
royalsocietypublishing.org/journal/rsbl
Research
Cite this article: Lamentowicz M, Gałka M,
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Unveiling past tipping points is a prerequisite for a better understanding of

how individual species and entire ecosystems will respond to future climate

change. Such knowledge is key for the implementation of biodiversity con-

servation. We identify the relationships between peatland vegetation and

hydrological conditions over the past 2000 years using plant macrofossils,

testate amoebae-based quantitative hydrological reconstructions and Sphag-
num-moss functional traits from seven Polish peatland records. Using

threshold indicator taxa analysis, we discovered that plant community com-

position strongly converged at a water level of ca 11.7 cm, indicating a

community-level tipping point. We identified 45 plant taxa that showed

either an increase or a decrease in their relative abundance between 8 and

17 cm of water-level depth. Our analysis of Sphagnum community traits

further showed that Sphagnum functional diversity was remarkably stable

over time despite Sphagnum species sensitivity to hydrological conditions.

Our results suggest that past hydrological shifts did not influence major

functions of the Sphagnum community, such as photosynthetic capacity,

growth and productivity, owing to species replacement with a similar func-

tional space. Although further studies including trait plasticity will be

required, our findings suggest that the capacity of the Sphagnum community

to gain carbon remained stable despite hydrological changes.
1. Introduction
Regime shifts of ecosystem functioning in the response of individual species to

ongoing climate change are one of the most pressing issues facing ecologists [1].

Regime shifts are often marked by a tipping point—a threshold in environ-

mental drivers and one or more biotic variables within the system that, when

breached, causes a major change in ecosystem functioning [2,3]. Detecting tip-

ping points is a key factor in both the prediction of such shifts and the provision

of support for the management of natural ecosystems [4]. Most studies explor-

ing regime shifts are based on observations over short timescales (up to 5 years)

[2,5,6]. However, long timescales are necessary to understand the factors under-

lying resilience and possible existence of critical transitions of ecosystems [7–9].
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In this context, past biodiversity in paleoecological archives

can be explored to learn how communities have responded

to environmental changes over the Holocene, thus offering

a long-term view on the past dynamics of ecosystems [10].

Peatlands are important archives to study how environ-

mental change affects biodiversity through time [11].

Secondary succession leads to abrupt changes in plant and

microbial communities, divergent from their former pristine

state [12]. Understanding whether long-term community

changes either preserve species’ functional diversity and

then ecosystem functions owing to species’ functional redun-

dancy or shift ecosystem functions towards another state

because of high species’ functional turnover is key to the

better prediction of the fate of ecosystem functions under

ongoing global changes. In this paper, we address this gap

in understanding by examining the understudied response

of peatland vegetation to long-term hydrological changes in

seven peat-records. Plant species composition is central to

how peatlands respond to environmental change, given the

strong links between plant community composition and eco-

system processes such as carbon cycling [13,14]. Specifically,

Sphagnum is a key C-accreting genus, but Sphagnum species

can diverge in their capacity to assimilate and store carbon

[15]. While the composition of peatland plant communities

can be remarkably stable through time [16,17], abrupt shifts

in hydrological conditions may cause shifts in the relative

abundance of Sphagnum species, and then negative or posi-

tive feedbacks [18–20] that may affect peatland carbon

dynamics [2].

Our overarching goal is to identify a hydrological

threshold in water table depth beyond which peatland

vegetation undergoes compositional change using plant

macrofossils and reconstructed depth to water table (DWT)

from seven peat archives. More particularly, we aim to

examine whether species’ turnover above and below this

hydrological threshold influences the functional diversity of

peat-forming mosses, and thus potentially peatland C storage

capacity. We test the often-stated hypothesis that functional

redundancy among species should mitigate the effects of

climate change on species’ functional diversity.
2. Methods
(a) Summary of the approach
We selected seven peat profiles from Sphagnum-dominated peat-

lands in Poland, situated in a young glacial landscape (Stążki,

Słowińskie Błoto, Linje, Gązwa, Mechacz Wielki and Bagno

Kusowo) and in the Izery Mountains (electronic supplementary

material, figure S1). Together, the sites represent a coherent

group of Sphagnum-dominated peatlands that were affected by

human activity in the past. We used high-resolution chronology,

testate amoebae-based reconstructions of depth to the water

table—as a proxy for hydrological changes (DWT, based on the

Polish calibration dataset [21])—and plant macrofossil data. All

the data from each site cover up to the past 2000 years.

As a first step in our data analysis, we used broken-line

regression models [22] to identify whether plant community

composition, assessed using a non-metric multidimensional

scaling analysis (NMDS), and reconstructed DWT experienced

different states over time [2,23]. Broken-points identified in

plant communities and reconstructed DWT in each site were

related using linear regression models to identify whether

shifts in plant communities over time occurred either before or
after a shift in DWT. We also analysed patterns in plant species

along the DWT gradient (all sites were pooled) using a threshold

indicator taxa analysis (TITAN; see [24] for a full description of

the method). In short, TITAN reveals sharp, nonlinear transitions

in an entire community dataset by detecting changes in species’

distributions (species that increase or decrease in abundance)

along a gradient. TITAN assesses synchrony among species’

responses as evidence for community thresholds, but also

identifies the main taxa changing.

The next step of our analyses aimed at understanding

whether shifts in DWT through time influenced the functional

traits (table 1) and functional space (i.e. the trait combination

of each species that defines their functional niche) of Sphagnum
mosses. To investigate change in community traits over time,

we used a Bayesian hierarchical modelling approach, conducted

in Stan through R (v. 3.5.1) [30,31], in which time varied at the

site level. Change in community trait over DWT gradient was

estimated by accounting for the hierarchical spatial and temporal

structure of the data (DWT variations within sites and time).

Detailed methods, including statements of data availability

and any associated accession codes and references, are available

in the electronic supplementary material. Data used in this study

[32] are available in the Dryad Digital Repository using the

following link: https://doi.org/10.5061/dryad.t50863s.

3. Results
We identified several abrupt transitions in vegetation compo-

sition and DWT through time in all peat profiles, mostly

between 500 and 2000 cal. CE (electronic supplementary

material, figure S2). At almost every site, vegetation compo-

sition did not recover after transition and shifted towards

unstable states in terms of species’ composition (electronic

supplementary material, figure S2). Only Gązwa showed

that vegetation composition recovered following turnover

event. At most of the vegetation turnover events, shifts in

plant community composition occurred following hydrolo-

gical changes (figure 1a; electronic supplementary material,

figure S2), usually 5–100 years after DWT changes. All sites

showed different hydrological phases, with DWT fluctuating

between 5 and 20 cm. Only Słowińskie Bloto showed impor-

tant hydrological variability, with DWT fluctuating between

wet (DWT ¼ 10 cm) and very dry conditions (DWT ¼

50 cm). Using TITAN, we identified 45 plant taxa (out of

51) that showed a significant changing point along the

DWT gradient (figure 1b), at DWT between 5 and 18 cm.

Among these, 29 taxa were closely related to wet conditions

(figure 1b), while 22 species were related to drier conditions.
As a result, vegetation community composition showed an

important species’ turnover at a DWT of c. 11.7 cm (figure 1c),

which we interpret as indicating a community-level

tipping point.

Based on TITAN outputs, we calculated the functional

space for Sphagnum species related to wet (z2 species) and

dry (zþ species) conditions. Functional spaces for both

groups of Sphagnum species were similar (figure 2a),

although three Sphagnum species from dry conditions clearly

differed in terms of trait combinations. Sphagnum fuscum,
S. balticum and S. rubellum had higher shoot and bulk

densities, and photosynthetic capacities, but lower decompo-

sition rates, phenolic content and leaf P than other species

(figure 2a). Community traits remained remarkably stable

over time and across the DWT gradient (figure 2b), with

slopes that did not differ from 0 (figure 2b). Sphagnum
height above DWT (HWT) and carbon exchange capacity

https://doi.org/10.5061/dryad.t50863s
https://doi.org/10.5061/dryad.t50863s


Table 1. Description of Sphagnum traits and their function. Traits were extracted from [15,25 – 27].

trait unit function

number of samples

per species (n) reference

bulk density mg cm23 bulk density is strongly related to organic

matter content, and then to C sequestered in

Sphagnum tissues

6 – 10 Bengtsson et al. [15]

shoot density cm22 species that grow in high shoot densities better

retain water

6 – 10 Bengtsson et al. [15]

spore diameter mm large spore diameter favours dissemination of

the species and then its capacity to cope

with environmental changes

2 – 17 Sundberg et al. [25]

spore capsule

diameter

mm large spore capsule diameter favours

dissemination of the species and then its

capacity to cope with environmental changes

2 – 17 Sundberg et al. [25]

leaf C, N and P

content

mg g21 determinants of Sphagnum litter quality; species

with low C, N and P contents will be

decomposed more slowly

36 V Jassey, C Signarbieux 2018,

unpublished data

carbon exchange

capacity (CEC)

meq g21 CEC determines the capacity of Sphagnum

species to acidify the environment and then

slow down microbial activities

5 Bengtsson et al. [26]

height above water

table (HWT)

mm reflect the capacity of species to cope with

drying conditions

6 – 10 Bengtsson et al. [15]

productivity mgC cm22 y21 growth in term of production; it reflects the

capacity of species to fix and potentially

accumulate carbon

1 – 60 Gunnarsson [28]

growth in biomass g m22 growth in terms of production per surface; it

reflects the capacity of species to fix and

potentially accumulate carbon

6 – 10 Bengtsson et al. [15]

growth mm length increment; species with high growth will

fix high rates of CO2

Bengtsson et al. [15]

photosynthetic

capacity

mgC g21 h21 net rate of CO2 fixation under standard

conditions

5 – 12 Bengtsson et al. [15]; V

Jassey, C Signarbieux 2018,

unpublished data

decomposition rate

(mass loss)

% species that decompose slowly (low % mass

loss) accumulate peat over time

6 – 10 Bengtsson et al. [15]

phenolics content mg g21 recalcitrant compounds and/or anti-microbial

compounds that favour accumulation of peat

5 – 36 Jassey et al. [29]; Bengtsson

et al. [26]

sphagnan content mg g21 recalcitrant compounds and/or anti-microbial

compounds that favour accumulation of peat

5 Bengtsson et al. [26]

lignin-like phenolics

content

mg g21 recalcitrant compounds that favour accumulation

of peat

5 Bengtsson et al. [26]
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(CEC) were the only traits for which community-weighted

mean (CWM) significantly changed over the 2000 years;

both community traits decreased at nearly every site (elec-

tronic supplementary material, figure S3). Sphagnan and

lignin-like phenolics were the only traits that changed over

the DWT gradient; they slightly decreased along with

drying conditions (electronic supplementary material, figures

S3 and S4). However, detailed analyses of CWM of traits at

each site showed that some variability in CWM can be
observed within sites (electronic supplementary material,

figures S3 and S4).

4. Discussion
Peatland hydrological records often show complex temporal

patterns including transitory perturbations (e.g. extreme

drought) and rapid-onset (e.g. drainage) overlaid on a back-

ground of long-term climate changes. Identifying the level
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Figure 1. Tipping point in vegetation community composition. (a) Biplot of tipping points in vegetation composition (NMDS axis 1) versus tipping points in DWT at
each site. Black dots above the 1 : 1 line indicate vegetation tipping points that followed a DWT tipping point; grey dots below the 1 : 1 line indicate the opposite.
(b) Plant species’ change points along the water-level gradient ( purity greater than 99%, p , 0.05 in greater than 99% bootstraps) showing 95% bootstrap
percentiles; dot colours show the species that either increase (zþ) or decrease (z2) in abundance along the DWT gradient. Critical changing area reflects the
5% – 95% bootstrap percentile range (in grey) of community change point (see subset c). (c) Plant community change point along the DWT gradient showing
community threshold (dotted line) at max([sum(z2)]) and 5 – 95% bootstrap percentile range. [sum(z2)] values represent the sum of responses for each possible
change point along the gradient. (Online version in colour.)
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of hydrological changes beyond which peatland vegetation

undergoes potentially irreversible degradation is crucial to

better predict the controls over peatland functioning. To

date, clear estimations of the critical water table that abruptly

shifts peatland functioning remain scarce [2]. In our study, we

show that peatland vegetation strongly diverges between a

water table depth of 8 and 17 cm. This estimation corroborates

recent findings from an experimental study that revealed a

tipping point in peatland functioning around a water table

depth of 24 cm [2]. However, the former tipping point value

in DWT relates only to an extreme water table drop, while

our long-term-based calculation takes into account both
abrupt and gradual variations in DWT on a long temporal

scale. Above-mentioned thresholds in water table depth rep-

resent tipping points in the functioning of peatland

ecosystem when changes might be irreversible after crossing

the critical DWT in a long time-scale exceeding decades.

Our findings suggest that hydrological changes mostly

drove shifts in vegetation composition, which most of the

time did not revert to its initial composition owing to species’

turnover with different water table sensitivity. Peatland veg-

etation, through its effect on peat evapotranspiration, could

also have affected water table position but evapotranspiration

remains difficult to extrapolate using peat archives, and more
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Figure 2. Functional traits of Sphagnum from the macrofossil record. (a) Functional space of each Sphagnum species based on a PCA analysis computed on Sphag-
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importantly, is poorly related to DWT changes [33,34].

Despite the need for better determination of cause and

effect in DWT–vegetation relationships, our study highlights

the value of a long-term approach to identification of the bio-

physical tipping point in peatlands, and possibly abrupt

functional shifts.

We showed that Sphagnum functional diversity was

remarkably stable over time despite significant shifts in com-

munity composition (figure 2). This result corroborates recent

findings in peatland vegetation, which demonstrated that

plant taxonomic and functional turnover were decoupled

[27]. Here, we further show that Sphagnum species sensitive

to wet and dry conditions have similar functional spaces

(figure 2a), which explains why peatlands can maintain eco-

system functioning over time despite species’ turnover. More

particularly, we found that major functions such as Sphagnum
community photosynthetic capacity, growth, productivity and
decomposition rates did not change over time, including along

the DWT gradient (figure 2b). These results suggest that the

capacity of the Sphagnum community to fix and store carbon

remained stable despite hydrological changes. However, our

findings may have been influenced by the use of averaged-

trait values derived from a trait database that may not

always accurately reflect species’ intraspecific trait variability

[35]. Although we caution that a decreasing water table

through time might have influenced trait responses of certain

species, as well as species’ performance, our findings provide

evidence that species’ replacement with high functional redun-

dancy confers high resistance and resilience [36] on a

Sphagnum community over time (figure 2).

In conclusion, our study indicates that peatlands might be

more resistant to future hydrological changes than previously

thought. We showed that Sphagnum community functions

were resistant to hydrological perturbations over the long
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term owing to species’ functional redundancy. This result

suggests that peatlands might represent a small negative feed-

back to climate change for the next century if it becomes drier

[37]. However, the high resistance and resilience of the Sphag-
num community to hydrological changes do not necessarily

mean that overall vegetation function is not influenced by

DWT variability. Our analysis also shows an increase in

specific vascular plants along with decreasing water table pos-

ition, such as Eriophorum vaginatum, Betula nana and Calluna
vulgaris (figure 1b). These vascular plants have been shown

to increase C loss in peatlands [2,13], and most likely negatively

influence peatland C cycle. All of these changes are, however,

regulated by the biophysical tipping point, and the strength

of hydrological changes will determine whether or not veg-

etation shifts result in a smaller peatland sink [2]. Earth

system models are increasingly moving to incorporate func-

tional tipping points to estimate ecosystem changes [3,38].

The tipping point value we identified could further become a

key target number for nature conservation.
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