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Abstract

While a number of genes have been implicated in melanoma susceptibility, the role of protein-

coding variation in melanoma development and progression remains underexplored. To better 

characterize the role of germline coding variation in melanoma, we conducted a whole-exome 

case-control and somatic-germline interaction study involving 322 skin cutaneous melanoma cases 

from The Cancer Genome Atlas and 3,607 controls of European ancestry. We controlled for cross-

platform technological stratification using XPAT and conducted gene-based association tests using 

VAAST 2. Four established melanoma susceptibility genes achieved nominal statistical 

significance, MC1R (p = 0.0014), MITF (p = 0.0165) BRCA2 (p = 0.0206), and MTAP (p = 

0.0393). We also observed a suggestive association for FANCA (p=0.002), a gene previously 

implicated in melanoma survival. The association signal for BRCA2 was driven primarily by 

likely gene disrupting (LGD) variants, with an Odds Ratio (OR) of 5.62 (95% Confidence Interval 

(CI) 1.03 – 30.1). In contrast, the association signals for MC1R and MITF were driven primarily 

by predicted pathogenic non-LGD coding variants, with estimated ORs of 1.4 to 3.0 for MC1R 
and 4.1 for MITF. MTAP exhibited an excess of both LGD and predicted damaging non-LGD 

variants among cases, with ORs of 5.62 and 3.72, respectively, although neither category was 

significant. For individuals with known or predicted damaging variants, age of disease onset was 

significantly lower for two of the four genes, MC1R (p=0.005) and MTAP (p=0.035). In an 

analysis of germline carrier status and overlapping copy number alterations, we observed no 
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evidence to support a two-hit model of carcinogenesis in any of the four genes. Although MC1R 
carriers were represented proportionally among the four molecular tumor subtypes, these 

individuals accounted for 69% of ultraviolet (UV) radiation mutational signatures among triple-

wild type tumors (p = 0.040), highlighting the increased sensitivity to UV exposure among 

individuals with loss-of-function variants in MC1R.
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1. Introduction

Despite the potential effectiveness of early detection efforts, cutaneous melanoma remains a 

deadly disease that continues to claim over 7,000 lives per year in the United States alone 

[1]. This juxtaposition highlights the growing need for improved identification of individuals 

at high risk of developing melanoma. Although the disease has a strong hereditary 

component, the preponderance of familial clustering in melanoma remains unexplained. 

Familial studies have identified multiple high-risk melanoma genes, including CDKN2A [2] 

and CDK4 [3], but the proportion of sporadic cases attributable to susceptibility genes 

identified in a familial context has been underexplored. A number of intermediate risk 

melanoma-susceptibility genes, with variants conferring a 2-fold to 8-fold increased risk, 

have been identified through a combination of case-control and familial studies, including 

MC1R [4, 5], MITF [6, 7], BRCA2 [8, 9], TERT [10], BAP1 [11], POT1 [12], and MTAP 
[13]. The full spectrum of disease risk conferred by rare variants in these genes remains to 

be elucidated.

Detailed characterization of genomic alterations in melanoma has revealed four major tumor 

subtypes defined by the occurrence of somatic point mutations, mutant BRAF, mutant RAS, 

mutant NF1, and triple-WT (wild-type) [14]. Due to reduced DNA repair activity, BRAF, 

RAS, and NF1 subtypes are characterized by high-rates of mutation from ultraviolet (UV) 

radiation exposure, with over 90% of tumors harboring a UV mutational signature. In 

contrast, only 30% of triple-WT tumors are known to harbor a UV mutational signature. No 

prior study has evaluated the relationship between established melanoma risk genes, tumor 

subtypes, and tumor mutational patterns.

To evaluate the contribution of rare, protein-coding variation to melanoma risk, 

development, and progression, we conducted a gene-based whole-exome case-control study 

involving 322 cases from The Cancer Genome Atlas (TCGA) project and 3,607 controls of 

European ancestry. We then combined the case-control results with whole-exome 

sequencing data of tumor-derived DNA to test for patterns of somatic-germline interaction.
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2. Material and Methods

2.1 Data sources

The initial set of cases consisted of 387 individuals diagnosed with skin cutaneous 

melanoma (SKCM) from The Cancer Genome Atlas (TCGA) project, with approval for the 

access to the Cancer Genomics Hub (https://cghub.ucsc.edu/). Controls consisted of 4,674 

unaffected parents from autism parent-offspring trios in the Simons Simplex Collection 

(SSC) [15, 16], downloaded from National Database for Autism Research (NDAR). All 

germline variant calls were generated using sequencing data from blood derived DNA. Other 

than ASD status, phenotype information was unavailable for the controls and thus a small 

proportion may have been misclassified, although the potential misclassification bias would 

have only a modest influence on power and effect size estimates [17].

2.2 Sequencing data processing and cross-platform quality control

We downloaded raw read data in FASTQ format for all cases and controls, where available. 

If only BAM files were available, we extracted the sequencing reads from BAM files to 

generate FASTQ files for each individual. We conducted data alignment and variant calling 

steps using the XPAT pipeline [18], which included the following steps: (1) alignment of 

FASTQ data for each individual to the human reference genome (HG19) using BWA [19] 

(v0.7.9a), Samtools [20] (version 0.1.19), Picard (v1.118), sample level variant calling using 

GATK HaplotypeCaller[21] (v3.3) to generate gvcf files, (3) joint genotype calling of all 

samples from gvcf files using GATK HaplotypeCaller [21], and (4) variant recalibration 

using GATK Variant Recalibrator metrics with the tranche sensitivity score ≥ 99.9 for SNVs 

and ≥ 98.0 for INDELs. We converted variant calls with genotype quality scores less than 

five to missing genotypes.

We used the XQC module in XPAT to perform sample level and variant level quality control 

(QC) with default parameters [18], described briefly as follows: For sample level QC, we 

excluded samples with NC90 > 0.05%, defined as the proportion of sites called in this 

individual among the subset of sites with 90% or greater call rates for each platform. Due to 

insufficient sample sizes, we also excluded any sample with ethnicity reported as Hispanic 

or Latino. For variant level QC, we excluded variants based on the default criteria in XPAT, 

which include the following: (1) allelic balance (proportion of reads supporting minor allele 

among all reads) < 20%, (2) missing genotype calling rate > 10% in any platform, (4) 

Hardy-Weinberg disequilibrium test with p < 10−6 in controls, (4) p < 0.05 in a cross-

platform differential missing genotype rate test among both cases and controls, and (5) p < 

0.05 in a cross-platform differential allele frequency test within cases and controls.

2.3 Case-control analyses

To identify population outliers, we conducted an initial principal component analysis (PCA) 

using an external reference panel of 427 individuals from the 1000 Genomes project 

(phase3–20130502) [22]. We included a total of 19,053 SNPs that passed QC with minor 

allele frequency (MAF) > 10%, LD-pruned to r2<0.2. We projected cases and controls onto 

the PC space and selected samples that clustered with the European group to identify our 

final set of 322 cases and 3,607 controls (Supplementary Figure S1 and S2). We then 
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conducted a second PCA using the combined set of cases and controls, excluding the 

reference panel. We included a total of 15,071 SNPs that passed QC with MAF >10% 

among non-Finnish Europeans reported in ExAC database, LD-pruned to r2<0.2 [23] 

(Supplementary Figure S3).

We conducted gene-based association tests using VAAST 2 with the allele frequency among 

controls constrained to 0.1 or lower in the likelihood model (parameter: r = 0.1). Variants 

were weighted by the conservation-controlled amino acid substitution matrix (CASM) 

scores, as previously described [24, 25]. VAAST 2 uses a one-sided burden test to test 

whether damaging variants are overrepresented in the cases versus controls. We used the 

covariate matrix from PCA with a biasedUrn sampling method [26] implemented in VAAST 

2, with the first two PCs included as covariates. For genes with multiple isoforms, we 

calculated gene-based p-values using the Multiple Gene Isoform Test (MGIT) implemented 

in XPAT [18], which is a permutation-based test that jointly evaluates all isoforms in a given 

gene.

2.4 Copy number alterations

To detect somatic Copy Number Alterations (CNA), we downloaded Affymetrix SNP-6 

CEL files from 474 tumor-normal pairs; we used the 318 of these pairs that overlapped with 

selected germline sequencing data in the subsequent analysis. We ran Birdsuite [27] on CEL 

files of all normal samples to get the reference SNP genotypes uninfluenced by somatic 

variation for the phasing. We then ran Birdsuite again on all CEL files of all samples 

together to obtain B allele frequencies and logR ratios for the tumors. As part of standard 

processing, we excluded probes from mitochondrial and Y chromosomes, as well as markers 

spanning the HLA region, which exhibits gene duplications. We applied Mach [28] to phase 

the samples in the germline set. We injected the normal phasing into each (paired) tumor 

sample file and applied hapLOH [29] to infer allelic imbalance and copy number alterations 

in all tumor samples. We reported regions of allelic imbalance where a posterior probability 

of 95% of imbalance was exceeded. We then combined all hapLOH CNA calls with copy 

number gain and loss events reported in cBioPortal (http://www.cbioportal.org/), with 

segment mean somatic event > log2(2.5/2) for copy number gains and < log2(1.5/2) for copy 

number losses.

3. Results

We conducted a gene-based case-control association analysis of protein-coding variants 

across the exome using the Variant Annotation, Analysis and Search Tool (VAAST 2, 

version 2.1) [24, 25]. The analysis considered both LGD (stop gained, stop lost, splicing 

region variants and frame-shift INDELs) and non-LGD (missense and inframe INDELs) 

variants, weighting each variant according to the estimated degree of protein dysfunction 

conferred based on the CASM score in VAAST [24]. The initial level of technological 

stratification between cases and controls was substantial, due to differences in target capture 

and sequencing protocols. However, after applying the cross-platform QC pipeline in XPAT 

[18], we observed no overall inflation in Type I error (Supplementary Figure S4). Although 

no gene reached genome-wide significance, the association analysis identified four genes 
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previously implicated in melanoma risk at a nominal significance level of 0.05 (Table 1): 

MC1R [4] (p = 0.0014), MITF [30] (p = 0.0165), BRCA2 [9] (p = 0.0206), and MTAP [13] 

(p = 0.0393), Supplementary Table 1 presents the full list of gene-based association results.

To assess whether the association signals in these genes were driven by known pathogenic 

variants or variants expected to disrupt protein expression, we excluded LGD variants and 

repeated the association analysis. MC1R and MITF exhibited no meaningful change in 

association signal, while BRCA2 exhibited only a modest attenuation in signal, (Table 1), 

suggesting that missense variants with unconfirmed pathogenicity in these genes increase 

melanoma risk.

To estimate variant effect sizes, we calculated crude odds ratios (ORs) according to the 

classical method [31–33] and adjusted ORs with logistic regression, incorporating the first 

two PCs as covariates. Table 2 reports variant-specific ORs for variants with five or more 

allele counts among both cases and controls. For rare variants with MAF <0.005, we 

calculated collapsed gene-based effect sizes based on the following four functional 

categories: all coding variants, LGD variants, predicted damaging non-LGD variants 

(CASM score ≥ 1.0 and PolyPhen-2 score ≥ 0.909), and predicted benign non-LGD variants 

(CASM score < 1.0 and PolyPhen-2 score ≤ 0.446), as shown in Figure 1 and Table 3.

To conduct somatic-germline interaction analyses, we first classified cases according to their 

carrier status for MC1R, MITF, BRCA2, and MTAP. Here, we defined a carrier as any 

individual with a germline variant which received a VAAST score > 1.0 in the case-control 

analysis. The VAAST score incorporates both the CASM score and case-control allele 

frequency information to identify variants predicted to increase disease risk.

We evaluated two-hit models of carcinogenesis by testing the hypothesis that, for a given 

gene, somatic mutational events were more frequent among carriers than non-carriers [34]. 

We considered four classes of mutational events: coding point mutations, copy number 

gains, copy number losses, and undefined CNAs. The waterfall plot in Figure 2 depicted the 

landscape of germline variants and somatic events in the four selected melanoma 

susceptibility genes. The undefined category represents allelic imbalance events that could 

only be detected by hapLOH; these include CNAs with copy neutral loss-of-heterozygosity 

as well as CNAs present at low frequencies in tumor subclones [29]. We also conducted 

additional tests evaluating copy number gain and loss separately. The analysis identified no 

significant associations between carrier status and somatic mutational events for any of the 

four genes (Supplemental Table S2). In general, somatic mutational events were 

proportionally represented among carriers and non-carriers in each gene.

To test for associations with UV mutational signatures, we considered a total of 258 samples 

with available UV signature, tumor subtype information, and germline data [14]. We tested 

the fractions of germline damaging variants carrier between samples with and without UV 

signatures for each subtype. We observed that 69% of triple WT samples with UV signatures 

were MC1R carriers, compared to only 33% of samples without UV signatures (p = 0.040, 

one-sided Fisher’s exact test, see Figure 3A). The other three tumor subtypes were 
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characterized by a high rate of UV mutational signatures among both MC1R carriers and 

non-carriers, with no significant differences.

We also tested for potential relationships between germline susceptibility variants and age at 

disease onset using a one-sided Wilcoxon rank sum test. Both MTAP and MC1R carriers 

were diagnosed with melanoma at significantly younger ages, with p = 0.035 and 0.005, 

respectively (see Figure 3B and 3C). The mean age at diagnosis was 35.5 among MTAP 
carriers, 53.9 among MC1R carriers, and 57.7 among non-carriers. We observed no 

significant association with age at diagnosis among BRCA2 or MITF carriers (Figure 3D 

and 3E).

4. Discussion

Continued advances in next-generation sequencing technologies present growing 

opportunities to conduct large-scale sequence-based association studies by pooling data from 

multiple original sources. These studies can potentially have a major impact on precision 

medicine through more accurate effect size estimates for rare variants in known 

susceptibility genes as well as improved statistical power to detect new disease associations. 

However, technological stratification biases resulting from the heterogeneous nature of next-

generation sequencing technologies have been a major barrier to pooled analysis efforts [35]. 

In this study, we initially employed a set of QC metrics typically applied in sequence-based 

association studies and observed substantial inflation in Type I error. However, after 

applying the cross-platform QC metrics in XPAT, we observed no Type I error inflation and 

thus were able to successfully control for technological stratification biases (Supplemental 

Figure S4). Our gene-based association analysis replicated four established melanoma 

susceptibility genes: MC1R, MITF, BRCA2, and MTAP. For variants in these genes with 

sufficient allele counts for individual effect size estimates, the odds ratios were broadly 

consistent with previous estimates (Figure 1B). We observed no evidence supporting a two-

hit model of carcinogenesis in any of the four genes, indicating that only one copy of an 

inherited predisposition allele at the cellular level was sufficient to help drive tumor 

initiation.

Gene-based association tests increase statistical power to identify disease associations by 

aggregating information from multiple variants. After a gene-level association has been 

identified, these tests generally provide limited information regarding the increase in risk 

conferred by any given variant. To overcome this problem, effect size estimates are often 

obtained by collapsing variants into specific functional categories based on a priori in silico 
predictions. Given the inherent imprecision of in silico functional variant prediction tools 

[24], such estimates are necessarily biased by misclassification errors, but nonetheless 

provide substantial insights into the degree of risk conferred by rare functional variants in a 

gene of interest. In this study, we considered three functional variant categories for gene-

based rare variant effect size estimates: LGD and known pathogenic variants, non-LGD 

variants predicted to be damaging by both CASM and PP2, and non-LGD variants predicted 

to be benign by both CASM and PP2. Although the confidence intervals were wide, LGD 

variants in BRCA2 and predicted damaging non-LGD variants in MITF all exhibited odds 
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ratios of greater than 1. In contrast, the odds ratio estimates for variants predicted to be 

benign ranged from 0 to 1.4 (Figure 1A, Table 3).

Missense variants in MC1R are associated with phenotypical features such as light skin 

pigmentation and red hair, in addition to an increased risk of cutaneous melanoma [36]. We 

identified four MC1R variants (rs1805006, rs1805007, rs1805008, rs1805009) with ORs 

significantly greater than 1 in this study (Table 2). All four variants are known melanoma 

risk factors and are strongly associated with red hair [37]. The OR estimates of these 

variants ranged from 1.4 to 3.0 and were consistent with previous reports (Table 2) [38]. The 

association between MC1R carrier status and increased UV mutational signatures in triple-

WT tumors is likely due to an interaction between lighter skin pigmentation and UV 

exposure. The absence of an association with UV signatures and MC1R carrier status among 

BRAF, RAS, and NF1 tumor subtypes may result from the high rates of UV signatures 

among these subtypes. The modest but significant relationship between MC1R carrier status 

and younger age at melanoma diagnosis could be explained by age-specific increases in 

relative risk or by earlier detection due to recognized phenotypic risk factors.

MITF (melanogenesis associated transcription factor) encodes a transcription factor that 

regulates melanocyte development and is responsible for pigment cell-specific transcription 

of the melanogenesis enzyme genes. We identified an association between melanoma and a 

rare functional non-synonymous SNV (rs149617956), with an adjusted OR of 4.48 (95% CI: 

1.57 to 12.78). Previous studies have reported somewhat higher OR estimates for this variant 

[6, 7], although the confidence intervals overlap (Figure 1B, Table 2). Based on a meta-

analysis of our estimate and prior work, the estimated OR of this variant is 6.01 (95% CI: 

2.81 to 12.89). This variant is also associated with a higher incidence of renal cancer, 

increased nevus count, and non-blue eye color [39]. Although the gene-based OR estimate 

for rare, predicted pathogenic non-LGD variants was significantly larger than 1.0, this 

association was driven solely by rs149617956.

MTAP (methylthioadenosine phosphorylase) encodes an enzyme that plays a major role in 

polyamine metabolism. Previous studies have reported multiple variants associated with 

occurrence of cutaneous melanoma [13, 40]. In this study, VAAST identified two additional 

potential risk variants in MTAP, one LGD and one non-LGD. Although only two MTAP 
carriers were identified in this study, the age at diagnosis was significantly different between 

carriers and non-carriers. Both MTAP carriers were diagnosed with melanoma before the 

age of 45, compared to an average age at diagnosis among all study participants of 56.7. To 

our knowledge, associations with MTAP susceptibility variants and early-onset melanoma 

have not been previously reported.

BRCA2 is a cancer susceptibility gene with a well-established pattern of dominant 

inheritance in several cancers, including melanoma. BRCA2 is also one of the thirteen genes 

involved in Fanconi anemia, a recessive disorder characterized by genomic instability and 

increased susceptibility to leukemia and cancer [41, 42]. The estimated effect size for LGD 

variants in BRCA2 was somewhat higher than previously reported, with a crude OR of 5.6 

and an adjusted OR of 3.4. However, given the wide confidence intervals, these results are 

consistent with previous relative risk estimate of 2.6 (95% CI 1.3 to 5.2) for pathogenic 
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BRCA2 variants [43]. We also replicated the association with the BRCA2 coding variant 

rs1799944, which had a MAF of 0.03 among controls. Our estimated OR for this variant was 

1.87 (95% CI 1.47 to 2.38) based on a meta-analysis of our results and a previous estimate. 

Note that rs766173 and rs1799944 are in near complete linkage disequilibrium (r2 = .89), 

which complicates interpretations of causality. Although BRCA2 has been reported to 

follow a two hit model in some cancers [34], this does not appear to be an important 

mechanism for tumorigenesis in melanoma.

Notably, a second Fanconi anemia pathway gene, FANCA, exhibited a nominally significant 

association with melanoma risk (p = 0.0020). Coding variants in both FANCA and BRCA2 
have been previously associated with overall survival of melanoma patients [44]. Our study 

also identified two additional candidate melanoma susceptibility genes with nominal p less 

than 0.05 that have been identified as susceptibility genes in other cancers (Supplementary 

Table S1): RAD50 (p = 0.0387) and HNF1A (p = 0.0332). HNF1A was recently reported as 

a pancreatic cancer susceptibility locus in a genome-wide pleiotropy scan [45]. One of the 

targets of HNF1A is the melanoma inhibitory activity 2 (MIA2) gene [46], the 

overexpression of which promotes metastatic behavior of malignant melanoma [47]. RAD50 
is an established intermediate breast cancer risk gene [48–50], but has not been previously 

implicated in melanoma susceptibility. Note that FANCA, HNF1A, and RAD50 were not 

significant after multiple testing correction and are highlighted here based on post hoc 
exploratory analyses.

Taken together, our findings highlight the potential importance of damaging protein-coding 

variation in melanoma susceptibility. However, because this study was restricted to a 

relatively small sample of individuals of European ancestry, the statistical power to identify 

new melanoma-gene associations was limited and the relevance of our findings in other 

populations is uncertain. Additional sequencing studies with larger sample sizes involving 

multiple ancestry backgrounds are needed to more fully characterize the contribution of rare, 

protein-coding variation to melanoma development and progression.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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CNA copy number alteration

ExAC Exome Aggregation Consortium

GATK Genome Analysis Toolkit

LGD likely gene-disrupting

NDAR National Database for Autism Research

OR odds ratio

PCA principle component analysis

QC quality control

SGI somatic-germline interaction

SKCM skin cutaneous Melanoma

SNP single nucleotide polymorphism

SNV single nucleotide variant

SSC Simons Simplex Collection

TCGA The Cancer Genome Atlas

VAAST2 The Variant Annotation, Analysis and Search Tool

XPAT The cross-Platform Association Toolkit
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Highlights

• Rare, protein-coding variants in MC1R, MITF, BRCA2, and MTAP confer 

between a 1.4-fold to 6-fold increase in melanoma risk.

• Susceptibility variants within MC1R are associated with ultraviolet (UV) 

radiation mutational signatures in triple-wildtype tumors.

• Susceptibility variants in MC1R and MTAP are associated with earlier age of 

melanoma diagnosis.
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Figure 1. Odds ratio estimates for melanoma susceptibility genes and variants.
We estimated the ORs of four established and replicated melanoma susceptibility genes with 

TCGA-SKCM cases and NDAR controls. (A) depicts the gene-based ORs for four particular 

classes of variants: (1) all variants in a given gene, (2) only LGD variants, (3) predicted 

pathogenic missense variants, and (4) predicted benign missense variants. (B) depicts the 

variant-based ORs of eight variants in MC1R, BRCA2 and MITF. See Table 2 for OR 

estimate details
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Figure 2. Landscape of germline variants and somatic events in select genes.
The main panel (middle) indicated the germline variants and somatic allelic imbalance 

events of four genes (i.e. MC1R, MITF, BRCA2, and MTAP), and somatic mutations of 

melanoma driver genes reported in the TCGA paper [14]. The top panel indicated the total 

number of somatic mutations for each individual. The left panel indicated the mutation 

burdens of each gene in germline and somatic samples. Germline variants include: likely 

gene-disrupting (LGD) variants (i.e. stop gained, stop lost, splicing region variants and 

frame-shift INDELs), and non-LGD variants but known as pathogenic ones according to the 

ClinVar database, and non-LGD variants with pathogenic potential according to CASM 

score from VAAST 2. Somatic allelic imbalance events include: copy number gain with 

segment mean > log2(2.5/2), copy number loss with segment mean < log2(1.5/2), and other 

allelic imbalance events provided by hapLOH only.
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Figure 3. Associations of melanoma susceptibility genes with UV mutational signatures, sample 
subtypes, and ages at diagnosis.
(A) depicts the proportion of MC1R carriers among samples with and without UV signatures 

among triple WT tumors and other tumor subtypes. Boxplots in (B-E) depict the distribution 

of age at diagnosis among carriers and non-carriers.
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Table 1.

VAAST 2 analysis results of selected genes with reported melanoma risk.

Gene All coding variants Excluding LGD variants Comments

MC1R 0.0014 0.0006

Reported melanoma susceptibility genes
MITF 0.0165 0.0159

BRCA2 0.0206 0.0448

MTAP 0.0393 0.2870

FANCA 0.0020 0.0005
Reported susceptibility genes in other cancers

HNF1A 0.0332 0.0156
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Table 3.

Odds ratio estimates and confidence internals for genes associated with melanoma cancer.

Variant type Gene
Number of cases Number of controls

Crude OR Adjusted OR
Carrier Non-carrier Carrier Non-carrier

All variant

MC1R 12 310 140 3467 0.96 (0.53–1.75) 1.18 (0.64–2.18)

MITF 10 312 38 3569 *3.01 (1.49–6.10) *3.89 (1.88–8.06)

BRCA2 39 283 342 3265 1.32 (0.92–1.87) 1.29 (0.90–1.86)

MTAP 2 320 13 3594 1.73 (0.39–7.69) 2.21 (0.48–10.25)

FANCA 22 300 215 3392 1.16 (0.73–1.82) 1.33 (0.84–2.13)

LGD variant

MC1R 3 319 47 3560 0.71 (0.22–2.30) 0.83 (0.25–2.71)

MITF 0 322 0 3607 NA NA

BRCA2 2 320 4 3603 *5.63 (1.03–30.86) 3.40 (0.52–22.37)

MTAP 1 321 2 3605 5.62 (0.51–62.1) 0.00 (0.00-INF)

FANCA 0 322 7 3600 0.74 (0.04–13.06) NA

Non-LGD variants

Predicted pathogenic

MC1R 0 322 14 3593 0.38 (0.02–6.46) NA

MITF 5 317 19 3588 *2.98 (1.10–8.03) *3.55 (1.29–9.81)

BRCA2 6 316 47 3560 1.44 (0.61–3.39) 1.55 (0.65–3.73)

MTAP 0 322 1 3606 3.72 (0.15–91.70) NA

FANCA 3 319 10 3597 3.38 (0.93–12.35) 3.69 (0.97–14.00)

Predicted benign

MC1R 0 322 18 3589 0.00 (0.00–2.55) NA

MITF 1 321 8 3599 1.40 (0.17–11.24) 0.00 (0.00-INF)

BRCA2 176 146 2171 1436 0.80 (0.63–1.00) 0.89 (0.70–1.13)

MTAP 210 112 2356 1251 1.00 (0.78–1.26) 0.94 (0.73–1.20)

FANCA 12 310 125 3482 1.08 (0.59–1.97) 1.28 (0.68–2.38)

*
OR was significantly greater than 1.0 with p value < 0.05.
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