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Abstract

Background: Recently, exploratory spatial data analysis is for problem solving, hypothesis generation and
knowledge construction. Unless geographically weighted regression, sophisticated spatial regression models
best control spatial heterogeneity in outcomes and the associated risk factors but cannot visually display and
identify areas of the significant associations. The under-utilised excess risk maps (ERMs) and conditioned
choropleth maps (CCMs) are useful to address this issue and simplify epidemiological information to public
health stakeholders without much statistical backgrounds. Using malaria and sociodemographic determinants
in Ghana as case study, this paper applied ERM and CCM techniques for identification of areas at elevated
risk of disease-risk factor co-location.

Method: We computed and smoothed mean district-specific malaria incidences for the period 2010 to 2014
as a function of sociodemographic determinants. The spatial distribution of malaria was investigated through
global and local spatial autocorrelations, and the association with sociodemographic risk factors evaluated
with bivariate correlations. ERMs and CCMs were produced for the statistically significant risk factors.

Results: The incidence of malaria increased over time with cluster locations detected, predominantly at the
northern parts but later few spread to the middle parts of the country. Our results suggested that with
respect to sociodemographic determinants, district variations in malaria rates might be explained by
inequalities in seven sociodemographics, including an unexpected significant negative association with non-
religious affiliation. The sociodemographics had positive spatial autocorrelations, exhibited statistically
significant interactions and the strongest was observed in urbanisation-basic education correlation (p< 0.01,
r = +0.969). The ERMs and CCMs specifically identified locations with lower or higher than expected rates
with respect to particular risk factor(s) where improving risk factor(s) such as employment-to-population
ratio in rural areas, basic education could have cascade effects to reduce the expected malaria incidence in
endemic areas.
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Conclusion: Ghana remains malaria hyperendemic region with district-level spatial heterogeneity. Significant
association between malaria and sociodemographics was detected and the ERMs and CCMs geo-visually
pinpointed locations of these significant associations. To complement sophisticated spatial regression
models, the easily interpretable ERMs and CCMs could be used to specify where disease-risk factor
associations are significant, simplifying complex spatial epidemiological information for efficient public
health administration.
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Background
Spatial statistical methods offer means to exploit
space-time information to detect and quantify patterns
in public health data and to investigate the degree of as-
sociation between putative risk factors and diseases that
vary geographically [1]. Various elementary exploratory
data analysis methods and geo-visualisation techniques
are commonly used in health research to detect patterns,
isolate outliers, and identify clusters. These methods
produce maps that are used in health research to display
geographical patterns in the distribution of health out-
comes but do not link the spatial patterns directly with
associated risk factors [2, 3]. Geographically Weighted
Regression (GWR) is commonly used to examine the
spatial pattern in regression coefficients and residuals
but the conventional spatial regressions such as spatial
lag and spatial error models best establish significant
multivariate spatial associations between health outcome
and the associated risk factors but cannot visually dis-
play where these associations are significant. The con-
structions of maps that control for risk factors has
not yet been well adopted [2], yet have great potential
to simultaneously identify locations of elevated risk
and disease outcome that exceed expectation [3]. In
addition to the GWR, two underutilized methods that
yield easily interpretable results and can fully inte-
grate spatially varying health outcomes and covariates
are excess risk maps (ERMs) and conditioned choro-
pleth maps (CCMs). The excess risk map detects the
concentration of the occurrences of the incidence of
the disease and risk factors at a particular place as
compared to the overall average incidence [4]. Condi-
tioned choropleth maps (CCMs) control for suspected
risk factors by partitioning the study cohort into
homogeneous groups based on two risk factors [2].
The CCMs produce multiple micromaps arranged in
a two-way panel that allow location-specific compari-
sons of the association between two covariates and
the disease outcome [2, 4–6]. Despite their usefulness
in public health administration for solving problems,
hypothesis generation, and knowledge construction,
excess risk and conditioned choropleth maps [2] have
been under-utilised in spatial epidemiology. Unlike

sophisticated regression models, ERM and CCM tech-
niques provide means to visually display geographic
patterns in the disease–risk factor interactions, simpli-
fying complex spatial statistics into easily interpretable
format for health policy makers and public health
practitioners without much expertise in spatial epi-
demiology. The aim of this study was to demonstrate
the value of excess risk maps (ERMs) and conditioned
choropleth maps (CCMs) in the identification of areas
at elevated risk, using malaria and sociodemographics
as a case study.
Malaria remains the leading cause of morbidity and

mortality in sub-saharan Africa [7, 8]. The distribution
of malaria within a geographical area can vary greatly
between districts, villages and households [9]. Malaria is
hyper-endemic and perennial in all parts of Ghana, ac-
counting for 44% of outpatient attendance, 13% of all
hospital deaths and 22% of mortality among children
less than five years [10]. The major factors influencing
the geographic distribution of malaria include climatic,
environmental, land-use, land-cover, physical and
socio-economic factors [11], which modify behaviour
of the malaria vector [12]. Sociodemographic factors as-
sociated with malaria transmission and epidemics in-
clude household construction, house type, household
overcrowding, personal protection measures against
mosquito bites, ethnic groups, education, lower income
or unemployment, family living standards, knowledge
and awareness about malaria [9, 13, 14]. Sociodemo-
graphic characteristics can also influence the effective-
ness, understanding, acceptance and the usage level of
intervention programmes and disease progression. It has
also been shown that culturally-varying perceptions and
knowledge about malaria varies among communities
which can be integrated into traditional health education
messages to enhance effectiveness of public health ef-
forts to control malaria in Ghana [15]. In this study, we
used ERMs and CCMs to visualise the influence of
sociodemographic risk factors on the geographical distri-
bution of malaria at local level of public health adminis-
tration in Ghana. Despite the significant burden of
malaria in Ghana this has not yet been undertaken pre-
viously using routine clinically diagnosed and nationwide
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coverage malaria data and sociodemographic determi-
nants and therefore has great potential to inform malaria
management.

Methods
Study population and setting
Ghana, located in the Sub-Saharan African (Figure 1),
has a population of more than 27 million people and
a population density of 113persons/km2. Approxi-
mately 51% of the populations are residing in urban
centres according to the 2010 census [16]. Ghana has
ten administrative regions, subdivided into 170 dis-
tricts on which 2010 census was conducted, and has
approximately 75 ethnic groups with different
socio-cultural practices [16, 17]. This study was con-
ducted on the 170 districts using malaria incidence
for the 2010 – 2014 period.

Data sources and variables
Clinically diagnosed malaria cases for outpatient visits at
all health facilities in Ghana during the study period
2010–2014, were obtained from the Centre for Health
Information and Management (CHIM) within the Ghana
Health Service (GHS). Routinely, clinical diagnoses of
malaria are based on parasitological microscopy and/or
rapid diagnostic test (undertaken at public and private
hospitals, clinics and health centres) but mostly by rapid

diagnostic test at Community Health Planning Services
programme (CHPS) zones in accordance with World
Health Organization criteria. The CHPS programme im-
proves coverage of malaria ascertainment for under-
served communities and villages in rural areas by using
trained community health nurses to render basic clinical
and public health services, including diagnosis and treat-
ment of malaria. The entire population of Ghana is at
risk of malaria since malaria is endemic in all parts of
the country with seasonal variations. Shapefiles for the
170 local health administrative districts were obtained
from the Survey and Mapping Divisions, Accra and the
Geomatic department of KNUST. Data were available
nationally at the district level. Sociodemographic char-
acteristics were obtained from the 2010 Population
and Housing Census (PHC) which had complete
population coverage on the 170 districts, providing
information relating to the various aspects of the
populations and households. The district-level propor-
tions (expressed as percentage of the total) of the
socio-demographic factors used in the study were de-
scribed concisely as follow:

Basic education level: proportion of the population
aged 6 years and older who attended or currently
attending basic school (from elementary to junior
high school).

Fig. 1 The globe showing Ghana (red) within Africa centered (Retrieved from https://commons.wikimedia.org/wiki/File:Ghana_on_the_globe_
(Africa_centered).svg
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Illiteracy: proportion of the population aged 15 years
and older who cannot read and write any one of the
three languages; one Ghanaian language, English and
French.
Religion: Proportion of the population identified as
Christian, Islam, Traditional and other religion or none
religion.
Urbanisation by population size: In Ghana a locality
within a district with a population of ≥ 5,000 people
was classified as urban, and less than 5,000 as rural.
Population density: Population per square kilometre
within the district.
Inter or intra-migration: Information on place of birth
and the non-Ghanaian population were used to identify
intra-migration of the population within Ghana, and
inter-migration across national boundaries.
Traditional (unimproved) housing units: Proportion of
households living in houses with the outer walls/
roofing/floor materials made of traditional materials
such as mud brick/earth, wood, bamboo, thatch/palm
leaf, sandcrete/landcrete and stone.
Household Overcrowding index: Computed from the
sum of the five indicators consisting of population per
dwelling, single room occupancy and sleeping room,
average household size and households per dwelling.
Dependency ratio: Number of dependents (child and
old age) per 100 people undertaking paid employment.
Employment-to-population ratio (EPR): Age-specific
proportions of the population aged 15 years and over
who undertook paid employment.
Household in Agriculture: Proportion of households for
which at least, one person in the household is engaged
in any type of farming activity; crop farming, tree
growing, livestock rearing and fish farming.
Household Insanitation Index: The indicators included
were the main source of drinking water, toilet and
bathing facilities, and solid and liquid wastes disposal.
The WHO/UNICEF Joint Monitoring Programme
for Water Supply and Sanitation [18] standard
method of classifying sanitation facilities and
drinking-water sources as ‘improved (safe)” and “un-
improved (unsafe) was used in this study. The indi-
cators identified as unimproved (unsafe) sanitary
conditions were combined as insanitation index to
reflect relative degree in a district.

Spatial statistical analyses
Malaria incidence rates were estimated followed by as-
sessment of the spatial dependency within and between
the health outcome (malaria) and risk factors (sociode-
mographic risk factors). Statistically significant risk fac-
tors were selected for the excess risk and conditioned
choropleth maps.

Incidence estimation and spatial weights
The crude district-level annual malaria incidence rates,
RMal for the i-th district in the year t was estimated as

RMalit ¼
XMalit

Pit
� 10; 000 ð1Þ

whereXMalit denotes the reported malaria case counts
at the district i (i= 1, 2, … , n =170) for the year t (t =
2010, 2011, … , 2014), andPit denotes the population in
district i for the year t. The cumulative and five-year
average incidence rates were also calculated for each
district.
A spatial weights matrix was created based on

first-order queen polygon contiguity. The effects of
first-order queen polygon contiguity, merging both
rook and bishop contiguities, are sufficient to capture
spatial autocorrelation given the size and shape of the
districts in Ghana. The irregularity of the shapes of
the districts, hence the adoption of this contiguity ap-
proach in past studies to avoid neighbourless districts
[19–21] and it is suitable to represent malaria trans-
mission. Rook or bishop contiguity can leave gaps,
which would not represent malaria transmission very
well. Hence districts that shared common edges and/
or common corners were considered neighbours and
weights were assigned to these identified neighbours.
The spatial weights were row-standardized such that
for each row Σwij = 1 if districts i and j shared a
common boundary; otherwise Σwij = 0, for
non-neighbouring districts. Following standard con-
vention, we excluded “self influence” by assuming that
wii = wjj = 0 so that W has zero diagonals.

Empirical Bayes Smoothing of incidence rates
We used Empirical Bayes Smoothing using the principle
of shrinkage [1, 22, 23] to stabilise incidence rates for
areas with small populations or disease counts. We as-
sumed that the relative risks of people residing in district i
(δi) were independently and identically distributed ac-

cording to a Poisson distribution:

xi=δi � Poisson Niδið Þ ð2Þ

where xi is the random variable representing disease
count in district i while Ni is expected count for the
same district. The Empirical Bayes Smoothed (EBS) rela-
tive risk of malaria, R̂Malit borrows the neighbouring dis-
trict rates to adjust the uncertain rates as per the
expression:

R̂Malit ¼ ϕiRMalit þ 1−ϕið Þmδi ð3Þ

where ϕi is the ratio of prior variance to the data vari-
ance, and mδi is the prior mean (weighted sample mean).
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The final EBS rate remains practically unchanged for
districts with relatively large population or cases [23].

Measuring spatiotemporal patterns and disease-risk
factor associations
We checked and established spatiotemporal patterns of
rates from 2010 to 2014 using global and local Moran’s in-
dices. Global Moran’s I was used to determine whether or
not identifiable spatial patterns exist over space and time
[4, 5, 22] and Anselin local Moran’s Ii (the most widely used
Local Indicator of Spatial Association, LISA), to identified
specific districts and locations exhibiting spatial autocorrel-
ation with their neighbouring districts as clusters or outliers
[23–25]. The statistical inference was based on Monte
Carlo randomisation test at 999 permutations with signifi-
cance pseudo p-value<0.05 [4, 5, 19]. Non-spatial correl-
ation was evaluated with Pearson correlation while global
bivariate Moran's I was estimated to examine the spatial
correlation between the five-year average incidence of mal-
aria and the sociodemographic covariates. The statistically
significant sociodemographic determinants were selected
for excess risk and conditioned choropleth maps. Due to
the ERM and CCM computational functionality in GeoDa,
all spatial statistical maps were generated using GeoDa soft-
ware version 1.12 even-though this package has lower
cartographic quality as compared to other spatial packages
especially ArcGIS.

Mapping excess risk ratio as influenced by risk factors
The excess or relative risk is a form of standard morbidity
or mortality rate (SMR) often used in public health which
is estimated as the ratio of observed rate to the expected
rate. The expected rate is the average rate for all the popu-
lation at risk in each location which is computed as the ra-
tio of the sum of all events in all locations to the sum of all
the populations at risk [4, 5]. Implemented with excess risk
map functionality in GeoDa, we calculated excess risk maps
(ERMs) of malaria incidence (event variable) for each statis-
tically significant socio-demographic covariate (base vari-
able) [4, 5, 26].

Exploring Malaria incidence with Conditioned
Choropleth Maps
Both non-spatial Pearson correlation and spatial bivari-
ate Moran's I analyses were performed between every

pair of statistically significant risk factors to determine
how they might act together or in sequence to influence
malaria transmission. These analyses informed selection
of the pairs of risk factors for the conditional choropleth
mapping. We adopted conditioned choropleth mapping
using the five-year average incidence rates of malaria as
dependent variable (theme variable) and two strongly
correlated significant sociodemographic factors (covari-
ates) to visualise the three variables simultaneously. This
resulted in a 3 x 3 panel of nine micromaps for which
panel columns corresponded to the three categories of
one covariate and the rows correspond to the three cat-
egories of the other covariate.

Results
Descriptive analysis and rates mapping
The minimum five-year average of 157 per 10,000
populations was observed for the capital city (Accra
metropolis) of Ghana (Table 1). Sekyere East district
recorded the greatest average incidence of malaria
over the five-year period. The annual mean incidence
of malaria in Ghana almost doubled during the study
period from 996 per 10,000 in 2010 to 1,843 per
10,000 in 2014.
Natural breaks (Jenk’s) classification technique was

used to identify categories of malaria incidence during
the study period (Figure 2). Incidence of malaria varied
geographically across the country with the greatest en-
demic districts located in the uppermost regions of the
country and spread sparsely over the middle and south-
ern belts.

Spatial autocorrelation and cluster-outlier detection
Malaria incidence by district and year positively cor-
related with incidence in the neighbouring districts
and the incidnece of the immediate previous year
(Figure 5 in Appendix). This space-time association
was strongest from 2012 to 2013 which exhibited the
greatest Moran’s I and lowest pseudo p-value
(<0.001). The local spatial maps indicated specific dis-
tricts experiencing the high rates as compared to
their neighbouring districts and further classify areas
as clusters of high-high (called hotspot) and low-low
(called coldspot) or outliers of low-high and high-low
rates (Figure 6 in Appendix). On avearge, 143 out of

Table 1 Malaria incidence per 10,000 at-risk in Ghana for the period 2010 – 2014

Statistics 2010 2011 2012 2013 2014 Average rate

Min. (location) 4 (Sekyere central) 4 (Fanteakwa) 22 (Chereponi) 190 (Accra metro) 9 (Bosome Freho) 157 (Accra metro.)

Max. (location) 4396 (Bawku West) 4665 (Sunyani municipal) 12110 (Ahanta West) 6569 (Bawku West) 20120 (Sekyere East) 6473 (Sekyere East)

Mean 996 1064 1300 1682 1843 1377
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the 170 districts had non-significant spatial clusterings
while 7 and 14 locations were respectively identified
as hotspot and coldspot clusters with the remaining 6
areas as outliers. The few districts with significant
hotspots were located in the uppermost eastern part
of the country. The results indicated that majority of
the districts had malaria incidence rates not dissimilar
from their neighbouring districts.

Sociodemographic determinants and association with
malaria incidence
Among the 13 risk factors analysed, 7 of them had
significant spatial autocorrelation (Table 2 in
Appendix). The risk factor most spatially autocorre-
lated was the proportion of people in traditional
African religious practices (Moran's I = 0.0657, z =
10.855). Seven socio-demographic determinants cor-
related significantly with the incidence of malaria ei-
ther spatially and/or non-spatially. Urbanisation
exhibited only non-spatial correlation and intrami-
gration exhibited only spatial correlation, while
basic education, none/other religion, intermigration,
employment-to-population and proportion of house-
hold into farming correlated with malaria incidence
both spatially and non-spatially. With the exception
of intermigration and proportion of household in
agriculture, all the significant determinants corre-
lated negatively with the incidence rate of Malaria

infection. Specifically, increases in the proportion of
the population attaining basic education associated
with decreases in malaria incidence. Districts that
were more urbanised had lower incidence of mal-
aria. Districts with greater proportions of people
aged 15 years and over who were employed had
lower incidence of malaria. Compared to no reli-
gious affiliation, christian, traditional and islamic re-
ligions had lower malaria incidence. The strength of
the correlations for all covariates were weak with
spatial correlations weaker than the non-spatial
correlations.

Excess risks of malaria
Excess malaria morbidity maps were created using
the statistically significant sociodemographic factors
as the base covariate and the five-year average inci-
dence of malaria as event variable. We did not de-
rive an excess risk map for malaria with respect to
urbanisation because some districts (N=7) were com-
pletely rural (urban population <5,000). Conse-
quently, all the six risk factors used for the malaria
excess risk analysis (Figure 3) had spatial correlation
with the incidence of malaria. A greater proportion
(116; 68.2%) of locations had more than expected
malaria incidence using intermigration as the base
covariate and where as high as 77(45.3%) of the dis-
tricts had elevated rates that were more than four

Fig. 2 A 2010 – 2014 average incidence of malaria for the 170 districts in Ghana, grouped by five Jenks natural breaks. Numbers in the brackets
indicate the number of districts for the rate ranges. The map was generated using GeoDa statistical software version 1.12
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times as the expected rate. The majority of the dis-
tricts (115; 67.6%), mostly at the south-western parts
of the country, experienced more than expected inci-
dence of malaria as compared to the average rate
across the entire study area when intramigration was
imposed as the base covariate. The distribution of
excess malaria incidence for agriculture located 106
(62.4%) districts with incidence greater than ex-
pected. For influence of the employment to

population ratio, most of the locations (61.8%) expe-
rienced more than expected incidence of malaria as
compared to the average rate in the whole study
area. For basic education, a little above half,
91(53.5%) of the districts had greater than expected
malaria incidence, almost all of them clustered in
the middle part of the country. Upon considering
non-affiliation to religious groups as determining
factor of malaria morbidity across the study, slightly

Fig. 3 Distribution of excess malaria incidence in Ghana with respect to the statistically significant sociodemographic factors as base covariate,
indicating the number and percentage of districts having malaria incidence greater than expected incidence. The colour codes indicate the
relative or excess risk of each predictor variable and the numbers in the brackets represent the number of district. The maps were generated
using GeoDa statistical software version 1.12
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above half of the districts (89; 52.4%) had malaria in-
cidence greater than expected, and clustering was
pronounced at the northern belt.

Correlation between risk factors and conditioned
choropleth maps
The strongest positive non-spatial correlation (p< 0.01,
r = 0.969) was observed between Urbanisation and
Basic education attainment (Table 3 in Appendix). The
strength of spatial correlations (bivariate Moran’s I)
were generally lower than the non-spatial Pearson
correlations.
The significantly correlated paired covariates were

used as conditioning variables (horizontal and vertical
variables) of the average malaria morbidity (response
or theme variable) to construct the malaria conditional
choropleth micromaps (CCMs). The districts with re-
vealing multivariate spatial relationship were indicated
in the brown colour code and the degree of malaria in-
cidence was expressed by the intensity of the colour
and categorized into five, indicating very low, low,
moderate, high and very high rates. Considering
urbanisation-basic education- malaria CCM (Figure 4),
when both urbanisation and basic education attain-
ment were high (top-right panel), the emerging
districts with high rates of malaria were found for the

southern districts but not as many as when urbanisa-
tion and basic education were low (bottom-left panel),
which were detected at the northern districts. The
lowest number of locations with emerging malaria in-
cidence conditioned on urbanization and basic educa-
tion were detected in the bottom right panel where
basic education was high with low urbanization (more
rural). The results of the nine micromaps for each
multivariate relationship indicated geographical corre-
lations and co-location among the three variables sim-
ultaneously where two conditioning risk factors were
having co-occurrence effect on the incidence of mal-
aria (Figure 7a-k in Appendix). Co-location of all of
the covariates, even when both had low proportions
(bottom-left micromap in the panels) or where both
had high proportions (top-right micromap) filtered
specific districts affected by overall high malaria
incidence.

Discussion
This was the first study to investigate the role of socio-
demographic vulnerabilities and spatial variations of
malaria incidence in Ghana using data with nationwide
coverage of clinically confirmed cases from out-patient
visits for all health facilities in the country. We applied
excess risk and conditioned choropleth maps for visual

Fig. 4 Malaria incidence conditioned on basic education-urban population where districts with relatively high rates due to co-location of the two
risk factors were indicated by the different intensities of the brown colour. Numbers in the brackets indicate the number of districts for the rate
as influenced by the two predictor variables. The maps were generated using GeoDa statistical software version 1.12
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display of geographic patterns in disease–risk factor in-
teractions to simplify the understanding of spatial epi-
demiological data to health policy makers and public
health practitioners.

Malaria incidence and spatiotemporal trend
The incidence of malaria increased markedly between
2010 and 2014. Our findings show that malaria
remained a prevalent public health threat in Ghana
with increasing trend among the districts despite nu-
merous interventions in the country as reported pre-
viously [21, 27]. The increasing trend in malaria
incidence might also have been induced by increased
access to health care, especially provision of more
community health planning services and clinics and
free treatment of malaria at health facilities through
National Health Insurance Scheme (NHIS) which en-
couraged more people to visit health facilities for
healthcare during the study period. Significantly clus-
tering of rates was consistently high in the uppermost
parts of the country but also shifted gradually
through the middle to the southern belts. Thus as
steps were implemented to control the risk at one lo-
cation heterogeneously, risks moved to low endemic
areas, possibly due to human and vector migrations.
The implication of our findings is that short-term im-
pacts on transmission intensity, following scaled up
insecticide-treated net coverage will be more difficult
to achieve in high transmission settings like Ghana
compared to areas where the majority of the popula-
tion have a lower intensity transmission profile [28].
It is well documented that malaria transmission inten-
sity exhibits strong spatial heterogeneity even at a
local level in highly endemic areas [12–14]. Despite
few areas can be classified as relatively low risk areas
(colspots), malaria incidence was generally high across
the country with some districts experiencing relatively
elevated burdens (hotspots). This finding is consistent
with the climatic and environmental malaria risk fac-
tors analysis by Kumi-Boateng et al [29] and NMCP
(28) in Ghana. Spatiotemporal clustering was rela-
tively most observable in districts in the upper east
region of the country.

Association of malaria incidence with sociodemographic
determinants
We found a substantial number of the sociodemo-
graphic risk factors having significant influence on
the transmission dynamics of malaria in Ghana. The
weak correlations of the sociodemographic risk fac-
tors with the incidence of malaria indicate that these
factors might not be major predictors of the occur-
rence of malaria. The contribution of sociodemo-
graphics, such as the employment-to-population

ratio, agricultural activities, might be explained by
several inter-connected factors. The poor would
generally find it very difficult to afford the necessary
prevention and control interventions such as
anti-malarial chemotherapy, mosquito coil and repel-
lents, access to clean and mosquito-free breeding en-
vironments and good housing units. Additionally,
populations with low socioeconomic status reside in
rural areas and often engaged in farming activities
which increase exposure to the vector, have relatively
poorer education and knowledge about malaria pre-
vention, are more marginalised, and have less access
to quality healthcare for prompt diagnosis and treat-
ment. This also affects the health seeking and treat-
ment behaviour in poorer rural areas [30] that can
serve as reservoirs of the Plasmodium sp. parasite for
the vector transmission. Housing the undiagnosed and
untreated malaria parasites could facilitate the trans-
mission through intra and inter-migrations and high
mobility of the mosquito vector into low endemic
areas or areas with lower levels of immunity [13].
Hence low socioeconomic status, limited education,
low levels of urbanization, high migration and agricul-
tural levels associated with greater levels of malaria
morbidity across the local districts. Thus successes
for malaria control also depend significantly upon
knowledge, sociodemographic and socioeconomic sta-
tus of the affected populations in endemic countries
[15, 28] in addition to the biologic, climatic and en-
vironmental factors. In hyperendemic settings of mal-
aria, the disease tends to spatially cluster based on
different levels of environmental and climatic condi-
tions and may also cluster with the sociodemographic
factors [26]. One unexpected finding which is not
well documented in literature is the influence of non-
affiliation with religious groupings. Although the three
main religious stratifications in Ghana did not correl-
ate significantly with the incidence of malaria,
non-religious affiliations significantly correlated in-
versely. The religious affiliations where people often
come together and even stay overnight for prayers
and other religious activities and at times in open
spaces and some surrounded by bushes and in forest
will expose people to the vector and those who might
be having asymptomatic/ undiagnosed and untreated
malaria. This means that targeted risk management
strategies are needed for religious (Christianity, Afri-
can traditional and Islamic) gatherings.

Visual display of geographic patterns in malaria
incidence–risk factor interactions
The ERMs and CCMs identified specific locations of
high incidence that could be targeted [31] where
malaria and specific sociodemographic factors were
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spatially interacting significantly. It is plausible that
some of these sociodemographic factors could in-
form the management of the incidence of malaria in
the identified districts. For instance, spatial inter-
action of malaria-basic education specifically
highlighted districts in the middle and northern
parts where increasing basic education and/or inten-
sifying education campaign could contribute to redu-
cing the expected incidence of malaria. Improving
economic conditions in those districts (which will
impact migration) could improve health seeking be-
haviour of the indigenes to help lower malaria inci-
dence risk [13] in those districts. The ERMs revealed
specific districts requiring extra attention that could
be targeted for modifying a particular sociodemo-
graphic covariate in an attempt to lower the inci-
dence of malaria, mostly at the northern and
south-western parts. The conditioned micromaps of
malaria located areas that are most/least affected of
malaria with low and/or high accumulation of two
risk factors. Our findings imply that although mul-
tiple factors are associated with malaria morbidity,
none can be isolated as a sole target for malaria
control. However, the ERMs and the CCMs
highlighted specific locations that can be targeted for
particular or pair-wise combinations of sociodemo-
graphic factors to address the spatial heterogeneous
transmission of malaria. Due to the complex interac-
tions observed in the risk factors and disease-risk fac-
tor spatial interactions, targeting each or pair could
lead to extended or multiple control effects on mal-
aria transmission. Specifically, improving employment-
to-population ratio in rural areas will increase educa-
tion attainment for improve knowledge and healthy
lifestyle, increase the ability to afford good healthcare
and good housing facilities, reduce rural-urban migra-
tion which in turn reduces urban slums with its asso-
ciated health implications. These chain effects will
significantly impact the successes for malaria control,
especially in endemic areas.

Limitations
The study used aggregated data collected by health pro-
fessionals on patients at health facilities.
Individual-level information was not available and

hence the result should be interpreted cautiously to
avoid ecological fallacy. This study comprehensively
assessed all cases of malaria registered at health fa-
cilities, but we cannot rule out under ascertainment
of malaria due to variable levels of access to care.
This study did not include some known risk factors
of malaria (biologic, environmental and climatic fac-
tors) which might have major impact on

transmission of malaria and we did not have infor-
mation on district-level information on the coverage
and usage of the intervention programmes.

Conclusion
The findings of this study indicated that Ghana still
remains hyperendemic region of malaria, generally
substantial rates in all districts with spatiotemporal
dynamics, indicating influence of malaria incidences
from close-connected districts and previous years.
This study reaffirms the need to improve access to
healthcare and malaria intervention programmes
across the country, while providing more weight to
certain districts. We found and identified areas
where each and combinations of sociodemographic
risk factors resulted in different geographic clusters
of malaria incidence. The significant sociodemo-
graphic risk factors to be considered or/and im-
proved in the development and implementation of
malaria control programmes are increasing at least
basic education, reducing accumulation of people at
a place (urbanization) through provision of
socio-economic opportunities (e.g; increase
employment-to-population ratio) in rural areas to re-
duce intra and inter-migration, educating rural folks
in the agriculture, and grouping of people for reli-
gious practices. With respect to the volume of infor-
mation appearing in a single geo-visual display, the
risk factor-linked-rate maps provide more opportun-
ities for detailed and efficient epidemiological assess-
ments than separate rate or risk thematic maps. The
ERMs and CCMs made it possible to filter geograph-
ical areas heavily affected with the disease with accu-
mulation of specific risk factor(s). We found that
applications of ERMs and CCMs visually displayed
and identified specific areas with emerging disease–
risk factor interactions for informed, improved or
prioritized malaria interventions. Spatial regressions
such as spatial lag and spatial error models are best
for establishing significant spatial associations but
cannot visually display and specifically pinpoint
where these associations are significant. Hence in
addition to sophisticated spatial regression models,
the easily interpretable ERMs and CCMs should be
used to identify the locations of the significant
disease-risk factors associations, simplifying complex
spatial epidemiological information to health policy
makers and public health practitioners who might
not be experts in spatial statistics. Moreover, due to
the ease implementation with open access GeoDa
spatial software, ERMs and CCMs could become part
of the routine reporting and monitoring approach to
facilitate health disparities assessment and future
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health outcome predictions for improved health
intervention programmes.

Fig. 5 Bivariate scatter plot of the space-time correlation of malaria rates in the neighbouring districts and the incidnece of the immediate previ-
ous year. R-EBSMAL: Empirical Bayes’ Smoothed incidence rate of malaria. The maps were generated using GeoDa statistical software version 1.12
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Fig. 6 Local Moran’s I cluster-outlier maps of malaria incidence for the years 2010 to 2014 and the average incidence with statistical inference
based on Monte Carlo randomisation test at 999 permutations, showing significant pseudo p < 0.05 clusters of High-High (hotspot) and Low-Low
(colspot); and outliers High-Low and Low-High. LISA: Local Indicator of Spatial Association. The maps were generated using GeoDa statistical soft-
ware version 1.12
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Fig. 7 (See legend on next page.)
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(See figure on previous page.)
Fig. 7 a, b Malaria incidence conditional on basic education and (a) employment-to-population ratio (b) no/other religion where districts with
relatively high rates due to co-location of the two risk factors were indicated in the different intensities of the brown colour. Numbers in the
brackets indicate the number of districts for the rate as influenced by the two predictor variables. The maps were generated using GeoDa statis-
tical software version 1.12. c, d Malaria incidence conditioned on urban and (c) employment-to-population ratio, and (d) no/other religion where
districts with relatively high rates due to co-location of the two risk factors were indicated by the different intensities of the brown colour. Num-
bers in the brackets indicate the number of districts for the rate as influenced by the two predictor variables. The maps were generated using
GeoDa statistical software version 1.12. e, f, g Malaria rate conditional on intermigration and (e) intramigration, (f) no/other religion (g) agric
households where districts with relatively high rates due to co-location of the two risk factors were indicated by the different intensities of the
brown colour. Numbers in the brackets indicate the number of districts for the rate as influenced by the two predictor variables. The maps were
generated using GeoDa statistical software version 1.12. h, i Malaria rate conditional on Intramigration and (h) No/other religion and (i) Agric
households where districts with relatively high rates due to co-location of the two risk factors were indicated by the different intensities of the
brown colour. Numbers in the brackets indicate the number of districts for the rate as influenced by the two predictor variables. The maps were
generated using GeoDa statistical software version 1.12. j, k Malaria rate conditional on no/other religion and (j) Employment-to-population ratio
(k) Agric household where districts with relatively high rates due to co-location of the two risk factors were indicated by the different intensities
of the brown colour. Numbers in the brackets indicate the number of districts for the rate as influenced by the two predictor variables. The maps
were generated using GeoDa statistical software version 1.12

Table 2 Global spatial autocorrelation of risk factors and their correlation with malaria incidence

Risk factors Global spatial autocorrelation #Pearson's correlation
with outcome rate

Bivariate spatial correlation with outcome
rate

Univariate Moran's I Pseudo p-value z-value Pearson's r p-value Bivariate Moran's I Pseudo p-value z-value

Basic education 0.138*** 0.019 3.193 -0.226* 0.003 -0.062*** 0.042 -1.493

Illiteracy 0.013 0.056 1.650 -0.103 0.180 -0.0004 0.465 -0.069

Religion

Christian -0.009 0.275 -0.072 -0.057 0.457 -0.019 0.329 -0.491

Muslim 0.277*** 0.002 5.186 -0.137 0.075 -0.039 0.140 -0.971

Traditional 0.657*** 0.001 10.855 0.014 0.856 0.019 0.324 0.414

None/Other 0.176*** 0.010 3.671 -0.194* 0.011 -0.064*** 0.046 -1.505

Urban lev. 0.117*** 0.022 2.860 -0.174* 0.023 -0.053 0.070 -1.287

Insanitary lev. 0.018 0.080 0.881 -0.002 0.983 0.008 0.374 0.226

Intermigration -0.001 0.125 0.828 0.184* 0.016 0.089*** 0.038 1.969

Intramigration 0.102*** 0.034 2.100 0.144 0.060 0.111*** 0.020 2.402

Traditional housing unit 0.030 0.129 0.849 -0.122 0.112 -0.021 0.314 -0.523

Household overcrowding index 0.076*** 0.031 2.112 -0.148 0.054 -0.034 0.190 -0.836

Pop. density 0.018 0.080 0.881 -0.002 0.984 0.008 0.374 0.227

Dependency ratio 0.550*** 0.001 9.051 -0.020 0.795 0.070 0.050 1.627

Employment to-population ratio 0.185*** 0.012 4.777 -0.189* 0.014 -0.061*** 0.042 -1.503

Agric household 0.122*** 0.021 2.8055 0.178* 0.020 0.115*** 0.015 2.536

* significance level at p< 0.05 (2-tailed); ** significance level at p< 0.01 (2-tailed)
***spatial significance level at pseudo p < 0.05 for conditional 999 permutations.
# Spatial correlation is most appropriate but the spatial correlation was much smaller than the non-spatial correlation and the departure from independence is
consistent but weak. The assumption of spatial independence may have affected the non-spatial correlation result.
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Table 3 Non-spatial correlation (Pearson) and spatial correlation (Bivariate Moran’s I) between pairs of statistically significant
covariates for districts in Ghana

Pairwise risk factors #Non-spatial Pearson's correlation Spatial Bivariate correlation

r p-value Moran's I p-value

Basic edu-Intermigration 0.001 0.992 0.032 0.064

Basic edu-Intramigration -0.039 0.610 -0.003 0.373

Basic edu-Urban 0.969** 0.000 0.113* 0.023

Basic edu-Emp.-to-pop. ratio 0.925** 0.000 0.145* 0.018

Basic edu-No/other religion 0.861** 0.000 0.094* 0.025

Basic edu-Agric household -0.014 0.854 0.013 0.198

Intermigration-Urban -0.028 0.719 -0.008 0.404

Intermigration- Intramigration 0.612** 0.000 0.028 0.062

Intermigration-Emp.-to-pop. ratio -0.011 0.888 -0.0005 0.240

Intermigration-No/other religion -0.046 0.552 -0.046* 0.043

Intermigration-Agric household 0.867** 0.000 0.030* 0.047

Intramigration-Urban -0.052 0.497 -0.0209 0.288

Intramigration-Emp.-to-pop. ratio -0.040 0.607 -0.015 0.418

Intramigration-No/other religion -0.084 0.275 -0.069* 0.007

Intramigration-Agric household 0.915** 0.000 0.115* 0.025

Urban-Emp.-to-pop. ratio 0.941** 0.000 0.145* 0.019

Urban-No/other religion 0.860** 0.000 0.098* 0.026

Urban-Agric household -0.050 0.521 -0.034 0.059

Emp.-to-pop. ratio- No/other rel. 0.835** 0.000 0.104* 0.022

Emp.-to-pop.ratio-Agric household -0.030 0.693 -0.015 0.388

No/other rel.-Agric household -0.075 0.331 -0.128* 0.001

** Non-spatial correlation is significant at p< 0.01 (2-tailed)
*spatial correlation is significant at pseudo p < 0.05 for conditional 999 permutations
# Spatial correlation is most appropriate but the spatial correlation was much smaller than the non-spatial correlation and the departure from independence is
consistent but weak. The assumption of spatial independence may have affected the non-spatial correlation result
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