological
conditions such as tumor growth or retinopathy [3–5].

The angiogenic process is a cascade of events resulting in
new lumen-containing vessels, through the dissolution of the
vascular basal membrane, migration of endothelial cells from
the parent vessel toward developing blood vessels, and wide-
spread cellular proliferation, which are activated by several
proangiogenic factors. When blood flow is initiated, physio-
logical processes such as embryonic development, wound
healing, and immune reactions are then allowed to start
and develop [6, 7]. On the other hand, the creation of new
blood vessels increases the supply of nutrients, oxygen, and
growth factors to normal and tumor cells. If tumor cells can
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induce angiogenesis, subsequent tumor expansion and tran-
sition from a benign state to a malignant one is started [8].
Endothelial cells can migrate in order to initiate or progress
to angiogenesis, thanks to a wide range of regulators and sig-
naling molecules such as basic fibroblast growth factor
(bFGF), epidermal growth factor (EGF), vascular endothelial
growth factor (VEGF), hepatocyte growth factor (HGF), and
transforming growth factor (TGF). Thus, these angiogenic
peptides play a critical role in the creation of new blood ves-
sels [9–11]. In both physiological and pathological condi-
tions, HIF-1 is a critical mediator of hypoxic response and
O2 homeostasis as well as an essential angiogenic regulator.
Hypoxia leads to HIF-1α stabilization, a subunit of the het-
erodimeric transcription factor HIF-1, and increased VEGF
production [12, 13]. Oxygen demand can be increased by
excessive cell proliferation during embryonic development
and/or tumor growth [14].

Moreover, VEGF is the main factor that initiates angio-
genesis. Similar to some proangiogenic genes, VEGF also
has hypoxia response element (HRES) as the binding site of
HIF-1 within the promoters. In hypoxic conditions, HIF-1
directly stimulates VEGF and its receptors, inducing angio-
genesis [15, 16]. The abovementioned mechanisms in the
formation of new blood vessels demonstrate that VEGF
directly links hypoxia with angiogenesis initiation. The
VEGF family of growth factors exerts its effects by interact-
ing with receptor tyrosine kinases (RTKs) named vascular
endothelial growth factor receptors (VEGFRs). Activation
of this signaling pathway leads to endothelial cell (EC) pro-
liferation, extracellular matrix degradation, EC migration,
and then new blood vessel formation [17, 18]. Understand-
ing the tumor angiogenesis signaling pathways is an impor-
tant treatment goal of malignancy and cancer therapy.
However, because of the similarities between tumor and
physiologic angiogenesis signaling pathways, insufficient
efficacy and resistance may be challenges we face during
such cancer therapy [19].

The results of different studies show that several
molecular pathways such as VEGFRs, Ephrin-Eph recep-
tors, and the Delta-like ligand and neurogenic locus notch
homolog protein (Delta-Notch) system are involved in
angiogenesis [7, 20].

2. Angiogenesis Signaling Pathways

VEGF belongs to the platelet-derived growth factor (PDGF)
family; moreover, the VEGF family has five members in
mammals, including VEGF-A, VEGF-B, VEGF-C, VEGF-
D, and PlGF (placental growth factor). All of them stimulate
cellular responses and are characterized by the presence
of eight conserved cysteine residues forming the typical
cysteine-knot structure [21]. VEGFRs are tyrosine kinase
receptors (TKRs) with a cytoplasmic domain and tyrosine
kinase activity, containing 3 to 4 members. VEGF-A, the
most important member of this family, was obtained from
tumor cells for the first time. VEGF-A regulates angiogenesis
and vascular permeability via activation of VEGFR-1 and
VEGFR-2. The binding of VEGF-A to its receptor represents
the most important signal for angiogenesis. On the other

hand, VEGF-C/VEGF-D and their receptor, VEGFR-3, are
involved in lymphangiogenesis [22, 23]. Several VEGF family
ligands and receptors, especially VEGF-A, are regulated by
HIF; therefore, angiogenesis is intensified during healthy tis-
sue growth and also in cancerous conditions [24]. Follow-
ing the binding of VEGF-A to VEGFR2, the RAS/RAF
(rapidly accelerated fibrosarcoma)/ERK (extracellular signal-
regulated kinases)/MAPK (mitogen-activated protein kinases)
pathway is activated potentially via sphingosine kinase (SPK)
activated by protein kinase C (PKC). RAS target genes can
now be enabled, inducing proliferation [25]. Recent studies
consider the role of the transcription factor nuclear factor-
kappa beta (NF-κB), which interacts with RAS, in tumor
angiogenesis; therefore, it can be an antiangiogenic therapeutic
target. It has been demonstrated that oncogenic RAS mediates
the activation of the NF-κB pathway and subsequent upregu-
lation of NF-κB target genes, in particular the proangiogenic
IL-8 cytokine, leading to lung tumorigenesis [26].

Other RAS-independent molecular pathways, such as the
phospholipase C gamma- (PLCγ-) protein kinase C- (PKC-)
MAPK pathway, are also implicated in VEGFR2 signaling
[22]. Binding of VEGFR2 to VEGF-A and phosphorylation
of several tyrosine residues in the cytoplasmic domain of
this receptor can induce the activation of phospholipase
C gamma (PLCγ). On the one hand, PLCγ releases diacyl-
glycerol (DAG) which recruits PKC to the cell membrane
and promotes cell proliferation; on the other hand, PLCγ-
mediated Ca2+ mobilization leads to increased vascular
permeability, promoting leakage of plasma proteins into the
extravascular space, resulting in a fibrin gel formation mark-
ing the proper temporary place for the placement of the new
blood vessel, and supporting its growth [23, 27, 28].

Generally, the phosphorylation of different tyrosines in
the cytoplasmic domain of VEGFR2 and the subsequent
recruitment of signal transducers promote migration and
cell mobility and regulate cell attachment, all of which are
needed for angiogenesis [29]. As already mentioned, differ-
ent molecular pathways are involved in pathophysiological
angiogenesis compared to the physiological one [30]. The
phosphatidylinositol 3-kinase (PI3K)/AKT/mammalian tar-
get of rapamycin (mTOR) pathway is activated in many
human cancers. The activation of the PI3K/AKT pathway
in cancer cells can increase VEGF production. This may be
done through HIF-1-dependent mechanisms, or it may occur
in an HIF-1-independent manner. In tumor cells, PI3K/AKT
activation can occur because of RAS mutation which is
responsible for tumor cell feeding [12]. Other signaling path-
ways, such as JAK-STAT, can promote the migration of
endothelial cells and subsequent tumor angiogenesis [31].

On the other hand, VEGFR1 is a negative regulator of
angiogenesis. VEGFR1 is a decoy receptor, and the binding
of VEGF-A to it may prevent the activation of VEGFR2.
Also, Delta-like ligand 4 (DII4), a transmembrane ligand of
notch family receptors, is a negative regulator of angiogene-
sis. More precisely, when VEGF binds to VEGFR2, it causes
DII4 upregulation which in turn interacts with NOTCH1
receptors on adjacent endothelial cells, resulting in VEGFR2
downregulation in those cells. Finally, the activation of Notch
signaling leads to a reduced number of tip cells and less dense
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vascular network formation via the prevention of tubular
sprouting in angiogenesis [22, 32].

The involvement of coagulation factors in tumor-induced
and normal angiogenesis has been reported in several studies
[33, 34], supporting their role in tumor progression.

3. Angiogenesis Inhibitors and
Cancer Treatment

Angiogenesis is the creation of new capillaries from preexist-
ing vessels and circulating endothelial precursors [35]. It can
be activated in physiological and pathological conditions, for
example, in response to hypoxia, cancer, diabetic retinopa-
thy, and inflammatory, infectious, and immune disorders
[36]. Proangiogenic growth factors commonly switch on a
series of surface receptors in a series of paracrine and auto-
crine circles with the VEGF-A signaling representing the crit-
ical rate-limiting step, physiologically and pathologically.
VEGF-A is the main VEGF that binds to VEGFR2 to mediate
vascular permeability, endothelial proliferation, migration,
and survival [37].

Angiogenesis also plays a critical role in the growth of
cancer for the reason that cancer tissues need a blood supply.
Tumors can stimulate normal cells to generate angiogenesis
signaling molecules. Angiogenesis inhibitors act through sev-
eral ways. Some of them are monoclonal antibodies that rec-
ognize and bind to VEGF. When VEGF is attached to these
drugs, it is unable to activate the VEGF receptor [38].

Other inhibitors bind to the VEGF receptor on the sur-
face of endothelial cells or to other proteins in the down-
stream signaling pathways and block their activities. Some
of the inhibitors are immunomodulatory drug agents that
stimulate or suppress the immune system. One of the ideas
of antiangiogenic therapy is through the destruction tumor
vessels [39].

Since angiogenesis is the main requisite for cancer growth
and invasion, its inhibition is considered the mainstay in can-
cer treatment strategies. The study of angiogenesis led to the
identification of numerous proangiogenic factors as well as
angiogenic suppressor proteins. By the identification of these
proteins, a wide spectrum of angiogenesis inhibitors were
introduced in cancer treatment procedures. Several antian-
giogenic molecules currently in use employ anti-VEGF-A
antibodies [40, 41] and tyrosine kinase inhibitors [42–45].
However, serious adverse effects have been reported for such
molecules [46]. On the other hand, herbal drugs, most com-
monly alkaloid-based plants, are among the more promising
angiogenic inhibitors to be used for the treatment of different
types of cancers like prostate cancer cells, breast cancer cells,
melanoma cells, and cervical cancer cells [47–51].

4. Role of MicroRNAs in
Angiogenesis Regulation

The identification of proteins involved in angiogenic pro-
cesses led to the identification of microRNAs (miRNAs) as
potent inhibitors of angiogenesis and cancer. MiRNAs are
single-stranded short noncoding RNA molecules (about 21-
25 nucleotides) that modulate cellular target genes at the

posttranscriptional level. These RNA molecules have a role
in almost all biological processes and their potential role in
most pathogenesis has been observed. Cancers and throm-
botic and bleeding disorders, as well as heart disease, are
among those disorders in which the potential role of miRNAs
has been investigated. Defects in miRNA synthesis led to a
wide spectrum of early disorders including impaired T-cell
formation, cardiomyopathy, disrupted blood circulation,
and impaired angiogenesis [52–55]. One of the most impor-
tant consequences of the impaired biogenesis of miRNAs is
early embryonic lethality due to defective vessel formation
and maintenance [56–58]. These observations encouraged
studies to evaluate the role of different miRNAs in angiogenic
processes, and several miRNAs were identified with a poten-
tial role in the regulation of different aspects of angiogenesis.

It has been reported that some of the miRNAs, such as
miR-126, miR-221/222, miR-17-92 cluster, miR-93, let-7f,
and miR-214, modulate the response of the vascular endo-
thelium to angiogenic stimuli and can be proangiogenic or
antiangiogenic [59–62].

MiR-221 and miR-222 are two relatively well-known
miRNAs with an important effect on protooncogene c-Kit
(CD117) as a key role in the survival of hematopoietic stem
cells. Further studies on endothelial cells revealed that these
two miRNAs have antiangiogenic activity [63, 64]. Overex-
pression of miR-221 and miR-222 in endothelial cells led to
increased endothelial nitric oxide synthase, which in turn
resulted in the suppression of endothelial survival and angio-
genesis. MiR-34a is another miRNA with potential antian-
giogenic activity, as it was shown to induce endothelial
progenitor cell (EPC) senescence and dysfunction. EPCs
have a crucial role in angiogenesis and are important for
many physiological processes, even pathological ones, such
as the growth of tumor cells [65, 66]. MiR-34a suppresses
silent information regulator 1 (Sirt1) resulting in senescence
induction in EPCs [67]. Mir-126 is another miRNA with
direct and indirect effects on angiogenesis that is mainly
found in tissues with high vascular components, such as the
lungs and the heart [68–70]. MiR-126 regulates many endo-
thelial cell functions and processes mainly including cell
migration and cell survival. MiR-93 is involved with the stim-
ulation of angiogenesis and the promotion of tumor growth,
and its inhibition is suggested as a tool for the suppression of
angiogenesis and tumor growth [71, 72].

Endothelial cells express VEGF receptor genes. miRNAs
can modulate angiogenesis by regulating VEGF receptor
expression in endothelial cells, whereupon they influence
the migration and invasion of cancer cells. In addition, recent
studies showed that Dicer and Drosha, two enzymes that
control the processing of miRNAs, play key roles in the
angiogenic process. Not only do miRNAs modulate mRNA
translation level, but mRNA also regulates the function of
miRNAs. Thus, researchers can target the molecular path-
ways, taking part in the development of diseases, by deter-
mining miRNAs which are important in the angiogenic
process [57, 59, 73, 74].

The number of known miRNAs with a direct or indi-
rect role in angiogenesis is on the rise, and a summary is
shown in Table 1.
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Table 1: Effect of different microRNAs on the angiogenic process.

MiRNA Target gene Role Function Reference

MiR-34a
Silent information
regulator 1 (Sirt1)

MiR-34a has been found to target silent
information regulator 1 (Sirt1), leading to

cell cycle arrest or apoptosis
Antiangiogenesis [67]

MiR-107 HIF-1β
MiR-107 decreases hypoxia signaling by suppressing

expression HIF-1β
Antiangiogenesis [75]

MiR-132 p120RasGAP
MiR-132 acts as an angiogenic switch by targeting
p120RasGAP in the endothelium and thereby

inducing neovascularization
Angiogenesis [76]

MiR-424 Cullin 2 (CUL2)
MiR-424 targeted Cullin 2 (CUL2), a scaffolding
protein critical to the assembly of the ubiquitin
ligase system, thereby stabilizing HIF-α isoforms

Angiogenesis [77]

MiR-93 Integrin-β8
MiR-93 promotes angiogenesis by suppressing

integrin-β8 expression
Angiogenesis [71]

MiR-29b MMP-2
MiR-29b exerted its antiangiogenesis function,

at least partly, by suppressing MMP-2 expression
in tumor cells

Antiangiogenesis [78]

MiR-519c HIF-1α

Overexpression of miR-519c resulted in a
significant decrease of HIF-1α protein levels
and reduced the tube formation of human

umbilical vein endothelial cells

Antiangiogenesis [79]

MiR-210 VEGF and VEGFR
Overexpression of miR-210 enhances VEGF and
VEGFR2 expression and promotes angiogenesis

Angiogenesis [80]

MiR-155 Von Hippel-Lindau (VHL)
MiR-155 has a pivotal role in tumor angiogenesis

by downregulation of VHL
Angiogenesis [81]

MiR-195 VEGF, VAV2, CDC42
MiR-195 directly inhibited the expression of the
proangiogenic factor VEGF and the prometastatic

factors VAV2 and CDC42
Antiangiogenesis [82]

MiR-145 HIF-2α
MiR-145 suppresses HIF-2α expression, thus

inhibiting the angiogenesis
Antiangiogenesis [83]

MiR-26a
HGF-hepatocyte growth
factor receptor (cMet)

MiR-26a exerted its antiangiogenesis function,
at least in part, by inhibiting HGF-hepatocyte growth
factor (cMet) and its downstream signaling pathway

Antiangiogenesis [84]

MiR-214
Hepatoma-derived growth

factor (HDGF)

Downregulation of miR-214 contributes to the unusual
hypervascularity of HCC via activation of the HDGF

paracrine pathway for tumor angiogenesis
Antiangiogenesis [85]

MiRNA-24 eNOS
Inhibition of microRNA-24 improves reparative

angiogenesis in myocardial infarction
Antiangiogenesis [86]

MiR-29a
Phosphatase and tensin

homolog (PTEN)
TGF-β-regulated miRNA in promoting angiogenesis

by targeting PTEN to stimulate AKT activity
Angiogenesis [87]

MiR-27b
Vascular endothelial

growth factor C (VEGFC)
MiRNA-27b targets vascular endothelial growth

factor C to inhibit angiogenesis in colorectal cancer
Antiangiogenesis [88]

MiR-503 FGF2 and VEGF-A

Demonstrate the antiangiogenesis role of miR-503
in tumorigenesis and provide a novel mechanism
for hypoxia-induced FGF2 and VEGF-A through

HIF1α-mediated inhibition of miR-503

Antiangiogenesis [89]

MiR-143
Insulin-like growth factor-I

receptor (IGF-IR)

Overexpression of miR-143 inhibited cell
proliferation, migration, tumor growth, and

angiogenesis and increased chemosensitivity to
oxaliplatin treatment in an IGF-IR-dependent manner

Antiangiogenesis [90]

MiR-382
Phosphatase and tensin

homolog (PTEN)
MiR-382 induced by hypoxia promotes angiogenesis

and acts as an angiogenic oncogene by repressing PTEN
Angiogenesis [91]

MiR-210
Vascular endothelial growth factor

(VEGF)

MiR-210 is a key factor at the microRNA level
in promoting angiogenesis and neurogenesis, which

was associated with local increased vascular
endothelial growth factor (VEGF) levels

Angiogenesis [92]
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5. Plant-Based Alkaloids

Nowadays, a wide variety of plants that are rich in alkaloids
have been discovered and these compounds have a signifi-
cant impact on angiogenesis-dependent diseases. Alkaloids
have an antiangiogenic activity and act through several
mechanisms inhibiting angiogenesis. There are many alka-
loids, but this review takes into account only the most impor-
tant ones. By considering the hypothetical amino acid
precursors and origins, different plant-based alkaloids in
use are sorted into different groups. Table 2 summarizes the
different alkaloids.

Table 3 summarizes studies that evaluated the effect
of different alkaloids on angiogenesis in different types
of disorders.

Almost all alkaloids show an antiproliferative and cyto-
toxic activity against cancer cell lines derived from several
different histological origins (esophagus, stomach, colon,
liver, lung, breast, bone, and brain), and this activity depends
also on the activation of the expression of apoptotic genes
[161]. On the other hand, in vitro studies showed that antian-
giogenic effects rely on some shared ability to downregulate,
in the same cancer cells, VEGF, TNF-α, and HIF-1αmessen-
gers and/or proteins levels (with mechanisms ranging from

low expression and higher degradation), blocking the
angiogenic cascade in endothelial cells, as shown for berber-
ine [102, 106], noscapine [97], brucine [140], evodiamine
[146], homoharringtonine [149], matrine [162], and tetran-
drine [136]. For instance, studies have shown that the cas-
cade is blocked by matrine and tetrandrine at the levels
of STAT3 signaling ([163] and [164], respectively), while
evodiamine inhibits β-catenin [165]. Similar results were
reported for sanguinarine, capsaicin, taspine, harmine, and
pterogynidine, for whose deeper dissection of the molecular
pathways demonstrated that antiangiogenic activities specif-
ically involve Akt phosphorylation [138, 166, 167], CDK
expression [168], and NF-κB translocation [160, 169] and
that the effect is dose-dependent (10-300nM) [166]. Other
studies indicate that some alkaloids (sinomenine, brucine,
and halofuginone) are able to directly regulate in vitro, at
μM concentrations, and in vivo in transplanted mice, the
expression of angiogenic factors ([123, 140] and [170],
respectively). In particular, sinomenine and halofuginone
should be able to induce Smad protein depletion ([157, 171]).

Even if Ning et al. found that tetrandrine modulated, in
human hypertrophic scar fibroblasts, the expression of miR-
NAs predicted to be related to wound healing [172], a process
that is tightly related with angiogenesis [173], very little data

Table 1: Continued.

MiRNA Target gene Role Function Reference

MiR-542-3p Angiopoietin-2 (Angpt2)

MiR-542-3p inhibited translation of Angpt2 mRNA
by binding to its 3′ UTR, and the addition of

miR-542-3p to cultured endothelial cells attenuated
angiogenesis

Antiangiogenesis [93]

MiR-214 Quaking

MiR-214 directly targets Quaking, a protein
critical for vascular development. Quaking
knockdown reduced proangiogenic growth

factor expression and inhibited endothelial cell
sprouting similar to miR-214 overexpression

Antiangiogenesis [94]

MiR-20a p300
P300 drives an angiogenic transcription program

during hypertrophy that is fine-tuned in part through
direct repression of p300 by miR-20a

Antiangiogenesis [95]

MiR-15a FGF2 and VEGF
MiR-15a negatively regulates angiogenesis in vivo
and in vitro by suppression of FGF2 and VEGF

Antiangiogenesis [96]

Table 2: Classification of different alkaloids based on amino acid precursors and their origins.

Amino acid precursors Tyrosine Tryptophan Lysine

Alkaloid origins
Berberine Brucine Matrine

Hydrastis canadensis; Coptis chinensis Strychnos nux-vomica L. Sophora alopecuroides

Noscapine Evodiamine Capsaicin

Papaver somniferum L. Evodia rutaecarpa Capsicum annum L.

Sanquinarine Homoharringtonine Halofuginone

Sanquinaria canadenis L. Cephalotoxus Dichroa febrifugus

Sinomenine Pterogynidine

Sinomenium acutum Pterogyne nitens Tul

Taspine

Tetrandarine

Stephania tetrandra S.
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Table 3: Effects of different alkaloids on angiogenesis.

Name of alkaloid N Molecules
Biological
results

Sample type Year Author

Noscapine

1 HIF-1 Decrease

Inhibit
angiogenesis by
downregulating

VEFG

U87MG and T98G cell lines 2006 Newcomb et al. [97]

2 VEGF Decrease
Inhibit

angiogenesis
Human T98 cell lines 2008 Newcomb et al. [98]

3 VEGF Decrease
Inhibit

angiogenesis
Murine GL261 glioma

cell lines
2008 Newcomb et al. [98]

4
MMP-9
VEGF

Decrease
Inhibit

angiogenesis

KBM-5, HL-60, Jurkat,
HuT-78, U266, RPMI- 8226,

H1299, A293, DU145,
and SCC4 cell lines

2010 Sung et al. [99]

5 VEGF Decrease
Inhibit

angiogenesis
The A549 or H460 cell 2010 Chougule et al. [100]

6 VEGF Decrease
Inhibit

angiogenesis
Xenografted with H460

tumors (mice)
2010 Chougule et al. [100]

7 HIF Decrease
Inhibit

angiogenesis
Ovarian cancer cells 2011 Su et al. [101]

8
NFKB
VEGF

Decrease
Inhibit

angiogenesis

The human breast
cancer cell

lines MDA-MB-231
and MDA-MB-468

2011 Chougule et al. [100]

Berberine

9 HIF-1 Decrease

Inhibit
angiogenesis by
downregulating

VEGF

Gastric adenocarcinoma
cell line SC-M1

2004 Lin et al. [102]

10 VEGF Decrease
Inhibit

angiogenesis
HeLa cell 2008 Lin et al. [103]

11
VEGF
MMP-2

Decrease
Inhibit

angiogenesis
Human umbilical vein

endothelial cells
2009 Gao et al. [104]

12
Mmp-2/9
UPA

Decrease
Inhibit

angiogenesis
Squamous cancer cell 2009 Ho et al. [105]

13 VEGF Decrease
Inhibit

angiogenesis
Hepatocellular
carcinoma

2010 C. Cheung et al.

14 VEGF Decrease
Inhibit

angiogenesis
Hep G2 cell line 2011 Jie et al. [106]

15
HIF-1
VEGF

Decrease
Inhibit

angiogenesis
B16F-10 melanoma cells

and C57BL/6 mice
2012 Hamsa and Kuttan [107]

16 VEGF Decrease
Inhibit

angiogenesis

Xenografted
hepatocellular

carcinoma (mice)
2012 Ruhua [108]

17 VEGF Decrease
Inhibit

angiogenesis
Hepatocellular
carcinoma

2012 Wang et al.

18 VEGF Decrease
Inhibit

angiogenesis
Breast cancer 2013 Kim et al. [109]

19 VEGF Decrease
Inhibit

angiogenesis
HepG2 cells 2013 Wang and Ke [110]

20 VEGF Decrease
Inhibit

angiogenesis
Human non-small-cell

lung cancer
2013 Fu et al. [111]

21
Mmp-2
UPA

Decrease
Inhibit

angiogenesis
Cervical cancer 2014 Chu et al.[112]

22 VEGF Decrease
Inhibit

angiogenesis
Hepatocellular
carcinoma

2015 Tsang et al. [113]
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Table 3: Continued.

Name of alkaloid N Molecules
Biological
results

Sample type Year Author

Sanguinarine

23 VEGF Decrease
Inhibit

angiogenesis
Swine granulosa cell 2006 Bianco et al. [114]

24 VEGF Decrease
Inhibit

angiogenesis
Endothelial cell line 2007 Basini et al. [115]

25 VEGF Decrease
Inhibit

angiogenesis
Swine granulosa cells 2007 Basini et al. [116]

26 VEGF Decrease
Inhibit

angiogenesis
Porcine aortic

endothelial cell line
2007 Basini et al. [117]

27 VEGF Decrease
Inhibit

angiogenesis
Swine ovarian follicles 2008 Basini et al. [116]

28 ? ?
Inhibit

angiogenesis
B16 melanoma 4A5 cells 2009 De Stefano et al. [118]

29 VEGF Decrease
Inhibit

angiogenesis
Human A549 lung

cancer cells
2013 Xu et al. [119]

30 VEGF Decrease
Inhibit

angiogenesis

MCF-7 human
mammary

adenocarcinoma cells
2013 Dong et al. [120]

31 VEGF Decrease
Inhibit

angiogenesis
S180 sarcoma in mice 2014 Du et al. [121]

32 HIF-1 Decrease
Inhibit

angiogenesis
Pancreatic cancer 2015 Singh et al. [122]

Sinomenine

33 VEGF Decrease
Inhibit

angiogenesis
Human synovial

sarcoma cells (Hs701.T)
2006 Li et al. [123]

34 VEGF Decrease
Inhibit

angiogenesis

Umbilical vein
endothelial cells

(HUVEC) and U2OS cells
2016 Xie et al. [124]

Taspine

35 VEGF Decrease
Inhibit

angiogenesis

Chicken chorioallantoic
membrane (CAM)
neovascularization
model and CAM
transplantation
tumor model

2008 Zhang et al. [125]

36 VEGF Decrease
Inhibit

angiogenesis
Human umbilical vein

endothelial cells
2008 Zhao et al. [126]

37 VEGF Decrease
Inhibit

angiogenesis
Human umbilical vein

endothelial cells
2010 Zhang et al. [127]

38 VEGF Decrease
Inhibit

angiogenesis
Caco-2 cell lines 2011 Zhang et al. [128]

39 VEGF Decrease
Inhibit

angiogenesis
Human liver cancer

SMMC7721
2011 Zhang et al. [129]

40 VEGF Decrease
Inhibit

angiogenesis

Chicken chorioallantoic
membrane (CAM) and
mouse colon tissue

2012 Zhang et al. [130]

41 VEGF Decrease
Inhibit

angiogenesis

Human cell lines of
SMMC-7721, A549,
MCF-7, Lovo, and

ECV304

2012 Zheng et al. [131]

42 VEGF Decrease
Inhibit

angiogenesis
A549 cells lung cancer 2012 Lu et al. [132]

Tetrandrine 43 PDGF Decrease
Inhibit

angiogenesis

Adjuvant-induced
chronic inflammation

model of mouse
1998 Kobayashi et al. [133]
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Table 3: Continued.

Name of alkaloid N Molecules
Biological
results

Sample type Year Author

44 VEGF Decrease
Inhibit

angiogenesis
RT-2 glioma RT 2009 Chen et al. [134]

45
HIF-1
VEGF

Decrease
Inhibit

angiogenesis

A rat model corneal
neovascularization

(CNV)
2011 Sun et al. [135]

46
HIF-1
VEGF

Decrease
Inhibit

angiogenesis
4T1 tumor bearing mice 2013 Gao et al. [136]

47 — —
Inhibit

angiogenesis

Human umbilical vein
endothelial cells

(HUVECs) and the
human colon cancer

cell line Lovo

2013 Qian et al. [137]

48 — —
Inhibit

angiogenesis
Liver cancer xenograft
model in nude mice

2015 Xiao et al. [138]

Brucine

49
VEGF
TGF-β

Decrease
Inhibit

angiogenesis

Murine cannulated
sponge implant

angiogenesis model
2011 Agrawal et al. [139]

50 VEGF Decrease
Inhibit

angiogenesis
Ehrlich ascites tumor and
human cancer cell line

2011 Agrawal et al. [140]

51 VEGF Decrease
Inhibit

angiogenesis

Nude mouse model of
bone metastasis due to

breast cancer
2012 Li et al. [141]

52 HIF-1 Decrease
Migration and
metastasis and
angiogenesis

Hepatocellular
carcinoma

2013 Shu et al. [142]

53 VEGF Decrease Angiogenesis Colon cancer cells 2013 Luo et al. [143]

54 VEGF Decrease
Inhibit

angiogenesis
Lovo cell 2013 Zheng et al. [144]

55 VEGF Decrease
Inhibit

angiogenesis
R breast cancer cell line

MDA-MB-231
2013

Kechun and Zjauma
[145]

Evodiamine

56 VEGF Decrease
Inhibit

angiogenesis

Human lung
adenocarcinoma
cell (CL1 cells)

2006 Shyu et al. [146]

57 VEGF Decrease
Inhibit

angiogenesis
Breast cancer cell 2008 Wang et al. [147]

58 HIF Decrease
Inhibit

angiogenesis
Human colon cancer cell 2015 Huang et al. [148]

Homoharringtonine

59 VEGF Decrease
Inhibit

angiogenesis

Human umbilical vein
endothelial cell line

(ECV304)
2004 Ye and Lin [149]

60 VEGF Decrease
Inhibit

angiogenesis
Leukemic cell line (K562)

in vitro
2004 Ye and Lin [149]

61 VEGF Decrease
Inhibit

angiogenesis
Myeloid leukemia cells 2005 Fei and Zhang [150]

62 HIF Decrease
Inhibit

angiogenesis
K562 cell 2008 Li et al. [151]

Matrine 63 VEGF Decrease
Inhibit

angiogenesis
Breast cancer cell 2009 Yu et al. [152]

Halofuginone
64

VEGF
MMP

Decrease
Inhibit

angiogenesis
BALB/c ν/ν (nude) mice 2003 Gross et al. [153]

65 — —
Inhibit

angiogenesis
Metastatic rat brain

tumor model
2004 Abramovitch et al. [154]
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is available at the moment on the role of miRNAs in alkaloid-
associated angiogenic processes. One exception is for berber-
ine that was shown to promote angiogenesis directly through
miR-29b upregulation, upon induction of ischemia in mice
[174]. The rest of the available data is restricted to experi-
ments analyzing alkaloids as effectors of miR induction in
different animal or cell models; for example, a recent study
analyzed miRNA induction by berberine in porcine embryos
[175]. Similarly, a berberine-containing commercially pre-
pared traditional Chinese medicine Huang-Lian-Jiee-Dwu-
Tang [176] was shown to induce VEGF and miR-126 expres-
sion in mesenchymal stem cell exosomes [177]. Interestingly,
a recent paper suggests that berberine, together with evodia-
mine, is able to affect not only the expression of somemiRs in
colorectal cancer cells (in particular miR-29a) but also the
expression of DNA methyltransferases that in turn regulate
miRs’ activities, providing evidence for epigenetic activities
of alkaloids during carcinogenesis [178]. In other searches,
the pulmonary arterial hypertension- (PAH-) inducing plant
pyrrolizidine alkaloid monocrotaline was shown to affect
miR-21 and let-7a expression in the lung of monocrotaline-
injected rats [179]. The role of miR-21 in PAH was later con-
firmed in humans [180], but no data is available on miR-21’s
role on monocrotaline effects. Nonetheless, downregulation
of miR-21, followed by the dephosphorylation of its target
Akt, was reported also by the growth-inhibiting alkaloid
matrine, on breast cancer cells [181]. Similar involvement
of miR-21 by alkaloids was observed on human thyroid can-
cer cells [182], while other miRs were involved in other cells,
i.e., miR-19b in melanoma [183], miR-106b in human acute
T-cell lymphoblastic leukemia [184], and miR-126 in non-
small-cell lung cancer [185].

Kaymaz et al. found that Capsaicin strongly reduced
miR-520a expression in chronic myeloid leukemia cells
[186]. As the regulation is associated with the inhibition
of cell proliferation, the authors hypothesized that alka-
loid’s apoptotic properties could rely directly on miR-520a-
5p/STAT3 interaction [186]. Similarly, data on rat hepatic

stellate T6 cells suggest that the ability of sanguinarine to
induce apoptosis through BCL2 downregulation could rely
on the activation of miR-15a/16-1 expression [187]. On the
other hand, homoharringtonine antileukemic effects were
causatively related, by ectopic expression, to the activation
of miR-370 and its target FoxM1, a major regulator in cell
proliferation and apoptosis [188]. Other transfection experi-
ments with miR mimics demonstrated unequivocally that
inhibitory activities on invasion and metastasis by sinome-
nine on breast cancer cells depend on miR-324-5p and
involve downstream NF-κB [189].

6. Conclusion

Based on data reviewed here and their ability to act as regu-
latory agents, alkaloids from natural sources are promising
molecules with an enormous potential for therapeutic inter-
vention of many disorders. Compounds from natural
sources are believed to be good candidates for the preven-
tion of angiogenic disorders and also as complements for
chemotherapy or radiotherapy, in combination with other
anticancer therapies [50, 190–192]. Berberine, noscapine,
sanguinarine, and taspine among others are the most
interesting and promising angiogenesis inhibitors. Further
investigations are still required to elucidate their precise
molecular and cellular mechanisms, as well as any poten-
tial side effects.
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Table 3: Continued.

Name of alkaloid N Molecules
Biological
results

Sample type Year Author

66 TGF Decrease
Inhibit

angiogenesis
Polyoma middle T
antigen mouse

2005 Yee et al. [155]

67

TGF-β-1, bFGF,
COL1A1, MMP-2,
MMP-9, VEGF,

and PDGF

Decrease
Inhibit

angiogenesis
Xenografted (rat) 2012 Jordan and Zeplin [156]

68
VEGF
MMP
TGF-β

Decrease
Inhibit

angiogenesis
Acute promyelocytic
leukemia mouse model

2015 Assis et al. [157]

Capsaicine
69 VEGF Decrease

Inhibit
angiogenesis

Endothelial cells in the
rat aorta

2008 Pyun et al. [158]

70 VEGF Decrease
Inhibit

angiogenesis
Non-small-cell lung

cancer
2014 Chakraborty et al. [159]

Pterogynidine 71 — —
Inhibit

angiogenesis

Human umbilical vein
endothelial cells

(HUVEC)
2009 Lopes et al. [160]
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