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Previous investigation showed that ginsenoside Rg1 (Rg1) extracted from Panax ginseng C.A. Mey has antioxidative effect on
oxidative stress in chickens. The present study was designed to investigate the protective effects of Rg1 on chicken lymphocytes
against hydrogen peroxide-induced oxidative stress and the potential mechanisms. Cell viability, apoptotic cells,
malondialdehyde, activity of superoxide dismutase, mitochondrial membrane potential, and [Ca2+]i concentration were
measured, and transcriptome analysis and quantitative real-time polymerase chain reaction were used to investigate the effect of
Rg1 on gene expression of the cells. The results showed that treatment of lymphocytes with H2O2 induced oxidative stress and
apoptosis. However, pretreatment of the cells with Rg1 dramatically enhanced cell viability, reduced apoptotic cells, and
decreased oxidative stress induced by H2O2. In addition, Rg1 reduced these H2O2-dependent decreases in mitochondrial
membrane potential and reversed [Ca2+]i overload. Transcriptome analysis showed that 323 genes were downregulated and 105
genes were upregulated in Rg1-treated cells. The differentially expressed genes were involved in Toll-like receptors, peroxisome
proliferator-activated receptor signaling pathway, and cytokine-cytokine receptor interaction. The present study indicated that
Rg1 may act as an antioxidative agent to protect cell damage caused by oxidative stress via regulating expression of genes such
as RELT, EDA2R, and TLR4.

1. Introduction

In the modern poultry industry, animals usually suffer from
highly condensed population, contaminated feed, pollutant
air, and inappropriate management, which may result in
oxidative stress and lead to immunity dysfunction [1]. For
example, consumption of aflatoxin B1 diets was reported
to significantly inhibit the immune responses of chickens
to vaccination against Newcastle disease [2]. Another study
suggested that aflatoxin B1 increases oxidative stress,
induces excessive apoptosis of lymphocytes in the spleen
and bursa, and decreases the immunity [3, 4]. Environmen-
tal pollutants such as cadmium and H2S were reported to be
toxic on the spleen or other organs of chickens, have nega-
tive effect on the immunity, cause oxidative stress, and con-
sequently exacerbate disharmony of the immune and
antioxidative systems [5, 6]. Though the exact mechanism
is complicated, unbalance between reactive oxygen species

(ROS) production and elimination has been widely impli-
cated for the damage of the immune system and immunode-
ficiency [7, 8]. As a peripheral immune organ, the spleen is
one of the principal sites for priming of the primary immune
responses [9]. Accumulating literatures have reported that
oxidative stress is associated with suppressed immune func-
tion in animals [10, 11].

Previous investigation showed that saponins extracted
from the stem and leaf of Panax ginseng C.A. Mey (GSLS)
have antistress effect on chickens [12]. More than 30 ginse-
nosides have been identified from the herb as of yet, and gin-
senoside Rg1 (Rg1), a steroidal saponin, is one of the active
constituents in GSLS [13, 14]. The saponin was found to dis-
play antioxidant activity in mice and human [15, 16]. It was
reported that Rg1 had an antioxidant effect by alleviating oxi-
dative damage in a cardiomyocyte hypoxia/reoxygenation
(H/R) model [17]. Liu et al. showed that Rg1 can prevent
apoptosis and ROS production in oxidative modification of
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human umbilical cord blood-derived stromal cells induced
by tert-butyl hydroperoxide [18]. Very recently, oral admin-
istration of Rg1 was reported to have effects of antioxidative
stress and immunomodulation in chickens [19].

In 2017, the Agricultural Ministry of China issued a cer-
tificate approving the product made from GSLS to be used in
poultry. However, very few reports have been found regard-
ing the mechanisms underlying the antistress in chickens.
The present study was designed to investigate the protective
effects of Rg1 on chicken splenic lymphocytes treated with
hydrogen peroxide (H2O2). H2O2 is often experimentally
used to stimulate production of ROS in vitro [20, 21]. RNA
sequencing (RNA-seq) is a technique to quantify differen-
tially expressed genes involved in various biological pro-
cesses. The possible molecular mechanisms were explored
at the transcriptome level by RNA-seq analysis, and the
DEGs of interest were validated by quantitative real-time
polymerase chain reaction (RT-qPCR).

2. Materials and Methods

2.1. Preparation of Chicken Splenic Lymphocytes. The proce-
dures on handling animals in this experiment were approved
by the Institutional Animal Care and Use Committee of
Zhejiang University. The process was mainly performed as
previously described [22]. Briefly, the spleens were dissected
from 30d old Sanhuang broilers (female) (Ningbo Zhenning
Stock Breeding Inc., Ningbo, China) and polished to homog-
enate. Single cell suspension was obtained by gently pushing
the homogenate through a 70μm sterile plastic mesh. Cells
were washed twice and then layered over equivalent lympho-
cyte separation medium (Tian Jin Hao Yang Biological Man-
ufacture Co. Ltd., Tianjin, China). The suspension was
centrifuged at 2,000 × g for 15min at room temperature,
and a white interface was obtained. Then, the cells were
washed twice and cultured in RPMI 1640 (Genom Biotech
Co., Hangzhou, China) containing HEPES and 2mM gluta-
mine, supplemented with 10% FBS (Sijiqing Co., Hangzhou,
China). Splenic lymphocyte density was adjusted to 5 × 106
cells/mL, and the survival rate of the freshly obtained cells
was more than 95% (trypan blue exclusion test) [23].

2.2. Cell Treatment. Cells were seeded in 6-well plates
(5 × 106 per well), added with Rg1 solution (Puruifa,
Chengdu, China) at final concentrations of 0, 50, 70, and
90μg/mL, respectively, and then cultured for 24 h. The con-
centrations of ginsenoside Rg1 were used based on the previ-
ous study [24]. After that, cells were washed twice with PBS
and incubated in media containing H2O2 (100μmol/L) for
an additional 4 h. Cells treated with H2O2 only were used as
a model, and cells without any treatment were used as a con-
trol (Table 1). Finally, the cells were collected for analyses of
redox parameters, cell viability, cell apoptosis, mitochondria
transmembrane potential, and [Ca2+]i concentration.

2.3. Biochemical Determinations. The method was used as
previously described [21]. To release the intracellular con-
tent, 1mL of cell suspension (5 × 106 cells) was sonicated
and centrifuged at 1,000 × g for 5min. The content of the cell

proteins was measured with a bicinchoninic acid kit (BCA)
(Beyotime Co., Jiangsu, China). Content of malondialdehyde
(MDA) and activity of superoxide dismutase (SOD) were
measured with spectrophotometric assay kits (Nanjing Jian-
cheng Institute of Bioengineering and Technology, Nanjing,
China). All samples were analyzed in triplicate.

2.4. Determination of Intracellular ROS Production. ROSgen-
eration was measured by a reactive oxygen species assay kit
(Yeasen BiotechCo. Ltd., Shanghai, China) with 2,7-dichloro-
dihydrofluorescein diacetate (DCFH-DA) as a fluorescent
probe [25]. Cells (1 × 105) were suspended in 500μL of
DCFH-DA (1 : 2,000 dilutions) with incubation at 37°C for
30min. The culture was centrifuged at 1,000 × g for 5min,
and the supernatant was discarded. Then, cells were washed
twicewith PBS and used for flow cytometric (FCM, BDFACS-
Calibur) analysis. The mean fluorescent intensity (MFI) of
intracellular 2,7-dichlorodihydrofluorescein (DCF) was
detected by FCM, and the data were analyzed using FlowJo
V10 software.

2.5. Cell Viability. Live cells were measured by the 3-(4,5-
dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bro-
mide (MTT) assay (Solarbio Co., Beijing, China) using absor-
bance of formazan in cell lysates according to previous
description with modification [26]. Briefly, cells in 96-well
plates (5 × 104 cells/well) were incubated for 24 h with Rg1
at final concentrations of 0, 50, 70, and 90μg/mL, respec-
tively, and then centrifuged at 2,000 × g for 10min. Then,
cells were washed twice with PBS and exposed to fresh media
containing H2O2 (100μmol/L) for an additional 4 h. Cells
treated with H2O2 only were used as the model, and cells
without any treatment were used as the control. After that,
cells in each well were incubated with 5mg/mL MTT for
4 h. Then, the plates were centrifuged at 1,000 × g for
10min, and the MTT formazan was solubilized in 150μL
dimethyl sulfoxide. The optical density (OD) was read at
570 nm. All tests were carried out in triplicate.

2.6. Quantification of Cell Apoptosis. Apoptosis was investi-
gated using an Annexin V-FITC Apoptosis Detection kit
(BD Biosciences, San Jose, CA, USA). Cells (1 × 105) were
suspended in 195μL of specific binding buffer with 5μL
Annexin V-FITC and incubated for 10min at 25°C. Then,
the cells were washed twice with phosphate-buffered saline
(PBS) and resuspended in 190μL binding buffer with 10μL
propidium iodide (PI) [27]. Fluorescence in cells was
detected by FCM, and the data were analyzed using FlowJo

Table 1: Experimental design.

Groups n H2O2 (μmol/L) Rg1 (μg/mL)

Control 6 0 0

Mode 6 100 0

Rg1-50 6 100 50

Rg1-70 6 100 70

Rg1-90 6 100 90
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V10 software. Annexin V+/PI- cells were considered as early
apoptotic cells.

2.7. Measurement of Mitochondrial Membrane Potential. 5,5′
,6,6′-Tetrachloro-1,1′,3,3′-tetraethyl-imidacarbocyanine io
dide (JC-1) is able to enter mitochondria and is widely used
as a mitochondrial membrane potential-sensitive dye [28].
The detection was performed according to a manufacturer’s
protocol (Solarbio Co., Beijing, China). In brief, cells
(1 × 105) were incubated with JC-1 (5μg/mL) for 20min at
37°C. After washing twice in PBS, JC-1 polymer MFI and
monomer MFI were assayed by FCM within 30min and
analyzed using FlowJo V10 software. Mitochondrial depolar-
ization was presented by a reduction in the polymer MFI/-
monomer MFI.

2.8. Observation and Analysis of [Ca2+]i. [Ca2+]i in lympho-
cytes were determined as previously reported [22, 29].
Briefly, cells (1 × 105) were incubated with Fluo-3/AM
(5μM) (Solarbio Co., Beijing, China) at 37°C for 30min.
After washing with PBS, cells were observed, and the images
were acquired using a fluorescence microscopy equipped
with an FITC filter (Nikon Ti-FL; Nikon Cooperation,
Japan). For quantitative analysis, the fluorescent signals
reflecting the [Ca2+]i level were measured by FCM, and the
data were analyzed using FlowJo V10 software. Intracellular
[Ca2+]i was reflected by Fluo-3 fluorescent intensity.

2.9. Transcriptome Analysis. Each of the three samples from
the model and Rg1 groups was used for the RNA-seq.
RNAiso™ Plus (Takara, Dalian, China) was used to isolate
the total RNA from cells, according to the manufacturer’s
instructions. A NanoPhotometer® spectrophotometer
(Implen, CA, USA) was employed to determine the RNA
purity [30]. A RNA 6000 Nano Assay Kit was employed to
check RNA integrity on the Bioanalyzer 2100 system (Agilent
Technologies, CA, USA). Transcriptome sequencing,
sequence assembly, and data analysis are provided by Novo-
gene Bioinformatics Technology Co. Ltd. (Beijing, China). A
total of 2μg RNA from each sample was employed to con-
struct libraries with a NEBNext® Ultra™ RNA Library Prep
Kit for Illumina® (NEB, USA). In brief, poly-T oligoattached
magnetic beads were used to extract mRNA from total RNA
[31]. NEBNext First Strand Synthesis Reaction Buffer (5x)
was used to perform fragmentation. Random hexamer
primer and M-MuLV Reverse Transcriptase (RNase H-)
were used to synthesize first-strand cDNA. Next, DNA
polymerase I and RNase H were used to synthesize
second-strand cDNA [32]. After that, TruSeq PE Cluster
Kit v3-cBot-HS (Illumina) was employed to carry out the
cluster of the index-coded samples [33]. Then, the sequenc-
ing was executed on an Illumina platform, and 150 bp
paired-end reads were produced. Reference genome and
gene model annotation files were downloaded from the
genome website (ftp://ftp.ncbi.nlm.nih.gov/genomes/all/
GCF/000/002/315/GCF_000002315.4_Gallus_gallus-5.0/GC
F_000002315.4_Gallus_gallus-5.0_genomic.fna.gz). HISAT2
(v2.0.5) was used to build the index of the reference
genome, and paired-end clean reads were aligned to the

reference genome (ftp://ftp.ncbi.nlm.nih.gov/genomes/all/
GCF/000/002/315/GCF_000002315.4_Gallus_gallus-5.0/GC
F_000002315.4_Gallus_gallus-5.0_genomic.gff.gz). HTSeq
v0.6.0 was used to count the reads mapped to each gene
in samples, and reads per kilobase transcriptome per
million mapped reads (RPKM) of each gene were then cal-
culated to estimate the expression level of genes in each
sample [34]. The DESeq R (1.16.1) package was selected to
investigate the differential expression between the model
group and theRg1 group. Amodel ofDESeq based on the neg-
ative binomial distribution was used to determine differential
expression genes (DEGs) [35]. The P value was assigned to
each gene. Genes with P < 0 05 and fold change ≥ 1 3 were
definedasDEGs [36–38].A clusterProfilerRpackagewas used
to perform Gene Ontology (GO) enrichment analysis and to
test the statistical enrichment of differential expression genes
in the Kyoto encyclopedia of genes and genomes (KEGG)
pathways. GO terms and KEGG terms with P value less than
0.05 were considered significantly enriched by DEGs [39, 40].

2.10. Real-Time Quantitative PCR Validation. Five DEGs
that were upregulated and twelve DEGs that were downregu-
lated in the comparison of Rg1 vs. the model were selected to
validate the transcriptome sequencing results using RT-
qPCR. PrimeScript™ RTMaster Mix (Takara, Dalian, China)
was used to convert RNA into cDNA on a T100™ thermal
cycler (Bio-Rad, USA) [35]. Sequences of primers used for
RT-qPCR were designed using the NCBI primer designing
tool (http://www.ncbi.nlm.nih.gov/tools/primer-blast/) and
provided in Supplementary Materials: Table S3. The
chicken β-actin was served as the internal control gene.
RT-qPCR with SYBR® Premix Ex Taq™ II (Tli RNase H
Plus) (Takara, Dalian, China) on selected genes was carried
out on a Multiple Real-Time PCR System (Bio-Rad, USA).
A relative quantitative method (2−ΔΔCT) was employed to
evaluate the quantitative variation [41]. All samples were
analyzed in triplicate.

2.11. Statistical Analysis. The data were analyzed with one-
way ANOVA of SPSS 22.0 (IBM), and the results were
expressed as mean ± standard error (S.E.). Duncan’s test
was used to evaluate the differences among various groups.
P < 0 05 or <0.01 was considered statistically significant. R
software (1.16.1) was used to assess results from RNA-seq.

3. Results

3.1. Effect of Rg1 on the Redox State and Cell Viability.
Figure 1(a) showed that cells treated differently had different
intracellular DCF fluorescence intensities. Figure 1(b)
showed that cells treated with H2O2 (model) had a signifi-
cantly higher intracellular ROS level than the cells without
treatment (control) (P < 0 01). However, treatment with
Rg1 (90μg/mL) significantly reduced intracellular ROS pro-
duction when compared with the model (P < 0 05).
Figures 1(c) and 1(d) showed that cells treated with H2O2
(model) had significantly higher MDA (P < 0 05) and lower
T-SOD production (P < 0 05) than the cells without treat-
ment (control). Meanwhile, treatment with Rg1 (70 and
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90μg/mL) significantly decreased MDA and increased T-
SOD production (P < 0 05) when compared to the model.
Figure 2 showed that cells treated with H2O2 (model) had a
significantly lower cell viability than the control (P < 0 01),
and treatment with Rg1 (90μg/mL) significantly enhanced
cell viability when compared to the model (P < 0 05).

3.2. Cell Apoptosis. Figures 3(a)–3(e) showed that cells
treated differently had different percentages of early apopto-
tic cells (Annexin V positive and PI negative). Figure 3(f)
showed that cells treated with H2O2 (model) had significantly
increased percentage of early apoptotic cells than the control
(P < 0 01), and treatment with Rg1 (70 and 90μg/mL) signif-
icantly decreased percentage of early apoptotic cells when
compared to the model (P < 0 05).

3.3. Mitochondrial Membrane Potential. Figures 4(a)–4(e)
displayed that cells treated differently had different JC-1
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Figure 1: Effect of Rg1 on the redox state within cells. Cells (5 × 106) were treated with Rg1 (0, 50, 70, and 90 μg/mL) for 24 h first and then
incubated in media with (model) or without (control) H2O2 (100 μmol/L) for an additional 4 h. The original tracings showing the (a) DCF
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determined as described in the text. All data are presented as mean ± S E (n = 6). Bars with different letters were significantly different
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polymer/monomer MFI. Figure 4(f) showed that cells treated
with H2O2 (model) had significantly decreased JC-1 poly-
mer/monomer MFI than the control (P < 0 01). Interest-
ingly, treatment with Rg1 (70 and 90μg/mL) significantly
increased this parameter when compared to the model
(P < 0 01).

3.4. [Ca2+]i. The green fluorescence intensity represented the
[Ca2+]i concentrations in lymphocytes. Figures 5(a)–5(e)
showed that cells treated differently had different fluores-
cence intensities. We also detected fluorescence intensity by
FCM. The results implied a similar trend. Figure 5(f) showed
that cells treated with H2O2 (model) had significantly
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Figure 3: Effect of Rg1 on apoptosis of cells. Cells (5 × 106) were treated with Rg1 (0, 50, 70, and 90μg/mL) for 24 h first and then incubated in
media with (model) or without (control) H2O2 (100 μmol/L) for an additional 4 h. Apoptotic cells (Annexin V+/PI-) were discriminated by
FCM analysis: (a) control group; (b) model group; (c) 50μg/mL Rg1 group; (d) 70 μg/mL Rg1 group; (e) 90 μg/mL Rg1 group; (f) bar diagram
representing apoptotic cell populations. All data are presented as mean ± S E (n = 6). Bars with different letters were significantly different
(P < 0 05).
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enhanced green fluorescence intensity than the control
(P < 0 01). Interestingly, treatment with Rg1 (70 and
90μg/mL) significantly reduced green fluorescence intensity
when compared to the model (P < 0 01).

3.5. Transcriptome Profiling of Gene Expression. The results
showed that the average of the clean read rate was

97.20%, and the average of the mapping rate was 87.24%.
The detailed information of each sample is shown in
Supplementary Materials: Table S1. The DEGs were
represented in Figure 6. A total of 428 genes were identified
as DEGs, of which 105 genes were upregulated, while 323
genes were downregulated. The information of DEGs
including the gene symbol and gene description was listed in
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Figure 4: Effect of Rg1 on mitochondrial depolarization. Cells (5 × 106) were treated with Rg1 (0, 50, 70, and 90μg/mL) for 24 h first and then
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JC-1 polymer/monomer MFI. All data are presented as mean ± S E (n = 6). Bars with different letters were significantly different (P < 0 01).
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Supplementary Materials: Table S2. According to the GO
classifications, “silicate transport,” “regulation of cyclin-
dependent protein,” and “regulation of serine/threonine
kinase activity” were the predominant terms in the
molecular function category. Meanwhile, “purine nucleotide
catabolic process,” “glutathione metabolic process,” and
“cAMP catabolic process” were the predominant terms in
the biological process category. In addition, we also found
“tumor necrosis factor receptor binding” and “tumor
necrosis factor receptor superfamily binding” in the
biological process category (Figure 7). As shown in Figure 8,
we identified ten DEGs in the Toll-like receptor signaling
pathway, nine of which were downregulated, whereas one
was upregulated. In addition, seven DEGs in the PPAR
signaling pathway and twelve DEGs in the cytokine-
cytokine receptor interaction were downregulated. We also
identified eleven DEGs and four DEGs in the mitogen-
activated protein kinase (MAPK) signaling pathway and
p53 signaling pathway.

3.6. Confirmation of Selected DEG Candidates by RT-qPCR.
To validate the RNA-seq results, seventeen DEGs on the
transcript level were measured by RT-qPCR. As shown in
Figure 9, the tendency of the RT-qPCR results was in accord
with the transcriptome sequencing data.

4. Discussion

Lymphocytes play important roles in cellular and humoral
immune responses in chickens [14]. Because lymphocytes
possess many unsaturated fatty acids in their plasma
membranes, they are particularly vulnerable to ROS [42]. In
the poultry industry, many environmental factors cause over-
production of ROS which may induce oxidative stress, dam-
age the structure of lymphocytes, and suppress the immunity
[43]. H2O2 has been usually experimentally used to stimulate

production of ROS in vitro. Similar to the process found
in vivo, exogenous H2O2 traverses the cell membrane;
destroys nucleic acid, proteins, and lipid function; wrecks
[Ca2+]i homeostasis; and activates mitochondria signals, ulti-
mately leading to cell apoptosis [44–47]. In the present study,
exposure of lymphocytes to H2O2 for 4 h significantly caused
intracellular oxidative stress. During stress, lymphocytes
were seriously damaged since the cell viability was signifi-
cantly decreased. Oxidative stress also causes increased apo-
ptotic lymphocytes as implied by increased Annexin V-
positive and PI-negative cells under stress. The mitochon-
drial depolarization is considered to be an early stage in an
activated apoptotic pathway of mitochondria and often
reflected by the increased ratio of JC-1 polymer/monomer
fluorescence in cells [28]. In the present study, H2O2 remark-
ably decreased mitochondrial membrane potential of lym-
phocytes, suggesting that mitochondrial apoptosis was
activated. [Ca2+]i overload induces apoptosis by releasing
proapoptotic factors and breaking the mitochondrial respira-
tory chain [48, 49]. [Ca2+]i concentration is often estimated
by intracellular Fluo-3 fluorescent intensity [29]. In this
study, H2O2 significantly increased [Ca2+]i concentration,
which further confirmed that cell apoptosis was increased.
Due to the damage of lymphocytes under oxidative stress,
suppressed immune responses to vaccination in association
with oxidative stress were observed in chickens in our previ-
ous study [19].

The present study demonstrated that Rg1 has protective
effect on H2O2-induced damage of chicken lymphocytes as
evidenced by increased cell viability and reversed redox
status. Antioxidant effect of plant extracts in chicken lym-
phocytes has been reported in other studies. Zhang et al.
observed that Sargassum polysaccharide inhibited oxidative
stress induced by infectious bursa disease virus in bursal lym-
phocytes of chickens [50]. Lv et al. found that a polysaccha-
ride from Agaricus blazei Murill had antioxidant effect in
chicken peripheral blood lymphocytes treated with cadmium
[51]. In this study, Rg1 significantly reduced oxidative stress-
induced apoptosis and damage of chicken lymphocytes. Rg1-
reduced apoptosis of lymphocytes in chickens may be related
to recovered mitochondrial membrane potential, as found in
mammals [52, 53]. The in vitro findings in this study may
explain the protective effect of Rg1 on the immune response
against oxidative stress in chickens in previously found
in vivo studies [9].

With the chicken genome project completed, genome-
wide gene expression analysis has been used in poultry
research [54, 55]. In the present study, we used RNA-seq
technology to detect gene expressions across the entire
chicken genome to provide predictable pathways in the com-
parison of Rg1 vs. the model. Since Rg1 at 90μg/mL provides
optimal protective effect on cells, treatment of lymphocytes
with Rg1 at this dose was used to identify genes that were dif-
ferentially expressed between Rg1-treated and the model.
About 25.5% of DEGs were upregulated and 75.5% of DEGs
were downregulated. Interestingly, these DEGs were involved
in GO terms related to apoptosis such as regulation of serine-
threonine protein kinases, tumor necrosis factor receptor
binding, and tumor necrosis factor receptor superfamily
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Figure 6: Volcano plot of DEGs in the comparison of Rg1 vs. the
model. Red dots indicate differentially expressed genes which are
upregulated, green dots indicate differentially expressed genes
which are downregulated, and blue dots represent genes with no
significant difference.
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binding. In line with the GO enrichment analysis, KEGG
pathway analysis revealed that DEGs were involved in the
Toll-like receptor signaling pathway, PPAR signaling path-
way, MAPK signaling pathway, and p53 signaling pathway,
which were associated with regulation of apoptosis.

Tumor necrosis factor alpha (TNF-α) has a far wider
range than the original described antitumor activity and is
one of the most important cytokines in mediating inflamma-
tory and immune responses [56, 57]. The production of
TNF-α and subsequent binding by TNF receptors trigger a
cascade of intracellular processes with diverse effects such

as apoptosis in mammals and birds [58, 59]. In the present
study, RELT, TNFRSF8, TNFRSF6B, and EDA2R, which
are representatives involved in cytokine-cytokine receptor
interaction, were downregulated by Rg1. As a member of
the TNF receptor superfamily, RELT is able to bind tumor
necrosis factor receptor-associated factor 1 and induce cell
apoptosis [60–62]. TNFRSF6, which is a well-known mem-
ber in TNFRSF, combines with Fas ligand TNFSF6 to induce
apoptotic cell death in cells that express this receptor mole-
cule [56]. The downregulated genes related to cytokine-
cytokine receptor interaction indicated their potential role
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in reducing apoptotic lymphocytes by Rg1 and were worth of
further investigation. Su et al. have observed that Rg1
decreased TNF-α production in activated mice macrophage
[24]. Consistently, we showed that Rg1 inhibited gene
expression of TNF receptors in oxidative-stressed chicken
lymphocytes. Other plant extracts such as Agaricus blazei
Murill polysaccharides were reported to protect against oxi-
dative stress and reduce expression of TNF-α in the spleen
of chickens, which was similar to our results [63]. Because
the genes of the TNF receptor family were decreased in
the Rg1 group, it seems that Rg1 protected lymphocytes
of oxidative stress by inhibiting production of cytokines
related to cell apoptosis.

Toll-like receptors (TLRs) are membrane-bound recep-
tors and play crucial roles in innate immunity by recognizing
pathogen-associated molecular patterns and inducing down-
stream signaling pathways that activate innate immune
responses and produce inflammatory cytokines [64–66].
However, TLRs also play an important role in TNF-α-
induced apoptosis [67, 68]. In this study, nine genes involved
in the Toll-like receptor signaling pathway were significantly
decreased by Rg1, such as TLR4, FOS, JUN, and MAP2K3.
TLR4 is one of the important members of TLRs, and it also
recognizes plant-derived molecules such as taxol and ginse-
nosides [69, 70]. It was demonstrated that ginsenoside Rg1
could enhance immune responses via the TLR4 signaling
pathway [71]. However, another study reported that Rg1
could decrease the inflammation factors by inhibiting TLR3
and TLR4 signaling pathways [72]. Other plant extracts such
as Astragalus polysaccharide also displayed regulating effect
on TLR4 expression in chickens [73]. In view of these results,
it is likely that Rg1 suppressed expression of apoptosis-
related genes through suppression of TLR4. As inducible
transcription factors, the protooncogenes c-FOS and c-JUN
can be translated to FOS and JUN, which can compose a het-
erodimeric complex that interacts with the activator protein-

1 (AP-1) binding site and function cooperatively in signal
transduction processes [74]. Interestingly, accumulated evi-
dences have implicated that AP-1 transcription factor com-
plexes can positively or negatively modulate distinct
apoptotic pathways, depending on the different microenvi-
ronments and cell types [75, 76]. Considering that the
expression of FOS and JUN was markedly decreased in the
Rg1 group, we speculated that downregulated expression of
apoptosis-related genes in oxidative-stressed lymphocytes
by Rg1 was associated with decreased AP-1.

In addition to the cytokine-cytokine receptor interaction
and the Toll-like receptor signaling pathway, we also identi-
fied seven downregulated DEGs involved in the PPAR signal-
ing pathway. Nevertheless, ten DEGs were decreased, and
one DEG was increased involved in the MAPK signaling
pathway by Rg1. A previous study showed that PPARγ,
which is a member of PPARs, played an important role in
apoptosis of the chicken pancreas [77]. MAPK is a family
of serine-threonine protein kinases that is activated in
response to various extracellular stimuli and plays key roles
in the biological process such as cell apoptosis and cytokine
production in chickens [58, 78]. We also identified four
DEGs involved in the p53 signaling pathway in the compar-
ison of Rg1 vs. the model. Considering the important role of
PPARs, MAPK, and p53 during apoptosis in birds, we spec-
ulated that Rg1 might reduce apoptosis of chicken lympho-
cytes via multiple mechanisms [79].

The present study demonstrated that Rg1 significantly
inhibited production of ROS and MDA, decreased apoptosis,
and enhanced viability in lymphocytes. The antioxidant
property of Rg1 may explain its immune-potentiating effect
on birds with oxidative stress as found in our previous study
[9]. Numerous DEGs between Rg1-treated and model lym-
phocytes were identified. Of them, 323 genes were downreg-
ulated and 105 genes were upregulated in Rg1-treated cells.
The DEGs were involved in Toll-like receptors, PPAR signal-
ing pathway, and cytokine-cytokine receptor interaction. The
present study indicated that Rg1 may act as an antioxidative
agent to protect cell damage caused by oxidative stress via
regulation of gene expression.
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