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Deep learning (DL) algorithms hold great promise for applications in the field

of computational biophysics. In fact, the vast amount of available molecular

structures, as well as their notable complexity, constitutes an ideal context in

which DL-based approaches can be profitably employed. To express the full

potential of these techniques, though, it is a prerequisite to express the infor-

mation contained in a molecule’s atomic positions and distances in a set of

input quantities that the network can process. Many of the molecular descrip-

tors devised so far are effective and manageable for relatively small structures,

but become complex and cumbersome for larger ones. Furthermore, most of

them are defined locally, a feature that could represent a limit for those appli-

cations where global properties are of interest. Here, we build a DL

architecture capable of predicting non-trivial and intrinsically global quan-

tities, that is, the eigenvalues of a protein’s lowest-energy fluctuation modes.

This application represents a first, relatively simple test bed for the develop-

ment of a neural network approach to the quantitative analysis of protein

structures, and demonstrates unexpected use in the identification

of mechanically relevant regions of the molecule.
1. Introduction
Proteins are the most versatile biological molecules, as they cover roles ranging

from ‘mere’ structural support (e.g. in the cytoskeleton) to active cargo transport,

passing through enzymatic chemistry, protein folding chaperoning, communi-

cation, photochemical sensing, etc. The impressive variety of activities, sizes,

shapes and functions proteins show is largely due to the LEGO-like capacity of

the polypeptide chain, as well as to the polymorphic chemistry entailed in the

20 amino acids they are made of. According to the well-established central

dogma of biology, the amino acid sequence of the protein dictates its three-

dimensional structure, which in turn determines and enables the molecule’s

function. It should thus come as no surprise that protein structures have been

thoroughly investigated at all levels, from the fundamental, experimental deter-

mination of the arrangement of their atoms in space (e.g. by means of X-ray

crystallography or nuclear magnetic resonance) to computer-aided analyses

aimed at understanding the interplay between sequence, structure and function.

These latter studies are carried out through in silico representations of the mol-

ecules whose resolution ranges from atomistic—as is typically the case in

molecular dynamics (MD) [1,2]—to simplified, coarse-grained models [3–6],

where several atoms are lumped together in sites interacting via effective poten-

tials. Furthermore, the field of protein bioinformatics has boomed in the past

few decades, where the wealth of available sequences and structures has been

exploited to investigate structure prediction, protein–protein interaction, docking,

protein-related genomics, etc. (see [7,8] for recent, comprehensive reviews).

The availability of a large number of instances of the protein space (be that

sequence or structure) and the necessity to perform dataset-wide analyses and

screening of their properties naturally leads one to wonder whether one could

http://crossmark.crossref.org/dialog/?doi=10.1098/rsfs.2019.0003&domain=pdf&date_stamp=2019-04-19
mailto:raffaello.potestio@unitn.it
http://orcid.org/
http://orcid.org/0000-0001-6408-9380
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


royalsocietypublishing.org/journal/rsfs
Interface

Focus
9:20190003

2
take advantage of the recent progresses achieved by machine

learning approaches, in particular, deep learning (DL). The

latter is a subset of the wide class of machine learning compu-

tational methods, and has been successfully applied to a fairly

wide spectrum of areas of science [9,10], ranging from neuro-

science [11] to image and speech recognition [12,13]. In the

field of computational chemistry much effort has been devoted

to the identification of the variables that are able to provide a

comprehensive description of a chemical compound (molecular
descriptors). These features are usually designed in order to be

applied to elements of the chemical compound space (CCS),

the theoretical combinatorial set of all possible compounds

that could be isolated and constructed from all combinations

and configurations of atoms [14–16]. Several examples of

descriptors are present in the literature [17–23]: they proved

to be extremely useful in the development of predictive

models about a huge variety of molecular properties. Never-

theless, the size of the CCS is limited from above by the

Lipinski rules [24,25], that set the maximum molecular

weight to 500 atomic mass units. It thus appears evident that

the vast majority of structures studied in biophysics, such as

proteins, nucleic acids and polysaccharides, falls well beyond

this value. As an example, the structures conserved in the

Protein Data Bank (PDB) have a molecular weight ranging

from few hundreds to hundred thousand daltons. One of the

biggest issues in the application of DL-based approaches to

biophysical problems thus consists in defining a flexible

and robust method to properly encode the huge amount of

information contained in these structures ( feature extraction).

Nonetheless, DL algorithms are enjoying increasing popu-

larity in the context of biological and condensed matter physics

as well. For example, Geiger & Dellago [26] built DL architec-

tures capable of identifying local phases in liquids. More

recently, Feinberg et al. [27] developed PotentialNet, a

DL-based model for predicting molecular properties. At the

same time, Wehmeyer & Noé [28] have implemented a com-

plex DL algorithm (time-lagged autoencoder) able to perform

efficient dimensionality reduction on molecular dynamics

trajectories. For what concerns the field of protein folding,

Wang et al. [29,30] developed deep convolutional architectures

in order to predict secondary structure and residue–residue

contacts from sequence. Notably, promising works by

Lemke & Peter [31] and Zhang et al. [32] extended the use of

such algorithms to the field of coarse-grained models.

In spite of the recent encouraging attempts, a straightfor-

ward approach to a DL-based structural analysis protocol for

the study of large macromolecules is lacking. In the present

work, we aim at moving a step forward in this direction

through the construction of a DL model to analyse protein

structures. We set ourselves a relatively simple goal, that is,

to predict the 10 lowest eigenvalues of an exactly solvable

coarse-grained model of a protein’s fluctuations. These quan-

tities, in fact, are related to those deformations which involve

a large number of atoms moving in a concerted manner; the

low eigenvalues associated with such collective movements

are indicative of a small amount of energy required to

excite them, as well as of the long self-correlation time that

it takes to the molecule to relax these deformations back to

the equilibrium structure [33,34]. The low-energy eigenvalues

are thus simple and representative proxies for the most collec-

tive and global properties of the model under examination.

The first aim of this work consists in identifying the pro-

cedure of feature extraction that is most suitable to our task.
Second, we show that the application of a simple, standard

and computationally not expensive DL architecture to the

selected features gives satisfactory results, suggesting that

more complex tasks will be attainable with similar, more

refined networks. It is worth pointing out that although the

development of a DL-based predictive model leads to a signifi-

cant computational gain with respect to the exact algorithmic

procedure, this is not the purpose of this work: here, we

focus on demonstrating the viability of a DL-based approach

to a specific class of problems in computational biophysics.
2. Material and methods
In this section, we first summarize a few relevant concepts about

deep neural networks (DNNs), and specifically on convolutional

neural networks (CNNs). Subsequently, we provide a brief over-

view of the protein models of interest for our work, that is, elastic

network models (ENMs).

The raw data employed in the present work, including PDB

files, protein structure datasets, CNN training protocols, trained

networks and related material are publicly available on the ERC

VARIAMOLS project website http://variamols.physics.unitn.eu

in the research output section.

2.1. Convolutional neural network model
Born in the 1950s as theoretical, simplified models of neural struc-

ture and activity, neural networks are becoming an increasingly

pervasive instrument for the most diverse types of computation.

In particular, the tasks in which DNNs excel are those that can

be reduced to classification, pattern recognition, feature extraction

and, more recently, even a rudimentary (yet impressive) creative

process. DNNs can be understood as a very complex form of fitting
procedure, in that the parameters of the network are set through a

process of training over a large dataset of items for which the out-

come value is known; a prototypical example is that of a network

endowed with the task of distinguishing images of dogs from

those of cats, which is ‘trained’ by proposing to it several images

of the two types and changing the parameters so that the outcome

label corresponds to the correct one. The following step is the vali-

dation of the network’s effectiveness onto a complementary

dataset of input instances that have not been employed in the train-

ing. The predictive power of DNNs is largely due to the nonlinear

character of the functions employed to connect one ‘neuron’ to the

following. This characteristic makes them substantially more flex-

ible and versatile than multi-dimensional linear regression models,

albeit also more obscure to comprehend in their functioning.

Deep feedforward networks (also called multilayer percep-

trons (MLPs) or artificial neural networks (ANNs)) are the

most known class of machine learning algorithms [10]. Given

some input values x and an output label y (categorical or numeri-

cal), in MLPs we assume the existence of a stochastic function F
of x such that y ¼ F(x). A mapping y ¼ f (x; W) is defined and the

algorithm attempts to learn the values of parameters W that give

the best approximation of F. This function f (x; W) is the compo-

sition of n different functions (usually called layers), where n is

the depth of the MLP:

f (x) ¼ fn(fn�1( � � � f2(f1(x)))): (2:1)

The function f1, which directly acts on the input data, is called

the input layer, while fn is the output layer. f2 . . . fn21 and, more

generally, all the intermediate layers are called hidden because

their scope is to translate the results coming from the first layer

into an input that can be processed by the output layer.

Equation (2.1) shows that a layer can be thought of as a func-

tion that takes a vector as input and gives a different vector as

output. One can also imagine a layer as a set of vector-to-scalar
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functions (neurons) that act in parallel [10]. Neurons are the

building blocks of an MLP. These entities loosely resemble

their analogous biological counterpart: each unit receives a cer-

tain amount of input signals from other units, adds a custom

bias term, performs a weighted sum and applies a nonlinear

transformation, or activation function, in order to produce an

output signal. This transformation has to be nonlinear: in fact,

a neural network with only linear activations in the hidden

layers would be equivalent to a linear regression model [10].

Among the several neural network architectures that have

been developed throughout the years, a particular class is that

of convolutional neural networks (CNNs). CNNs proved to be

extremely powerful if applied to processes like image and

video recognition and natural language processing.

Mathematically, the bidimensional discrete convolution between

two functions F and G is given by the following expression:

(F sp G)(i, j) ¼
X1

m,n¼�1

F(m, n)G(i�m, j� n), (2:2)

where F is referred to as the input function (a bidimensional

grid-like object) while G is called kernel function. G is much smaller

than F.

In the vast majority of CNNs [10,13,35], a convolutional layer

does not contain only the convolution operation: in fact, it is fol-

lowed by an activation layer and, usually, by a pooling layer. The

activation layer transforms the feature map through the application

of a nonlinear function [10]. Pooling layers downscale the

input data: given the output of the activation layer at a certain

location, a pooling operation performs a summary statistic (average,

maximum [36]) on its neighbours that replaces the original value.

Common CNNs consist of a sequence of convolutional layers

followed by a number of fully connected (dense) layers placed

before the output. This is the network architecture of choice for

this work, as detailed later on.

2.2. Elastic network models
Classical MD [1,2], by which Newton’s equations of motion are

numerically integrated, is the most effective and widespread

method used to investigate in silico the equilibrium properties

and the dynamics of a (biological) molecule. Despite the recent

dramatic gains in computational efficiency [37–40], many bio-

logical phenomena cannot be investigated with atomically

detailed models: this is a particularly limiting problem if the

system size exceeds a few tens of millions of atoms or if the rel-

evant biological processes occur over long time scales (typically

larger than hundreds of microseconds). Furthermore, it is impor-

tant to underline that highly detailed atomistic MD simulations

generate an enormous amount of data, which are often difficult

to store and post-process and, sometimes, simply not needed.

MD simulations rely on sophisticated semi-empirical poten-

tials that depend on a large number of parameters and reference

properties; however, in a seminal paper Tirion [33] showed that,

in several cases, it is possible to replace the atomistic potential

with a much simpler, single-parameter harmonic spring:

EP ¼
X
(i,j)

E(ri, r j) ¼
X
(i,j)

C
2

(jri,jj � jr0
i,jj)

2 (2:3)

where the parentheses in the summation (i, j) indicate that the sum

is restricted to those atom pairs whose distance jri,jj ¼ jri 2 rjj is

lower than a cut-off radius.

This functional form of the potential is extremely simplistic, as

3-body terms are not even taken into consideration. Nevertheless, it

can capture the collective, low energy vibrations of proteins. The

slowest modes of vibration involve several atoms and interatomic

interactions, whose sum approaches a universal form governed

by the central limit theorem. For slow, collective modes, the details

of the form of the pair potentials can be neglected [33], and if one is
only interested in analysing these modes (which usually dictate the

function-oriented dynamics of the molecule) a single-parameter

harmonic description can provide accurate predictions.

The potential energy in equation (2.3) gives rise to the

following Hessian matrix:

Mij,mn ¼
@2V

@xi,m@x j,n

¼ �kANM

(xi,m � x j,m)(xi,n � x j,n)

jr0
(i,j)j

2
, (2:4)

where xi ¼ ri � r0
i and m and n are Cartesian components.

Models described solely by the Hessian matrix in equation

(2.4) are called anisotropic elastic network models, or ANMs.

The advantage of a quadratic approximation to equation (2.3)

is that the normal modes of vibration can be straightforwardly

obtained through the inversion of the Hessian.

As anticipated, ENMs can be employed in contexts other

than the analysis of vibrational spectra. In fact, it is possible to

associate the harmonic force field of these models with simplified

representations of the structure, that is, coarse-grained models.

Coarse-graining can be defined as the process of reducing the

accuracy and resolution of the representation of a system,

describing it in terms of fewer collective degrees of freedom

and effective interactions. The former are usually defined lump-

ing together a relatively large number of atoms (2–3 to tens) into

a single bead; the latter, on the other hand, are parametrized

making use of one of the many available strategies [3–6],

which in general aim at reproducing the multi-body potential

of mean force of the system. Coarse-grained ENMs are typically

constructed retaining only the Ca atom of the backbone, and pla-

cing a harmonic spring between pairs of atoms whose distance in

the native conformation lies within a given interaction cut-off.

More refined models employ also the Cb carbon atom—or an

equivalent one—which explicitly accounts for the amino acid

side chain. It is important to underline that the spring potentials

employed in coarse-grained ENMs are a proxy for a thermal

average of true all-atom interactions over all conformations com-

patible with a given coarse-grained configuration; hence, they

consist of free energies rather than potential energies, as is

usually the case in the context of coarse-graining.

Studies making use of all-atom or coarse-grained ENMs

proved to be particularly effective in the modelling and predic-

tion of low energy conformational fluctuations, corresponding

to the most collective normal modes. These results are often in

agreement with the ones produced using all-atom MD simu-

lations with a standard semi-empirical force field. Among the

most notable structures they have been applied to we point out

RNA Polymerase II [41], virus capsids [42], transmembrane

channels [43] and the whole ribosome [44].

The b-Gaussian model (b-GM [34]) is a particular flavour of

coarse-grained ENM in which the description of protein fluctu-

ations is improved through the introduction of effective Cb

centroids (with the exception of glycine residues, whose side

chain is made up by a single hydrogen atom). The b-GM

model is defined on a coarse-grained protein structure, thus pro-

viding a simplified description of the system’s fluctuations in a

local free energy minimum, centred on a reference structure typi-

cally chosen to be the native, crystallographic conformation. The

introduction of Cb atoms in the model results in a Hamiltonian

that is considerably more complex than the one relative to a

chain of Ca units, whose general form is given by

H ¼ 1

2

X
i,j

xCa

i MCa�Ca

i,j xCa

j þ
X

i,j

xCa

i M
Ca�Cb

i,j x
Cb

j

þ 1

2

X
i,j

x
Cb

i M
Cb�Cb

i,j x
Cb

j , (2:5)
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Figure 1. Schematic illustration of the procedure followed to construct the
100-amino acids long decoys. Proteins whose sequence is longer than 100
residues are cut in 100-residues long subsequences sliding a window of
this length along the main chain. A protein of length 100 þ N amino
acids produces N þ 1 decoys. (Online version in colour.)
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proteins in the evaluation set, computed by means of the b-GM. (Online
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where M is an interaction matrix. The first term of the Hamil-

tonian represents the interactions between Ca atoms, be they

bonded links between consecutive Ca’s along the peptide chain

or simply those belonging to close-by residues in contact in the

native conformation. The second term accounts for interactions

between Ca’s and Cb’s; lastly, the third term includes interactions

existing solely among Cb’s.

In the b-GM framework, the positions of Cb’s are assigned

using a simplified version of the Park–Levitt procedure [45], in

which the Cb centroids are placed in the plane specified by the

local Ca trace. This assumption allows one to compute the Cb

coordinates of atom i using only the positions of Ca’s i 2 1, i
and i þ 1, giving rise to a Hamiltonian that is quadratic in the

Ca deviations but with a different coupling matrix. This model

has the very same computational cost of less accurate, Ca-only

anisotropic models, but it is able to capture in a more accurate

way the low-energy macromolecular fluctuations. In this way,

the deviations of Cb atoms of all amino acids (excluding glycine

and the terminal residues) are parametrized using the Ca Cartesian

coordinates, leading to a new Hamiltonian of the form

~H ¼ 1

2

X
i,j

xCa

i
~M

Ca�Ca

i,j xCa

j : (2:6)

In the present work, we have been consistent with the model

as described in the original paper [34], and used the same par-

ameters present therein. In particular, the cut-off radius Rc has

been set to 7.5 Å.
2.3. Construction of the protein dataset
In the previous section, we described the exactly solvable algo-

rithmic procedure through which one can compute eigenvalues

and eigenvectors associated with the local fluctuation dynamics

of the b-GM coarse-grained protein model. As anticipated in

the introduction, the scope of our work consists in building a

DL architecture (CNN) capable of predicting the lowest 10 of

these eigenvalues. In order to do so we have to first train and

subsequently validate this CNN approach. We constructed two

separate groups of protein structures, downloaded from the

PDB, to be used as training and evaluation sets, respectively.

The evaluation set contains protein structures with a single

chain and 100 Ca atoms; for the training set, we considered

chains with a length between 101 and 110 monomers that have

been processed to construct N þ 1 decoys for each protein of

length 100 þ N. In this specific context, by decoy, we indi-

cate protein-like chains or subchains that preserve the vast

majority of typical structural properties of real, ‘full’ proteins

[46]. Figure 1 illustrates the procedure followed to produce

such decoys.
Through this simple process, we obtain an evaluation set of

146 real proteins with 100 amino acids and a training set of

10728 decoys of the same length. It is important to note that

the b-GM spectrum is invariant with respect to the orientation
of the sequence, namely we can easily double both datasets

including the reversed structures.

Dealing with proteins and biologically relevant decoys we

encounter a wide variety of structures. They are extremely het-

erogeneous in terms of radius of gyration and their spectra

show high variability. Figure 2 shows the distribution of the 10

lowest eigenvalues in the validation set, where li represents the

i-th smallest non-zero eigenvalue, i ¼ 1, 2, . . .10. The choice of

considering only 10 eigenvalues is customary and in line with

the analyses carried out in the literature [47–50].

In order to make a quantitative comparison between samples

in the available datasets, figure 3 shows a histogram of the

globularity expressed in terms of radius of gyration

Rg ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

k¼1

(rk � rmean

vuut )2: (2:7)

In the training set, there are several structures that are highly

non-globular, but the vast majority has a gyration radius

comparable to the values present in the evaluation set.
2.4. Molecular descriptor
A crucial step in the construction of a DL-based pipeline

to analyse and process a given molecular structure is the

identification of an appropriate molecular descriptor. From

equation (2.6), we can see that, within the b-GM framework,

the Hamiltonian of the system depends only on the positions

of the Ca atoms. Hence, our molecular descriptor will take

as input only the Cartesian coordinates of these atoms. However,

for CNN applications, we cannot simply characterize the

biomolecule in terms of Cartesian coordinates, since these

are not invariant with respect to rotations and translations of

the system, an important requirement a molecular descriptor

has to fulfil.
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A prominent example of molecular descriptor is given by

Behler and Parrinello’s symmetry functions [51,52]. These func-

tions describe the local environment of each atom in a

molecular system, while satisfying the invariance requirement.

Among the parameters that are defined in the calculation of

these quantities, the most relevant one from a conceptual point

of view is the cut-off radius: interatomic distances larger than

this value yield zero contribution to these descriptors. Symmetry

functions have been mainly employed in order to provide accu-

rate potential energy surfaces [51,52] and to detect local atomic

arrangements in liquids [26]. Although these descriptors

proved to be extremely successful, our learning task concerns

the prediction of a property that is (at least in general) intrinsi-

cally global, hence we need a function that is able to encode all

the interactions between the atoms that constitute the system.

Therefore, we decided to characterize the proteins under examin-

ation in terms of the Coulomb matrix, a very general and global

molecular descriptor that is rotation-translation invariant. This is

defined as

CIJ ¼
0 if I ¼ J,
1

jRI�RJ j otherwise,

�
(2:8)

where I and J are atomic indices.
2.5. Architecture
In the previous sections, we defined all the elements of our learn-

ing problem, namely the chosen molecular descriptor, the

desired output and the algorithmic procedure used to produce

it. We now illustrate the architecture of the network employed.

The motivations behind the choice of a CNN architecture to

address the problem at hand are essentially three. First, parameter
sharing allows one to keep the total number of parameters to be

learned relatively low. If we used an ANN, which has tied
weights, we would have obtained a much higher total number

of learnable parameters. Second, CNNs are particularly suited

to deal with grid-like input data, such as Coulomb matrices.

Third, no data preprocessing is required.

Here, we used a CNN composed of three convolutional

layers and two fully connected layers. Each convolutional layer

is made by a convolution operation followed by an average pool-

ing layer. While the latter acts on regions of amplitude 2 � 2, the

former is realized with the use of 32 kernel functions, each of

which is a 5 � 5 matrix whose elements represent the learnable

parameters (weights). The dense layers consist of 512 and 128

units, respectively. There are 10 output units, each of which cor-

responds to one non-zero eigenvalue of the b-GM spectrum. The

network structure is sketched in figure 4. Three dropout [53]
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layers have been included in the network before, between, and

after the fully connected layers. Dropout is a regularization tech-

nique that drops a certain ratio (25% in our case) of the input

units of a layer at each step of the training process. This technique

significantly prevents the risk of overfitting the training set [54].

The network is developed using Keras [55] with Tensorflow

[56] backend. The optimizer is adagrad [57] with learning rate =

0.008. The batch size is 400 and the number of epochs is bound to

100. For what concerns the loss function, we decided to employ

the mean absolute percentage error (MAPE):

MAPE ¼ 100� 1

N

XN

j¼1

1

10

X10

i¼1

jl j
i � l̂

j
i j

jl̂ j
i j

, (2:9)

where N is the batch size while l̂
j
i and l

j
i represent true and pre-

dicted eigenvalues, respectively. Recent work by de Myttenaere

et al. [58] proved generic consistency results for this loss function.

In order to quantitatively assess the effectiveness of the net-

work, we analysed the CNN-predicted eigenvalues through a

cross-validation procedure. This is a common strategy to evaluate

the performances of a learning algorithm and its ability to general-

ize to an unknown and independent dataset. The idea behind this

technique is the repetition of training and testing processes on

different subsets of the full training set. k-fold cross-validation is

the most known example of this procedure: the full training set

is split into k different folds; for each of these subsets the algorithm

is trained over the other k 2 1 folds and is tested against the

unknown samples present in the k-th fold. In this work, we have

made use of the deep analysis protocol (DAP) for cross-validation.

This protocol has been extensively employed in many machine

learning challenges applied to biological data [59,60], inducing

an effective massive replication of data. In this work, we

performed a 10 � 5 cross-validation, namely a fivefold cross-

validation performed 10 times, with 10 different random seeds

for the network; the latter seeds are the same that have been

used during the process of training on the full dataset. This itera-

tive partitioning of the protein decoys dataset into training and

validation subsets thus allows us to assess the network’s predictive

power onto a minimally overlapping group of structures, while at

the same time taking full advantage of the number of available

input elements for the parametrization procedure.
3. Results and discussion
Before discussing the results we deem it useful to highlight a

few crucial aspects of the purpose of our work. In essence, the

problem we tackle here can be seen as a spectral inversion by

means of a CNN. In the literature, there are previous

examples [61,62] of machine learning-based approaches to

extract the eigenvalues of a matrix using mainly recurrent

neural networks. However, our work focuses on an intrinsi-

cally different goal: first, we did not consider the actual

interaction matrix of proteins as input data, rather the simpler

and less detailed distance matrix; second, our scope is to pro-

vide a preliminary example of how to employ DL-based

algorithms to extract non-trivial, global structural properties

of proteins. Our choice to make use of ENMs relies both on

their simplicity and low computational requirements, which

allowed us to quickly validate the performance of the CNN.

This validation was carried out through the application of

the DAP to our multitask regression problem. In the several

fivefold cross-validation processes, the independent folds

were built so that a structure and its reversed counterpart

were included in the same fold. On the other hand, decoys

coming from the same protein were allowed to be part of

different folds. This results in folds that are not completely
independent. In figure 5, we can see an example of the behav-

iour of training and evaluation losses during the training

process on the full training set. The losses have a quite

steep decrease during the early stages of the training, where

they are almost coupled. After a few (approx. 20) epochs the

loss on the evaluation set starts oscillating, but it keeps

decreasing. These non-negligible oscillations are due partly

to the small size of the evaluation set, and partly to the

relative lack of robustness of MAPE to small fluctuations.

The result achieved for each eigenvalue in cross-

validation and evaluation are reported in figure 6. Results

in cross-validation are more accurate than the others: this is

reasonable since we decided to include decoys generated

from the same protein in different folds. MAPE is a relative

performance measure in that it is defined in terms of normal-

ized deviations from the reference value; however, it is not

bounded from above; hence, in order to further assess the val-

idity of our predictions, they have to be compared to the ones

given by a non-informative model. In figure 7, we can see a

comparison between our results on the evaluation set and a

non-informative model that always predicts the average

value of each eigenvalue in the training set. In our case, we

can see that the predictions are considerably more accurate

than the ones produced by this non-informative model.
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Figure 8 shows the scatter plot of all the eigenvalues in

the evaluation set plotted against their predicted values.

Since we ran 10 different experiments, we had 20 predictions

associated with a single real eigenvalue (sequence-reversed

structures share the l’s of the original structures). The

almost linear behaviour suggests that the learning model is

able to detect with good precision all the eigenvalues even

if they range over several orders of magnitude.

The accuracy of the CNN-based approach leaves room for

improvement, e.g. through an increased size of the training

dataset, a more refined cost function, different parameters

and structure of the network etc. However, there is a limit-

ation in the proposed algorithm which is more fundamental

than those mentioned, namely the fixed size of the input

structures. In fact, the far-reaching objective of employing

DL approaches for structural analysis of proteins would be

severely limited if only structures with a given number of

amino acids could be analysed. A mitigation of this issue

comes from the nature of the problem under examination

and, as will be illustrated hereafter, opens a novel scenario

for the usage of CNNs in the present context.

A few words are in order regarding the computational

cost of the CNN in comparison with the exact algorithmic

procedure. The time required by the network-based approach

to process the entire training set and predict the correspond-

ing eigenvalues is shorter than 5 min on a single-core CPU,

while the application of the b-GM to the same dataset

requires 25 min on the same platform. It is evident that the

amount of information provided by the two approaches, as

well as the relative accuracy, are not comparable: while the

b-GM produces the full, exact spectrum for each molecule

(eigenvalues as well as eigenvectors), the CNN can only pro-

vide an estimate of the 10 lowest eigenvalues. Nonetheless,

even though the computational gain obtained already, in

this case, is substantial, one has to bear in mind that the

ENM is here taken as reference algorithm precisely because

of its velocity and accuracy; on the contrary, we envision

applications involving much more time-consuming pro-

cedures, e.g. the optimization of complex cost functions

[63], for which the speedup can be substantial.

The defining property of low-energy modes of fluctuations

is their collective character, which manifests itself in the fact

that several residues are displaced in the same direction, with
no or very little strain among them. This characteristic lies at

the foundation of coarse-graining approaches which aim at

identifying large groups of residues behaving as quasi-rigid

units [64–72]. It is thus the case that the residues which deter-

mine the low energy eigenvalues in ENMs are those few whose

distances vary the most, that is, hinge residues. Consequently,

it is reasonable to expect that the elimination of a few Ca’s from

the model would not too drastically impact the value of the

computed spectra.

To provide quantitative concreteness to these hypotheses,

we fed the CNN, trained to intake 100-residues-long struc-

tures, with six proteins of 120 amino acids, 20 of which

have been randomly pruned. In figure 9, we show the struc-

ture of the selected molecules, which have been chosen from

the PDB so as to have some degree of structural variability.

These proteins range from very globular (4HNR) to fairly

elongated (1BR0) ones, up to a case where a hinge is evident

and identifiable already by visual inspection (1E5G). For each

of these six molecules, we realized 100 different coarse-

grained structures having only 100 amino acids by randomly

removing 20 of them. The model set of each protein has been

fed to 10 networks, differing only for the initial guess of the

hyperparameters. In figure 10, we report the average of the

first 10 eigenvalues of each of the six proteins, averaged

over the 100 randomly pruned structures and the 10 CNN

instances. These eigenvalues are plotted against the value

computed by means of the b-GM.

A few observations are in order. In one case, namely

4HNR, there is a perfect overlap between the predictions on

the randomly coarse-grained structures and the actual

values, with an overall average MAPE equal to 15.8. This

molecule is highly globular, which also reflects in the large

absolute value of the eigenvalues; hence, it seems that the

removal of a relevant fraction of amino acids does not

affect the precision of the CNN model. Eigenvalues associ-

ated with 2KOK, 2YQD, and 1MEK were predicted with

reasonable accuracy, the overall average MAPE being 30.7,

35.5 and 48.3, respectively. These proteins share a medium

degree of globularity. The most important deviations from

the real eigenvalues appear for 1BR0 and 1E5G, with largely

underestimated values; for these molecules, the overall aver-

age MAPE equals 73.7 and 58.3, respectively. However, these

proteins are at the other extreme of the ‘globularity spectrum’

with respect to the first, very compact 4HNR. In fact, 1BR0 is

a bundle of three quasi-parallel alpha-helices, while 1E5G

consists of two identical, independent domains separated

by a few interface residues. It is reasonable to expect that in

the first case no well-defined hinge region exists, rather each

part of the molecule takes part in the low-energy deformation.

A random removal of residues thus has an appreciable impact

in the calculation of the energetic cost associated with

collective motions.

For 1E5G the mechanism is different. This protein pos-

sesses a short linker and a relatively small interface

connecting two lobes, thus suggesting a rather decoupled

dynamics between them. That this is likely the case is made

evident by the fact that this molecule features the lowest

lowest-energy (sic) eigenvalue among those under examin-

ation. Hence, the removal of some residues from those

constituting the hinge between the two domains substantially

affects the result. In order to verify this hypothesis, we have

repeated the CNN-based calculation for 1E5G on a set of

100 pruned structures, which have been obtained by
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randomly removing 20 amino acids from the crystallographic

conformation with the restraint that no residue lying within a

10 Å cut-off from the centre of the linker could be eliminated,

as illustrated in figure 11. The effect of this simple criterion

can be seen on the data reported in figure 13, which show

a small yet appreciable and, most importantly, systematic

improvement of the MAPE score when the hinge residues

are not selected for removal (centred sphere CG) with respect

to the completely random selection case (random CG).

Finally, to rule out the possibility that this improvement

depends on the exclusion of a localized group of CG sites

per se rather than their particular location, we have performed

a further test. Specifically, we have constructed 10 different

CG model types in which the 20 exceeding residues have

been eliminated outside of a sphere of radius 10 Å whose

centre is located on a randomly chosen position of the protein

at least 20 Å away from the hinge centre. In plain English, we
have performed the same calculation as of the centred sphere

CG 10 times, with spheres centred so as to avoid overlap with

the one placed in the protein hinge (figure 12). For each

model type—i.e. for each location of the exclusion sphere—

10 randomized CG models have been produced, and

their eigenvalues averaged over specific coarse-graining

realization and CNN model.

The result, also visible in figure 13, shows an increase of

the MAPE score with respect to the random case, that is,

the prediction of the CNN worsens with respect to a model

where the 20 removed residues have been randomly chosen

throughout the structure. This observation consolidates the

hypothesis that the network is capable of predicting with suf-

ficient accuracy the low-energy eigenvalues of a protein

larger than those it has been trained upon, provided that

the exceeding number of sites has been removed; further-

more, and quite intuitively, the prediction improves if the



Figure 11. Schematics of the procedure to perform a restrained random
removal of the exceeding 20 amino acids from protein 1E5G. Atoms to be
eliminated can be selected only outside of the sphere centred on the mol-
ecule’s hinge and having a 1 nm radius. (Online version in colour.)
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Figure 12. Schematics of the procedure to test whether the improved MAPE
values obtained excluding a localized group of residues from removal do not
depend on their location. As described in figure 11, the 20 residues to remove
can be randomly selected only outside of a sphere of 1 nm radius. The centre
of the sphere, however, cannot be localized closer than 2 nm to the point
employed for the previous analysis, namely the molecule’s sequence centre
(i.e. the mechanical hinge). Ten different positions for the sphere are ran-
domly identified, and for each of them, 10 different models where 20
residues have been randomly removed have been constructed. (Online version
in colour.)
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removed residues do not belong to mechanically relevant

parts of the molecule such as motion hinges.
4. Conclusion
The aim of computer-aided modelling of biomolecular systems

is to achieve deeper, mechanistic understanding of their func-

tion and properties at a level that cannot be accessed by

means of experimental or purely theoretical (i.e. mathematical)

methods. This approach indeed plays on two sides of a coin: on

the one hand, it provides a detailed picture of biological
processes at the molecular level, thus enabling the confirmation

or falsification of hypotheses and the formulation of theories

and models of the finest mechanisms of living matter; on the

other hand, it serves as a validation of the currently available

representations of the fundamental constituents of cells, ran-

ging from single atoms to entire tissues and organs. Such a

workflow is largely algorithmic and deterministic, in the sense

that it relies on well-defined procedures each step of which is

known and understood. An exemplary instrument in this

sense is MD.

The alternative strategy, which is gaining further and

further attention and interest (as well as success), is machine

learning, and DNNs in particular. These computational

methods have proven extremely effective in performing those

tasks which cannot be easily formulated in a classically algorith-
mic manner, rather they have a fuzzier, more probabilistic

character. Nonetheless, a steadily growing level of quantitative

accuracy is being reached by DL techniques.

The complementary nature of the two aforementioned

approaches is not only extremely appealing but also potentially

very powerful, as it is demonstrated for example in the field of

bioinformatics, where (big) data processing moves on both

tracks simultaneously. In the present work, we have made a

first attempt to combine formal, algorithmic models with DL

approaches in the context of protein modelling. In particular,

it has been our goal to perform, by means of a CNN, the calcu-

lation of global properties of protein structures such as the

lowest-energy eigenvalues of the most collective modes of fluc-

tuations. The final aim cannot, of course, be that of trivially

replacing the simple, extremely effective procedure rep-

resented by a matrix inversion by means of a CNN; rather,

we explored the possibility of allowing a DL scheme to perform

this task with sufficient accuracy as a first, necessary step

towards more complex kinds of structural protein analyses.

While the calculation of the lowest eigenvalues (as well as the

rest of the whole spectrum) of an ENM is immediate and com-

putationally inexpensive in terms of linear algebra, it is not

given for granted that a CNN could do it as well. Furthermore,

a crucial step in the usage of a CNN (or similar methods) is the

pre-processing of the molecular structure in terms of appropri-

ate input variables: the usage of the Coulomb matrix has

proven to be a viable choice to this end.
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A second, equally relevant outcome of this work is the

extension of the network-based eigenvalue prediction net-

work to proteins having a larger number of residues than

those employed for the training. The construction of molecu-

lar descriptors flexible enough to process proteins of variable

length is still an open issue; however, we have shown that

the network—trained on 100-residue-long molecules—can

provide good estimates of the low-energy eigenvalues

of proteins with 120 amino acids provided that the twenty

exceeding ones have been neglected. This positive result

proves even more pleasant inasmuch as the agreement

between predicted and real values varies depending on the

specific choice of the removed amino acids, in such a way

that mechanically relevant residues emerge as those whose

removal determines a worsening of the prediction. The natu-

ral consequence of this observation is that, upon appropriate

training, DL schemes could be employed in an effective
manner not only to compute properties along the lines of

reference algorithms but also to extract biologically relevant

features of a protein and to provide valuable indication on

how to construct simplified, that is, coarse-grained models.
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28. Wehmeyer C, Noé F. 2018 Time-lagged
autoencoders: deep learning of slow collective
variables for molecular kinetics. J. Chem. Phys. 148,
241703. (doi:10.1063/1.5011399)

29. Wang S, Peng J, Ma J, Xu J. 2016 Protein secondary
structure prediction using deep convolutional
neural fields. Sci. Rep. 6, 18962. (doi:10.1038/
srep18962)

30. Wang S, Sun S, Li Z, Zhang R, Xu J. 2017 Accurate
de novo prediction of protein contact map by ultra-
deep learning model. PLoS Comput. Biol. 13,
e1005324. (doi:10.1371/journal.pcbi.1005324)

31. Lemke T, Peter C. 2017 Neural network based
prediction of conformational free energies—a new
route toward coarse-grained simulation models.
J. Chem. Theory Comput. 13, 6213 – 6221. (doi:10.
1021/acs.jctc.7b00864)

32. Zhang L, Han J, Wang H, Car R, Weinan E. 2018
DeePCG: constructing coarse-grained models via
deep neural networks. J. Chem. Phys. 149, 034101.
(doi:10.1063/1.5027645)

33. Tirion MM. 1996 Large amplitude elastic motions in
proteins from a single-parameter, atomic analysis.
Phys. Rev. Lett. 77, 1905 – 1908. (doi:10.1103/
PhysRevLett.77.1905)

http://variamols.physics.unitn.eu
http://dx.doi.org/10.1063/1.1730376
http://dx.doi.org/10.1021/ar020082r
http://dx.doi.org/10.1016/j.sbi.2012.01.010
http://dx.doi.org/10.1146/annurev-biophys-083012-130348
http://dx.doi.org/10.1146/annurev-biophys-083012-130348
http://dx.doi.org/10.3390/e16084199
http://dx.doi.org/10.1038/nature14539
http://dx.doi.org/10.3389/fncom.2016.00094
http://dx.doi.org/10.3389/fncom.2016.00094
http://dx.doi.org/10.1038/nature03192
http://arxiv.org/abs/1209.5033
http://arxiv.org/abs/1209.5033
http://arxiv.org/abs/1209.5033
http://arxiv.org/abs/1510.07512
http://arxiv.org/abs/1510.07512
http://dx.doi.org/10.1021/ci100050t
http://dx.doi.org/10.1007/s10822-016-9938-8
http://dx.doi.org/10.1021/ci800038f
http://dx.doi.org/10.1063/1.5024611
http://dx.doi.org/10.1021/acscentsci.8b00551
http://dx.doi.org/10.1021/acscentsci.8b00551
http://dx.doi.org/10.1002/(ISSN)1098-1128
http://dx.doi.org/10.1016/S0169-409X(00)00129-0
http://dx.doi.org/10.1063/1.4825111
http://dx.doi.org/10.1021/acscentsci.8b00507
http://dx.doi.org/10.1063/1.5011399
http://dx.doi.org/10.1038/srep18962
http://dx.doi.org/10.1038/srep18962
http://dx.doi.org/10.1371/journal.pcbi.1005324
http://dx.doi.org/10.1021/acs.jctc.7b00864
http://dx.doi.org/10.1021/acs.jctc.7b00864
http://dx.doi.org/10.1063/1.5027645
http://dx.doi.org/10.1103/PhysRevLett.77.1905
http://dx.doi.org/10.1103/PhysRevLett.77.1905


royalsocietypublishing.org/journal/rsfs
Interface

Focus
9:20190003

11
34. Micheletti C, Carloni P, Maritan A. 2004 Accurate
and efficient description of protein vibrational
dynamics: comparing molecular dynamics and
gaussian models. Proteins: Struct. Funct. Bioinf.
55, 635 – 645. (doi:10.1002/prot.20049)
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