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In statistical modelling with Gaussian process regression, it has been shown

that combining (few) high-fidelity data with (many) low-fidelity data can

enhance prediction accuracy, compared to prediction based on the few

high-fidelity data only. Such information fusion techniques for multi-fidelity

data commonly approach the high-fidelity model fh(t) as a function of two
variables (t, s), and then use fl(t) as the s data. More generally, the high-

fidelity model can be written as a function of several variables (t, s1,

s2. . ..); the low-fidelity model fl and, say, some of its derivatives can then

be substituted for these variables. In this paper, we will explore mathe-

matical algorithms for multi-fidelity information fusion that use such an

approach towards improving the representation of the high-fidelity function

with only a few training data points. Given that fh may not be a simple

function—and sometimes not even a function—of fl, we demonstrate that

using additional functions of t, such as derivatives or shifts of fl, can drasti-

cally improve the approximation of fh through Gaussian processes. We also

point out a connection with ‘embedology’ techniques from topology

and dynamical systems. Our illustrative examples range from instructive

caricatures to computational biology models, such as Hodgkin–Huxley

neural oscillations.
1. Introduction
Recent advances in both algorithms and hardware are increasingly making

machine learning an important component of mathematical modelling for

physico-chemical, engineering, as well as biological systems (e.g. [1–4]). Part

of these developments focus on multi-resolution and multi-fidelity data

fusion [5,6]. Fusing information from models constructed at different levels of

resolution/fidelity has been shown to enhance prediction accuracy in data-

driven scientific computing. Richardson extrapolation, for example, has been

widely used to improve the rate of convergence using different resolution dis-

cretizations in many practical applications [7]. Also, multi-grid methods in

numerical analysis solve numerical PDEs effectively using multi-resolution

and linearly dependent discretizations [8–10]. Through advances of machine

learning algorithms, if some data from a fine-resolution simulation are missing,

it becomes possible to estimate them exploiting data from a low-resolution

simulation [11,12].

In addition, if high-fidelity data are costly to obtain (experimentally or

computationally) while low-fidelity data are relatively cheap, a combination

of a few high-fidelity data and many low-fidelity data can also lead to overall

computational efficiency. For example, we may be able to combine few exper-

imental data from a high-resolution measurement with extensive data from

a computer simulation or from lower-resolution measurements. Recently,
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Figure 1. Two alternative GP regressions for the high-fidelity model fh(t) ¼ sin2(8pt) (the highly oscillatory green curve in (a)). The blue curve visually suggests a
smooth two-dimensional manifold g(t, fl). If, on the other hand, the high-fidelity function is projected onto fl(t), we can see it is a simple quadratic. (b,c) The
prediction results with 2 s.d. (dashed line) for the high-fidelity function by GP regression with only t and with only fl(t), respectively. We employ 15 high-fidelity
data points and 100 uniformly distributed low-fidelity data points for the regression. (a) A dependency between fl(t) and fh(t) with t, (b) GP with ftg, (c) GP with
ffl(t)g. (Online version in colour.)
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Gaussian process (GP) regression has been widely used to

effectively combine multiple fidelity data [13–17]. ‘Classical’

information fusion by GP had focused only on linear

dependency between high- and low-fidelity data via auto-

regressive schemes such as the coKriging approach of

Kennedy & O’Hagan [18]. If two (or more) datasets have

nonlinear dependency, such linear-type approaches will lose

their effectiveness.

When a high-fidelity model fh(t) has nonlinear dependency

with a low-fidelity model fl(t), nonlinear auto-regressive Gaus-

sian process (NARGP) [17] has been observed to achieve

highly accurate prediction results by introducing an additional

dimension: fh(t) is approximated as a curve on a two-

dimensional manifold parametrized by t and a second

variable, s. The data points on this manifold are of the form

( fh(t), t, s( ¼ fl(t))). More generally, assuming t [ Rd, NARGP

finds a smooth manifold in a (d þ 1)-dimensional space. In

this framework, the low-fidelity model provides the additional

‘latent’ variable of the high-fidelity model.

Deep multi-fidelity GPs were introduced [19] as an

improvement, especially in the context of discontinuities in

fh with respect to t (and fl). This approach focuses on con-

structing a useful transformation T(t) of the input variables

t through a (deep) neural network. Then, the high-fidelity

function fh(t) is approximated as a GP of ( just) fl(T(t)). One

must now, of course, perform optimization for the additional

network hyperparameters.

In this paper, we discuss a connection of NARGP with

data-driven embeddings in topology/dynamical systems,

and extend it (in the spirit of such data-driven embeddings)

in an attempt to improve the numerical approximation of fh
in the ‘sparse fh, rich fl’ data setting. In what follows we

will (rather arbitrarily) ascribe the characterization ‘high-

fidelity’ or ‘low-fidelity’ to different functions used in our

illustrations; this characterization is solely based on the

number of available data points for each. In the spirit of

the Richardson extrapolation or the multi-grid computations

mentioned above, one expects that observations/data at

multiple fidelities are obtained by a systematic fine/coarse-

graining process of studying the same system.

For our first example, the ‘high-fidelity’ function fh, for

which we only have a few data points, is a function of t;
but it actually also happens that we can describe it as a

function of fl (figure 1):

fh(t) ¼ sin2(8pt) and fl(t) ¼ sin(8pt): (1:1)
In this framework, the high-fidelity datasets (t, fh(t)) can

be regarded as ‘ground truth’ obtained from experimental

measurements or the high-fidelity model. The low-fidelity

datasets (t, fl(t)), on the other hand, are obtained from a

model with ‘qualitatively’ correct features—here, the right

frequency—yet ‘quantitatively’ inaccurate observations

(wrong scaling).

When we choose t as the coordinate parametrizing fh(t)
(the green curve in figure 1a), the GP regression fails to rep-

resent the high-frequency sine function with just a few

training data points as shown in figure 1b. However, as

figure 1c shows, if we choose fl as the coordinate of fh( fl)
(coloured by red in figure 1a), the GP regression can represent

the simple quadratic function quite effectively. If we still need

to know the parametrization of fh by t, we can obtain it

through the ‘data rich’ fl : fh(t) ; fh( fl(t)).
If fh is not a function of fl, however (as has been observed

in the literature [17] and as can be seen in figure 2a) more

variables are necessary to create a domain over which fh is

a function.

In the NARGP framework, the variable used in addition

to fl is t itself. In this paper, we will also advocate the use

of delays or derivatives of fl as additional variables. This

approach can also help remove the explicit dependence of

fh on t, since embedding theories in dynamical systems

[20–25] guarantee that we can choose any generic obser-

vation of t, or derivatives and/or delays of this observation,

as a replacement for t; see §2.2 for more details.

In this paper, all examples follow the same problem set-

up. We only have a few high-fidelity data points (ground

truth), while plentiful data points are available from the

low-fidelity model (characterized by fewer modelling

terms, or perturbed model parameters when compared

with the high-fidelity one). In addition, the high-fidelity

function can be written as a simple function of t, fl(t) and

its derivatives. With this set-up, we demonstrate the effec-

tiveness of the proposed framework through pedagogical

examples in §3.

In §3.4, we apply the proposed framework to the

Hodgkin–Huxley model, describing the behaviour of action

potentials in a neuron. Here, the high- and the low-fidelity

functions are action potentials at two different values of the

external current. This is a case where fh is a complicated func-

tion of t and does not only depend on fl; yet as we will see,

delays of fl will help us construct an accurate approximation

of fh.
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Figure 2. Two alternative GP regressions for the high-fidelity model fh (see equation (2.4)). (a) The multivaluedness of fh with respect to fl is clearly visible when
the high-fidelity data (the blue curve) are projected onto fl(t) (the red curve). (b,c) The high-fidelity function (the yellow curve) versus posterior means with two
standard deviations (dashed lines) of two alternative GP regressions. We use seven high-fidelity data points and 100 uniformly distributed low-fidelity data points for
training GP regression models. (b) GP regression with ft, fl(t)g. (c) GP regression with f fl(t), fl(t 2 t)g, t ¼ 1/400. (Online version in colour.)
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The paper is organized as follows. In §2, we review the

NARGP framework and concepts of ‘embedology’. Also, we

illustrate why and when this framework is successful. In §3,

we demonstrate the effectiveness of our proposed framework

via some pedagogical examples and the biologically motivated

application to the Hodgkin–Huxley model. In §4, we summar-

ize our results and discuss open issues for further development

of general multi-fidelity information fusion in modelling and

simulation practice across scientific domains.
2. Methods
2.1. Nonlinear information fusion algorithms
‘Classical’ multi-fidelity data fusion algorithms require a linear

(or almost linear) dependency between different fidelity data-

sets. Under this constraint, we can merge two or more

datasets by using scaling and shifting parameters such as the

Kennedy and O’Hagan coKriging approach [18]. However,

more generally, nonlinear dependencies may exist between the

datasets, typically degrading the quality of the results of linear

information fusion algorithms. In order to resolve nonlinear

dependencies between datasets, the use of a space-dependent

scaling factor r(x) [26] or, alternatively, deep multi-fidelity

GPs [19] have been introduced; clearly, the improvement they

bring requires additional hyperparameter optimization.

When the high-fidelity model fh nonlinearly depends on

the low-fidelity model fl, but can be written as a simple function

of t and fl, the NARGP [17] is an appropriate choice. In this fra-

mework, a one-dimensional high-fidelity function fh is assumed

to be a ‘simple’ function g of two variables (t, s), i.e. it is a curve

that lies in the two-dimensional manifold described by g. Then,

GP regression in the two-dimensional space is performed,

where the data for s are the fl(t) data,

g(t, s) � GP (0, k((t, s), (t0, s0))) and fh(t) ¼ g(t, fl(t)): (2:1)

In [17] the gain in accuracy of NARGP, compared to an

auto-regressive scheme with a constant scaling factor, as well

as a scaling factor that was modelled as a (space-dependent)

Gaussian process, was documented.

Algorithmically, classical autoregressive GPs employ an expli-
cit method such as a scaling constant (r) between two covariance

kernels, k1 and k2 as

fl(t)
fh(t)

� �
� GP

0
0

� �
,

k1(t, t0) rk1(t, t0)
rk1(t, t0) r2k1(t, t0)þ k2(t, t0)

� �� �
: (2:2)

The NARGP framework, on the other hand, employs an

implicit approach by the automatic relevance determination

(ARD) weight [27] in the extended space parametrized by t
and s: a different scaling hyperparameter for each of the two

dimensions in the kernel. In many applications, a radial basis

function (see equation (2.3)) has been used as the covariance

kernel (where ARD implies a different scaling hyperparameter

ui for each dimension):

k(t, t0; u ) ¼ exp � 1

2

Xd

ui(ti � t0i)
2

 !
: (2:3)

Figure 2 showcases an example where fh cannot be written as

a function of fl:

fh(t) ¼ t2 þ sin2(8pt) and fl(t) ¼ sin(8pt) t [ [0, 0:25]: (2:4)

Following the NARGP framework, we choose the low-fidelity

data as an additional variable s ¼ fl(t); we then approximate

the two-dimensional function

g(t, z) ¼ t2 þ s2: (2:5)

Approximating g only requires a few training data point pairs for

the GP regression. Then, fh can be written as fh(t) ¼ g(t, s ¼ fl(t))
(figure 2b). Figure 2c demonstrates that we can, alternatively, use

delays of fl instead of t as an additional variable. A rationalization

of this follows in the next section.

2.2. Data-driven higher-dimensional embeddings
The theorem of Whitney [20] states that any sufficiently smooth

manifold of dimension d [ N can be embedded in Euclidean

space Rn, with the tight bound n � 2d þ 1. Nash [21] showed

that this embedding can even be isometric if the manifold is com-

pact and Riemannian, even though the bound on n is higher.

Many results on the reconstruction of invariant sets in the state

spaces of dynamical systems are based on these two theorems

[22–25]. Here, the n embedding dimensions are usually formed

by n scalar observations of the system state variables. Instead

of n different observations, recording n time delays of a single

scalar observable is also possible, as originally formulated by

Takens [22] (see also [28]).

Given a smooth, d-dimensional manifold M, as well as an

observable h : M! R, it is possible to construct an embedding

f : M! Rn through

f (p) ¼ [h(p), h(p� Dt), . . . , h(p� (n� 1)Dt)]T: (2:6)

In this paper, p ¼ t and the observable is h(t) ¼ fl(t). Figure 2c
shows an example where the embedding from delays of fl to t
is successful, and figure 3e shows an example where fh is

not a function over the manifold that is parametrizable by fl.
Sauer et al. [24] specified the conditions on the trajectory of

the observable that have to be satisfied, such that the state

space can be embedded successfully. They also extended
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the results on embeddings of invariant sets with fractal dimen-

sion. In the context of the dynamical systems that generate the

trajectories, the observable and the vector field together build a

tuple that has to be generic (Takens [22]) or prevalent (Sauer

et al. [24]). The two papers show that ‘almost all’ tuples are

admissible, where the notions of genericity and prevalence

are defining that probabilistic statement in the respective func-

tion spaces. These results are crucial for the numerical

exploitation of the embedding theorems, since they show that

‘almost all’ observables of a dynamical system can be chosen

for a delay embedding.

In many applications, the intrinsic dimension d of M is

unknown, and n is preemptively chosen large (larger than

necessary). Manifold learning techniques are then often

capable of reducing the embedding dimension, bringing it

closer to the minimal embedding dimension necessary for the

given manifold.

We also note that in our framework, if we can obtain low-

fidelity data from a (dynamic) process instead of just single

measurements, the same embedding and manifold learning
techniques can be used even if the ‘independent variable’ t is

not known [29].

Let us consider equation (2.4) again. NARGP performs

GP regression with two observations ft, fl(t)g. Using embedd-

ing theory, we can rationalize (a) why the two observations

were necessary and (b) why performing GP regression with

an additional delay of the scalar observable, f fl(t), fl(t 2 t)g,
is equally appropriate for a relatively small time horizon (figure

2c). Note that delay coordinates fl(t) and fl(t 2 t) lie on an ellipse

with period of 0.25. Hence, if the data are collected over times

longer than 0.25, using only delays will fail to represent the

high-fidelity function due to multivaluedness (see figure 3e and

§3.1); t itself used as an observable will resolve this.

2.3. Extending the formulation through delays
Now we provide a mathematical formulation of the approach.

We assume that for two compact sets A, B , R, fh : A! B and

fl : A! B are CK-smooth functions with K � 2, and we want to

construct an interpolant of fh with a numerical scheme (here, a
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GP). The domain A of the functions is chosen to be a subset of R

(i.e. one dimensional)—because the interpretation of this domain

in all our examples can be that of time. To emphasize this, we

choose the symbols t and s to denote one-dimensional variables,

and x ¼ (x1, x2, . . .) for variables with more than one dimension.

All statements in this section can be made analogously in

domains with arbitrary, finite dimension. We chose to present

them in one dimension to simplify notation, and because all

examples in the following sections are using one input variable

for the functions fl and fh. We assume that

(1) only a small number of data points ft, fh(t)g as well as the

function fl and its K derivatives are available,

(2) fh can be written in the form

fh(t) ¼ g(t, fl(t), f (1)
l (t), . . . , f (K)

l (t)), (2:7)

where f (i)
l (t) denotes the i-th derivative, i [ f1, . . ., Kg, and

(3) g : A � BKþ1! B is a CK function with derivatives bounded

in the L1 norm by a small constant cg . 0,

@

@xl
g(x1, . . . , xKþ2)

����
����

L1

� cg 8l [ {1, . . . , K þ 2}: (2:8)

Assumption (1) outlines the general setting for multi-fidelity

modelling, as explained in the introduction. Assumptions (2)

and (3) define the relation between the low- and high-fidelity

functions. It is difficult to state precisely for which classes of

functions fl and fh these assumptions are satisfied. A special

case is if the norm of the derivative (@/@t)fh is also bounded

by cg, in which case g does not need to depend on fl at all.

Another case is given if the function fh is in the (linear) span

of fl and its derivatives, in which case g is a linear function.

More generally, the Taylor series of fh reveals why assumptions

(2) and (3) are required for a successful, numerical approxima-

tion of g with few data points of fh. Assume we want to

evaluate fh in a small neighbourhood of a point t0 [ A. Then

we can write

fh(t) ¼ fh(t0)þ @

@t
fh(t0)(t� t0)þO @2

@t2
fh

����
����

� �
: (2:9)

Since we assume the form (2.7) for fh, we can write

@

@t
fh(t) ¼ @

@t
[g(t, fl(t), f (1)

l (t), . . . , f (K)
l (t))] (2:10)

¼ @

@x1
g(t, fl(t), f (1)

l (t), . . . ) (2:11)

þ
XKþ1

i¼2

@

@xi
g(t, fl(t), f (1)

l (t), . . . )� f (i�1)
l (t): (2:12)

From this, we can see that (@/@t)fh(t) can be large (because the

derivatives f (i)
l (t) can be large), but if we know all f (i)

l (t), we only

have to estimate g from data fh and f (i)
l . Crucially, we do not

approximate the function fh and its derivatives. The derivatives

of g are bounded by cg through assumption (2.7), and g is a CK

function, so only a few data points are necessary for a good fit.

If we have access to function values of fl over ‘delays’ (at discrete

shifts, say in the form of a finite difference stencil) in space, rather

than its derivatives, we can use the Newton series approximation

of fh instead of equation (2.9) for an analogous argumentation.

For functions fh that are analytic around the expansion point t0,

the function fh can be evaluated at t close to it by

fh(t) ¼
X1
m¼0

t� t0 �m
m

� �
Dmfh(t0) (2:13)

¼ fh(t0)þ fh(t0 þ Dt)� fh(t0)

Dt
(t� t0)

þO(kD2fhk), (2:14)
where Dm fh is the m-th finite difference approximation of fh, with

a small step size Dt. By equation (2.7), these differences can be

expressed through g and delays of fl (instead of delays of fh),

analogously to equations (2.10)–(2.12). Using delays in space

compared to derivatives has numerical advantages, especially

in cases where fh or fl are not differentiable (or even have discon-

tinuities). It also enables us to estimate the derivatives of fl
implicitly, in case only the function fl is available (and not its

derivatives). Note that the delays (or derivatives) in this section

are used to explain the numerical advantages of assumptions

(2) and (3) above. This is different from their use in the previous

section on embedology, where delays were used to construct a

map back to the domain of the functions fl and fh, in case it is

not directly accessible. Figures 1 and 2 show results from the

two examples that demonstrate these two approaches.

2.4. Outline of the numerical approach
In order to employ the delay coordinates of the low-fidelity func-

tion, it is required to know shifts of it. A necessary condition of

the proposed framework is that the low-fidelity function is

given explicitly or can be well-learned by given data such that low-

fidelity function values can be accurately approximated

(interpolated) at arbitrary points. If the state variable t is not

available, the low-fidelity model should be a generic observation of

t to be useful in employing Takens’ embedding theorem [22,24].

Under these conditions, we now present a summary of the workflow.

If the low-fidelity model is given in the form of (rich) data,

we train a GP regression model for it from these data f(tl,i, fl(tl,i))

ji ¼ 1, . . ., nlg via minimizing a negative log marginal likelihood

estimation. This data driven process can be circumvented if the

low-fidelity model is explicitly given, as in the above examples.

After that, we compute predictive posterior means of the low-

fidelity model at the points th where the high-fidelity data are

available. We also compute a number of shifts of the low-fidelity

function at the points th 2 kt and at the test points t*. Next,

we train another GP regression model for high-fidelity datasets

in the higher-dimensional space, {(t̂i, yh(th,i))ji ¼ 1, . . . , nh} and

t̂i ¼ [th,i, fl(th,i), fl(th,i � t), . . . , fl(th,i � nt)]T. The number of

delays n is strongly linked (in a sense, determines) the simplicity

of the function g in equation (2.7). In this paper, observations

yh(th,i) are obtained from the high-fidelity model such as

yh(th,i) ¼ fh(th,i). Then, we construct and optimize a covariance

matrix K using a radial basis function, which is a de facto default

kernel function in GP regression (see equation (2.3)). Generally,

the choice of a kernel defines the class of functions that the GP

can access [27]. Since the correct class may not be known in

advance for specific applications, there is no systematic way to

choose the kernel. Finally, we compute the predictive posterior

mean (�y�) and variance (cov(y*)) at all the test points (T̂
�
) in

the higher-dimensional space by conditioning the joint Gaussian

prior distribution with all the training points (T̂):

�y� ¼ �f h(T̂�) ¼ K(T̂�, T̂)[K(T̂, T̂)þ s2
nI]�1yh, (2:15)

cov(y�) ¼ K(T̂
�
, T̂
�
) (2:16)

� K(T̂
�
, T̂)[K(T̂, T̂)þ s2

nI]�1K(T̂, T̂
�
): (2:17)

Here, s2
n represents the variance of independent identically dis-

tributed Gaussian noise, assumed added to the observations (yh).

Each new delay burdens the optimization by a single

additional hyperparameter. For more details, refer to [17,27].

In this paper, all GP computations are performed by the open

source Python package GPy [30].
3. Results
We introduce three pedagogical examples to demonstrate our

approach. First, we explore the case where fh is a phase shifted
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version of fl (§3.1). Then, we show that oscillations with different

periods (leading to different recurrences) present a more chal-

lenging scenario, which however can still be resolved by using

shifts of fl. The third example involves discontinuities in fh and

fl. After these three examples, in §3.4, we demonstrate the

approach in the context of the Hodgkin–Huxley model. We

investigate the effectiveness of the proposed framework by

comparing it to three established frameworks: (1) single GP

regression with high-fidelity data only (GP or Kriging),

(2) auto-regressive method with a constant scaling par-

ameter r (AR1 or coKriging), and (3) NARGP in the same

computational environment.
 fs
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3.1. Phase shifted oscillations
Using models at different levels of resolution (e.g. for biologi-

cal oscillators) will often give oscillations that have very

comparable periods but are phase-shifted. Let us start by

considering two functions with different phases on t [ [0, 1],

fh(t) ¼ t2 þ sin2(8ptþ p=10) and fl(t) ¼ sin(8pt): (3:1)

Our ‘high-fidelity function’ can be rewritten by a trigono-

metric addition formula:

fh(t) ¼ t2 þ (sin(8pt) cos(p=10)þ cos(8pt) sin(p=10))2: (3:2)

Now we can explicitly see how the high-fidelity function

can be thought of as a combination of three variables:

t2, the low-fidelity function fl(t) ¼ sin(8pt) and its first

derivative f (1)
l (t) ¼ cos(8pt).

Using delays of fl with a small stepsize t contains enough

information to numerically estimate its derivatives, hence we

can also write fh as

fh(t) 7! g(t, fl(t), fl(t� t), fl(t� 2t)): (3:3)

The GP regression model for g is trained on these four-

dimensional data. In addition, we perform GP regression in

a three-dimensional space constructed from only three delays:

fh(t) 7! g(fl(t), fl(t� t), fl(t� 2t)): (3:4)

As shown in figure 3b, the single GP regression model

provides inaccurate predictive posterior means due to lack

of high-fidelity data. While the linear auto-regressive

model (AR1) also fails to predict the high-fidelity values, the

NARGP (with 10 high-fidelity data points and 100 low-

fidelity data points) catches the trend of the high-fidelity

data, yet still yields inaccurate results: NARGP is informed

only by t and fl(t), but not by f (1)
l (t). Similarly, the GP regression

with only delays (no information about t) in figure 3e fails to

represent the high-fidelity function for these long observation

windows. Beyond 0.25, t cannot be recovered from the shifts of

fl because fl is only a generic observer of t [ [0, 0.25].

As shown in figure 3f , the GP using t and three delays of

fl provides an excellent prediction with only 10 high-fidelity

data points (and 100 low-fidelity data points). This means

that, in the four-dimensional space, g (see equation (3.3))

has small derivatives, which then helps to employ GP

regression successfully.

Next, we investigate the sensitivity and scalability of the

proposed framework on the number of high-fidelity data

points (training data points). We train all GP regression

models with 10, 15, 20 and 25 randomly chosen high-fidelity

data points and 100 uniformly distributed low-fidelity data
points. The error is obtained by averaging 10 trials of

random data selections. A log L2 error with respect to the

number of high-fidelity data points is presented in figure 4a.

The two established approaches (AR1 and NARGP) and

the GP with only delays have no significant accuracy

enhancements as the number of training points increases.

The reason for the consistently large errors is the lack of

additional information provided by the derivatives. The GP

in the higher-dimensional space that includes t, on the other

hand, shows a strong correlation between accuracy and the

number of training points—more high-fidelity points visibly

improve the approximation.

3.2. Different periodicity
In this example, the high- and the low-fidelity model

oscillations are not just phase shifted, but they also are

characterized by different periods. In applications, this

could arise if we tried to match observations of oscillations

of the same model at two different parameter values. Different

(possibly irrationally related) oscillation periods dramatically

complicate the dependency across the two datasets.

We consider two different period and phase shifted data,

fh(t) ¼ sin(8ptþ p=10) and fl(t) ¼ sin(6
ffiffiffi
2
p

pt): (3:5)

The high-fidelity function can be rewritten by a trigono-

metric addition formula

fh(t) ¼ sin(8pt) cos(p=10)þ cos(8pt) sin(p=10): (3:6)

In addition, the first term sin(8pt) can be rewritten again by a

trigonometric subtraction formula

sin(at� bt) ¼ cos(bt) sin(at)� cos(at) sin(bt), (3:7)

where a ¼ 6
ffiffiffi
2
p

p and b ¼ 6
ffiffiffi
2
p

p� 8p. Then,

sin(8pt) ¼ cos(bt)fl(t)� sin(bt)f (1)
l (t): (3:8)

The second term cos(8pt) can be rewritten in the same way.

This shows that the high-fidelity function can be written in

terms of sin(bt), cos(bt), fl(t) and f (1)
l (t). Since sin(bt) and

cos(bt) have lower frequency compared to the original fre-

quency 8, the bound cg for the derivatives of g (see §2.3) is

smaller. It is then reasonable that we can approximate the

high-fidelity function in the higher-dimensional space with

only a few training data points.

We perform the GP in two different extended spaces: (1)

three additional delays, totalling four-dimensional

space (GP+E) and (2) five additional delays, totalling six-

dimensional space (GP+E(2)), and compare them to a single

GP, AR1 and NARGP. Examples of regression results with

15 high-fidelity data points and 200 uniformly distributed

low-fidelity data are shown in figure 5. The GP in the four-

dimensional space provides better regression results than

other established methods, and the GP in the six-dimensional

space presents the best results.

Moreover, as shown in figure 5b, the phase discrepancy

between the high- and low-fidelity functions increases as

time increases, resulting in larger error for larger values of t
(figure 5b–d ). However, the GPs in the higher-dimensional

spaces provide accurate prediction results over this time

observation window.

The sensitivity to the number of high-fidelity data is

shown in figure 4b. The GPs in the four- and six-dimensional

space show significant computational accuracy gain
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compared to all other methods. These results demonstrate the

capability of the proposed framework for period-shifted and

phase-shifted data fusion.

3.3. Models with discontinuities
In general, a smooth stationary covariance kernel cannot

capture discontinuous model data. In order to resolve this

problem, a non-stationary kernel has been introduced

[31,32], with space-dependent hyperparameters. Moreover,

nested GPs were also used successfully to alleviate this pro-

blem [33]. Both approaches introduce, of course, additional

hyperparameters to optimize.

In this example, we introduce a discontinuous function fl
on t [ [0, 0.5),

fl(t) ¼ 0:5(6t� 2)2 sin(12t� 4)þ 10(t� 0:5)� 5, (3:9)

and on t [ [0.5, 1] as

fl(t) ¼ 0:5(6t� 2)2 sin(12t� 4)þ 10(t� 0:5), (3:10)

and the high-fidelity function fh

fh(t) ¼ 2fl(t)� 20tþ 20 ¼ g(t, fl(t)): (3:11)

In the scenario we describe here, the high-fidelity function fh
is discontinuous, but can be expressed in terms of a linear

function of g in two variables.
Examples of regression results with 10 high-fidelity data

points and 200 uniformly distributed low-fidelity data

points are shown in figure 6. Since g is a linear function of t
and fl(t), the NARGP, as well as our GPs in the higher-

dimensional spaces, provide highly accurate prediction

results with just a few high-fidelity data.

In analysing the sensitivity to the number of high-fidelity

data points (figure 4c), there is no significant accuracy gain

after 10 such high-fidelity data points. That is because 10

training data points are enough to represent a linear function

accurately. It is worth noting that, here, the NARGP provides

better prediction results with 20 training data points com-

pared to the GPs in the higher-dimensional space, possibly

due to overfitting.
3.4. The Hodgkin – Huxley model
Based on the results of our pedagogical examples, we apply

the proposed framework to a famous model of a cellular pro-

cess, a version of the Hodgkin–Huxley equations [34]. In

1952, Hodgkin and Huxley introduced a mathematical

model which can describe the initiation and propagation of

action potentials in a neuron. Specifically, they invented

electrical equivalent circuits to mimic the ion channels,

where ions traffic through the cell membrane. The model

for intracellular action potentials (Vm) can be written as a



1.5 2.01.00.5

t

exact
low
GP

–2

–3

1 0

2.0

1.5

1.0

0.5

0

–1

0

1

2

3

0

0.5 1.0 1.5 2.0

–1

–2

–3

0

1

2

3

–1

–2

–3

0

1

2

3

0

0.5 1.0 1.5 2.00 0.5 1.0 1.5 2.00

0.5 1.0 1.5 2.00

exact

exact

–2.0

–1.5

–1.0

–0.5

0

0.5

1.0

1.5

–2.0

–1.5

–1.0

–0.5

0

0.5

1.0

1.5

exact
GP+E(2)GP+E

(a) (b)

(c) (d)

(e) (f )

NARGPAR1

 fl (t)
 fh (t)

0
11 0.5 0 –0.5 –1.0

–1

exact exact

Figure 5. Examples of different periodicity. (a) Dependency between fl and fh with t. (b – f ) The high-fidelity function (the yellow curve) versus posterior means
with 2 s.d. (dashed lines) of 5 compared methods with 15 high-fidelity data points and 200 uniformly distributed low-fidelity data points. (b) GP (Kriging) and low-
fidelity data (the red-dashed curve). (c) Auto-regressive GP (AR1 or coKriging). (d ) Nonlinear auto-regressive GP (NARGP). (e) GP in the four-dimensional space
(GP+E), using (t, fl(t), fl(t 2 t), fl(t 2 2t)). ( f ) GP in the six-dimensional space (GP+E(2)), using (t, fl(t), fl(t 2 t), fl(t 2 2t), fl(t 2 3t), fl(t 2 4t)).
(Online version in colour.)

royalsocietypublishing.org/journal/rsfs
Interface

Focus
9:20180083

8

simple ODE
Cm
dVm

dt
þ Iion ¼ Iext, (3:12)
where Cm is the membrane capacitance and Iion and Iext rep-

resent the total ionic current and the external current,

respectively.

The total ionic current Iion ¼ INa þ IK þ IL is the sum of

the three individual currents as a sodium current (INa), a

potassium current (IK) and a leakage current (IL). In order

to calculate the three individual currents in time, the

Hodgkin–Huxley model introduced gates which regulate

the flow of ions through the channels. Specifically, the three

ionic currents are affected by the three different gates n, m
and h. Based on these gates, the total ionic currents can be
calculated by

Iion ¼ �gNam3h(Vm � ENa)� �gKn4(Vm � EK)� �gL(Vm � EL),

(3:13)

where �g� represents a normalized constant for the ion

channels and E� represents the equilibrium potential

for a sodium (* ; Na), a potassium (* ; K ), and a leakage

(* ; L), current. The three gates n, m and h can then be

modelled by the following ODEs:

dn
dt
¼ an(Vm)(1� n)� bn(Vm)n, (3:14)

dm
dt
¼ am(Vm)(1�m)� bm(Vm)m (3:15)

and
dh
dt
¼ ah(Vm)(1� h)� bh(Vm)h: (3:16)

In this paper, we set the model parameter values to

�gNa ¼ 1:2, �gK ¼ 0:36, �gL ¼ 0:003, ENa ¼ 55.17, EK ¼ 272.14
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and EL ¼ 249.42 [35]. We assume that we have too few high-

fidelity data points to directly estimate the function Vm(t). In

addition, we assume that we have many data points from a

low-fidelity model which has a slightly perturbed model

parameter (Iext) compared to the ‘true’ high-fidelity model. In

this paper, we set Iext ¼ 1.0 for the high-fidelity model and

Iext ¼ 1.05 for the low-fidelity model, resulting in different

oscillation periods (and a phase shift when we start at the

same initial conditions). The action potentials Vm of the two

different fidelity models are shown in figure 7a,b.
Examples of regression results for Vm by 5 different

methods with 20 high-fidelity data points and 300 uniformly

distributed low-fidelity data points are shown in figure 7b– f .

Since the two datasets are phase-shifted, the single GP, AR1,

and NARGP fail to accurately approximate the high-fidelity

model. However, GPs in the higher-dimensional spaces

provide reasonable prediction results. The GP in the six-

dimensional space (GP+E(2)) shows significant improvement

in the form of large uncertainty reduction as well as high

prediction accuracy.
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The sensitivity to the number of high-fidelity data is

shown in figure 4d. The proposed framework shows compu-

tational accuracy gains compared to all other methods, as

well as marked improvement when new high-fidelity points

are added.
4. Conclusion
In this paper, we explored mathematical algorithms

for multi-fidelity information fusion and its links with

‘embedology’, motivated by the NARGP approach. These

modifications/extensions of kriging show promise in

improving the representation of data-poor ‘high-fidelity’

datasets exploiting data-rich ‘low-fidelity’ datasets. Given

that fh may not be a simple function—and sometimes not
even a function—of fl, we demonstrated that using additional

functions of t, such as derivatives or shifts of fl, can drastically

improve the approximation of fh through GP.

The limitations of the proposed framework arise in the

form of the curse of dimensionality and of overfitting. As

the number of hyperparameters in the GP framework

grows in an increasingly higher dimensional input space,

the optimization cost grows (and there is always the possi-

bility of converging to local, unsatisfactory minima).

Adaptively testing for the ‘best’ number of delays is possible,

and will be pursued in future work. The natural option of

using multiple low-fidelity models (instead of delays of just

one of them) is also being explored. Techniques that system-

atically find all the local hyperparameter minima (in the spirit

of the reduced gradient method [36]) may also be useful in

this effort. Another promising research direction involves
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the construction of data-informed kernels (e.g. through

‘neural-net-induced Gaussian process’ [37]) for more realistic

and unbiased predictions. Alternatively, it is interesting to

consider transformations of the input space using manifold

learning techniques and the so-called Mahalanobis distance

[38,39], which has been demonstrated to successfully match

different (yet conjugate) models [40,41].

What we believe is a most promising direction for

the use of these techniques is the reconciliation of different

granularity multi-scale models—having, say, an atomistic

‘high-fidelity’ simulation enhanced by a continuum ‘low-fide-

lity’ approximate closure. Thus, ‘heterogeneous data fusion’

becomes a version of multi-fidelity data fusion [12]. In this

paper, the fusion tools simply ‘filled in the gaps’ in a single

manifestation of the high-fidelity data. In a time-dependent

context, ‘full space, full time’ low-fidelity simulations can
help complete and thus accelerate ‘small space, small time’

high-fidelity simulations—in a form reminiscent of the

patch-dynamics approach in equation-free computation [42]

(see also [11,12]). Using a qualitatively correct (even though

quantitatively inaccurate) low-fidelity model—as opposed

to just the local Taylor series that play the role of low-fidelity

modelling in patch dynamics—may very much improve the

computational savings of such multi-scale computation

schemes.
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2007 Machine learning and its applications to
biology. PLoS Comput. Biol. 3, e116. (doi:10.1371/
journal.pcbi.0030116)

2. Holzinger A, Jurisica I. 2014 Interactive knowledge
discovery and data mining in biomedical informatics:
state-of-the-art and future challenges. Lecture Notes
in Computer Science, vol. 8401. Berlin,
Germany: Springer.

3. Libbrecht MW, Noble WS. 2015 Machine learning
applications in genetics and genomics. Nat. Rev.
Genet. 16, 321 – 332. (doi:10.1038/nrg3920)

4. Villoutreix P, Andén J, Lim B, Lu H, Kevrekidis IG,
Singer A, Shvartsman SY. 2017 Synthesizing
developmental trajectories. PLoS Comput. Biol. 13,
e1005742. (doi:10.1371/journal.pcbi.1005742)

5. Lanckriet GR, De Bie T, Cristianini N, Jordan MI,
Noble WS. 2004 A statistical framework for genomic
data fusion. Bioinformatics 20, 2626 – 2635. (doi:10.
1093/bioinformatics/bth294)

6. Willett P. 2013 Combination of similarity rankings
using data fusion. J. Chem. Inf. Model. 53, 1 – 10.
(doi:10.1021/ci300547g)

7. Dimov I, Zlatev Z, Faragó I, Havasi Á. 2017 Richardson
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