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Abstract

Purpose: Accurate image-based ophthalmic diagnosis relies on clarity of fundus images. This 

has important implications for the quality of ophthalmic diagnoses, and for emerging methods 
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such as telemedicine and computer-based image analysis. The purpose of this study was to 

implement a deep convolutional neural network (CNN) for automated assessment of fundus image 

quality in retinopathy of prematurity (ROP).

Design: Experimental study.

Subjects: Retinal fundus images were collected from preterm infants during routine ROP 

screenings.

Methods: 6,139 retinal fundus images were collected from 9 academic institutions. Each image 

was graded for quality (Acceptable Quality [AQ], Possibly Acceptable Quality [PAQ], or Not 

Acceptable Quality [NAQ]) by three independent experts. Quality was defined as the ability to 

confidently assess an image for the presence of ROP. Of the 6,139 images, NAQ, PAQ, and AQ 

images represented 5.6%, 43.6%, and 50.8% of the image set, respectively. Due to low 

representation of NAQ images in the data set, images labeled NAQ were grouped into the PAQ 

category, and a binary CNN classifier was trained using 5-fold cross-validation on 4,000 images. 

A test set of 2,109 images was held out for final model evaluation. Additionally, 30 images were 

ranked from worst to best quality by six experts via pairwise comparisons and the CNN’s ability to 

rank quality, regardless of quality classification, was assessed.

Main Outcome Measures: CNN performance was evaluated using area under the receiver 

operating characteristic curve (AUC). A Spearman’s rank correlation was calculated to evaluate 

the overall ability of the CNN to rank images from worst to best quality as compared to experts.

Results: The mean (SD) AUC for 5-fold cross-validation was 0.958 (0.005) for the diagnosis of 

AQ versus PAQ images. The AUC was 0.965 for the test set. The Spearman’s rank correlation 

coefficient on the set of 30 images was 0.90 as compared to the overall expert consensus ranking.

Conclusions: This model accurately assessed retinal fundus image quality in a comparable 

manner to that of experts. This fully-automated model has potential for application in clinical 

settings, telemedicine, and computer-based image analysis in ROP, and for generalizability to 

other ophthalmic diseases.

Technologies such as digital imaging, telemedicine, and artificial intelligence for image 

analysis are beginning to revolutionize the practice of ophthalmology.1-11 A critical issue 

that plagues nearly all medical imaging applications is poor image quality.12-28 In the best 

case scenario, poor image quality renders images useless for diagnosis and wastes time and 

resources due to required follow-up imaging sessions. In the worst case, it leads to incorrect 

diagnoses, resulting in either over- or under-treatment and the potential for life-altering 

consequences. To address this issue, we have focused on retinopathy of prematurity (ROP), a 

potentially-blinding childhood disease.

Advances in medical technology have also been witnessed in the neonatal intensive care unit 

(NICU).29 The survival rate of premature infants has dramatically increased over the last few 

decades.29 Unfortunately, this has not come without consequences. ROP, a vasoproliferative 

retinal disease, affects approximately two-thirds of premature infants weighing <1251 grams 

at birth.30-33 While ROP has the potential to cause permanent blindness, it is treatable via 

laser photocoagulation or intravitreal injections of anti-vascular endothelial growth factor 

(anti-VEGF), if diagnosed promptly.30 Treatment is initiated for the following retinal 
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findings: Zone I ROP, stages 1, 2 or 3, plus disease present; Zone I ROP, stage 3, plus 

disease not present, and Zone II ROP, stages 2 or 3, plus disease present.30 It is obvious that 

plus disease, defined as “abnormal dilation and tortuosity of the posterior retinal blood 

vessels in two or more quadrants of the retina,” is a significant indicator of the need for 

treatment. It is therefore absolutely necessary to diagnose plus disease in an accurate and 

timely manner. The presence of plus disease in at least two quadrants of the retina is easier 

to diagnose when image quality is high (Figure 1A). However, as image quality begins to 

deteriorate, visualization of the retina becomes difficult, if not impossible (Figure 1B,C).

A major barrier to timely ROP treatment is a lack of access to ROP experts in both 

developed and developing countries.8,15,31-33 Therefore, the implementation of telemedicine 

and other computer-based image analysis applications that make use of high-quality fundus 

images is crucial.11 Recently, we have developed DeepROP, a deep learning model for 

automated assessment of plus disease in ROP patients.10 When this model is provided high-

quality images, it provides highly accurate diagnoses. However, it is reasonable to assume 

that images of lower quality will tend to be misclassified more often than images of higher 

quality. Herein we describe an extension of preliminary work that attempts to address this 

pitfall – a deep convolutional neural network (CNN) to automatically assess the quality of 

retinal fundus images.34 A CNN is an artificial neural network trained to extract features 

from images. A deep CNN is an extension of this model, which creates new images using 

the extracted features. Essentially, a deep CNN extracts features from features from features 

and so on. In the early layers of the network, the extracted features are typically straight 

lines of various rotations. In the deeper layers of a CNN, features become more abstract. 

Because there are typically tens of millions of parameters to train (e.g. weights of the edges 

connecting nodes), we take advantage of a method known as transfer learning. Here, we 

implement a pretrained CNN architecture, specifically Inception-V3, which has been trained 

to identify everyday objects, such as cats, cars, trees, dishwashers, etc., and we fine-tune its 

learned filters for this specific use case.35,36 This has numerous potential applications, such 

as a pre-screening method for our ROP diagnostic tool, a quality metric for imaging 

technicians, or a workflow component for telemedicine-based applications.

METHODS

All data for this study were obtained through the multi-center, NIH-funded, Imaging and 

Informatics in ROP (i-ROP) study centered at Oregon Health & Science University (OHSU). 

This study was approved by the institutional review board at the coordinating center (OHSU, 

Portland, Oregon) and at each of 8 study centers (Columbia University, University of Illinois 

at Chicago, William Beaumont Hospital, Children’s Hospital Los Angeles, Cedars-Sinai 

Medical Center, University of Miami, Weill Cornell Medical Center, Asociacion para Evitar 

la Ceguera en Mexico) and was conducted in accordance with the Declaration of Helsinki. 

Written informed consent was obtained from parents of all infants enrolled.

Retinal Fundus Image Data Sets

Using a RetCam (Natus; Pleasanton, CA), 6,139 wide-angle fundus images were collected 

from preterm infants during routine ROP screening examinations. Three masked graders 
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evaluated images for ROP stage, zone, plus disease, and image quality (based upon 

acceptability for diagnosis of ROP). Labels for image quality were: Acceptable Quality 

(AQ), Possibly Acceptable Quality (PAQ), or Not Acceptable Quality (NAQ). Graders were 

not told what defined AQ versus PAQ versus NAQ images. The final classification represents 

a majority vote of the 3 independent assessments of the suitability of an image for the task of 

ROP classification (zone, stage, and plus). AQ, PAQ, and NAQ images represented 50.8%, 

43.6%, and 5.6% of the final data set, respectively (Figure 1). Due to low representation of 

NAQ images in this data set, NAQ images were combined with images from the PAQ 

category. The final distribution of the data set was 50.8% AQ images and 49.2% PAQ 

images. It should be noted, however, that the PAQ label does not necessarily imply that an 

image is useless for diagnosis, but that a higher-quality image would increase the confidence 

of the diagnosis being made. For example, it is possible that a diagnosis could be made from 

an image with half of the retinal image occluded, but that an image grader’s confidence 

might be higher if the entire image were easily visualized.

To assemble the training set, 2,000 AQ images and 2,000 PAQ images were selected at 

random. These 4,000 images were randomly decomposed into five separate, equally-

stratified sets to be used for 5-fold cross-validation. An independent test set was formed 

using 2,109 randomly selected images that represented the true underlying distribution of 

AQ to PAQ images. The remaining 30 images were used to create a ranked data set. Briefly, 

the six experts ranked the smaller set of 30 images from worst quality to best quality. A web-

based interface was implemented, which presented each expert with two images and the 

prompt “Select the higher quality image for the diagnosis of plus disease.” After multiple 

pairwise comparisons, individual expert rankings of worst to best quality images were 

developed. Using an Elo rating system, all expert rankings were aggregated to form an 

overall expert consensus ranking of the images.

Model Architecture

This model was built and trained using Keras, a deep learning library for the programming 

language Python, with the TensorFlow backend (an open source software library for 

numerical computation using data flow graphs). The convolutional portion of the model 

made use of a pretrained CNN, specifically Inception-V3.35 The weights of the CNN were 

initialized using the values obtained after training the CNN on the ImageNet database, a 

collection of over 14 million hand-annotated images containing more than 20,000 classes.36 

This reduced training time, as it allowed the CNN to learn basic features of everyday objects 

by developing filters to extract specific shapes and textures prior to fine-tuning on medical 

images. Two fully-connected layers were built on top of the convolutional layers. The first 

layer consisted of 4,096 nodes using a rectified linear unit (ReLU) activation function. 

Because we sought to discriminate between AQ and PAQ images, the second layer consisted 

only of a single binary output node. This final layer made use of the sigmoid activation 

function; images were not only assigned a classification of AQ or PAQ, but the associated 

probability of belonging to said class was reported. To prevent overfitting, a dropout 

function with a probability of 0.5 was inserted between the two layers. Inputs to the model 

were RetCam images of size 640 × 480 × 3 or 1024 × 768 × 3 scaled down to 150 × 150 × 3. 

All training and test set image pixel values were rescaled into the [0, 1] range. Training set 
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images also had random zoom (± 20%), horizontal flips, and vertical flips applied to them to 

synthetically increase the size of the training data set and reduce the chance of overfitting.

Model Training and Evaluation

The five subsets of the training set were used to perform 5-fold cross-validation. Briefly, five 

versions of the CNN were trained and evaluated using unique validation sets and slightly 

different training sets. Each CNN was evaluated on subset 1, 2, 3, 4, or 5, and trained on the 

remaining four subsets. This method allows for close approximation of the test error and 

reduces the probability of overfitting. Training occurred for 100 epochs (iterations). 

However, the epoch with the lowest validation set error was selected for each of the five 

CNNs. Training was executed using the following hyperparameters: optimizer: mini-batch 

gradient descent, batch size: 20, learning rate: 0.001, momentum: 0.9, loss: binary cross-

entropy, and validation metric: accuracy. All layers of the model were adjustable (i.e. the 

convolutional layers were not frozen).

Data Analysis

Following 5-fold cross-validation, the area under the receiver operating characteristics curve 

(AUC) was computed for each model. The CNN with the highest AUC was selected as the 

final model, on which test and ranked set predictions were made. Images were input to the 

CNN, which calculated the probability of an image belonging to the AQ category using the 

softmax function of the final layer. A score less than 0.5 placed the image into the PAQ 

category, and a score greater than or equal to 0.5 placed the image into the AQ category. The 

AUC of the model was evaluated.

As mentioned above, the output of the CNN for any given image was a probability from 0 to 

1. These values were used to rank the set of 30 images from worst to best quality for 

diagnosis of ROP. The Spearman’s rank correlation test was used to assess the similarity 

between the CNN and the consensus ranking of the images by the six experts, as well as the 

correlation between individual experts.

RESULTS

Classification Performance

The AUCs resulting from 5-fold cross-validation ranged from 0.953 to 0.965, with a mean 

(SD) of 0.958 (0.005) (Figure 2A). Model 1 was selected as the final model. On the test set, 

the AUC was 0.965 (Figure 2B), in line with the estimated test set AUC predicted by 5-fold 

cross-validation (Figure 2A), and the sensitivity and specificity were 93.9% and 83.6%, 

respectively. Depending upon the application for which the model was implemented, the 

classification cutoff probability could be increased or decreased to favor sensitivity or 

specificity (i.e. to avoid false negatives or avoid false positives).

Ranked Set Performance

Figure 3 describes the Spearman’s rank correlation coefficients for each individual expert 

grader’s rank, the consensus rank, and the CNN rank. The Spearman’s rank correlation test 

coefficients between experts ranged from 0.89 to 0.97, suggesting a very high correlation of 
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agreement on relative image quality. Unsurprisingly, all experts were highly correlated to the 

consensus rank (0.94 - 0.97). The correlations between the CNN and individual experts 

ranged from 0.86 to 0.93, and the correlation between the CNN and the consensus ranking 

was 0.90, suggesting that the CNN not only has high inter-group discrimination, but high 

intra-group discrimination. In essence, given two images from the same class, the CNN can 

recognize which of the two images is of higher quality despite originating from the same 

lass. This suggests that the model has not only learned the difference between an AQ image 

or a PAQ image, but that it has learned what features make any retinal fundus image of 

higher quality than another.

DISCUSSION

We developed a model for the automated assessment of retinal fundus images in retinopathy 

of prematurity using a deep convolutional neural network. There are two key findings in this 

study: (1) with a high degree of confidence, the model can distinguish between images of 

acceptable quality and images of low or questionable quality, and (2) the model ranks image 

quality similarly to ROP experts, regardless of image quality classification, suggesting that 

the threshold at which images are classified as AQ or PAQ could be adjusted based upon the 

model’s application.

The use of 5-fold cross-validation allowed us to train multiple models using all available 

training data while limiting the risk of overfitting. This finding is illustrated in Figure 2A, 

which shows that all models perform similarly to one another. The aim of cross-validation is 

to estimate test set performance. The mean (SD) of the five models was 0.958 (0.005). We 

used the best performing model to assess the independent test set (Figure 2B). The AUC was 

0.965, similar to the mean (SD) predicted by 5-fold cross-validation. Taken together, we 

believe that this model has not overfit the data and that it is highly generalizable to RetCam-

acquired ROP images.

An interesting result presented during model assessment on the ranked image data set. When 

training the CNNs, we cast our problem as a classification task. That is, we only cared to 

classify images as AQ or PAQ, and were never concerned about the intra-class ordering of 

images. However, to ensure applicability in use cases where the threshold at which AQ 

versus PAQ images may be different, it is important for the algorithm to be able rank image 

quality from worst to best, regardless to which quality class our experts believe an image 

belongs. In essence, we were testing the ability of the CNN to perform regression, even 

though it was only trained for classification. On a smaller data set of 30 images, six experts 

ranked images from worst to best quality for the diagnosis of plus disease via an exhaustive 

pairwise comparisons process. This provided us with the individual rankings for the image 

set for each expert, which we were able to combine into an expert consensus ranking. All 

experts were highly correlated with one another (0.89-0.97) and, unsurprisingly, with the 

consensus ranking (0.94-0.97; Figure 3). Rather than have the CNN output class labels for 

each of the 30 images, we collected the probabilities of each image belonging to the AQ 

class and ordered them from smallest to largest, thereby establishing the CNN’s ranking of 

the 30 images. The CNN was highly correlated to each individual expert (0.86-0.93) and to 

the consensus ranking (0.90; Figure 3). These results show that our model has a striking 
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ability to rank images, further suggesting that the threshold at which our model classifies 

images as AQ or PAQ could be adjusted depending upon application.

Overall, these findings demonstrate the robustness of our model: it correctly identifies what 

our experts consider to be acceptable quality images vs. low and questionable quality 

images. This study also demonstrates that the threshold at which the model classifies images 

could be adjusted for other experts or applications. For example, in a telemedicine 

application where physicians manually review images, the model would likely remain 

unchanged since it was trained using the opinions of ROP experts. However, implementation 

as a prescreening method for a computer-based image analysis tool, such as DeepROP, may 

warrant some modifications.10 It is possible that a computer-based image analysis tool could 

still provide a reliable ROP diagnosis on a subset of PAQ images. Therefore, the threshold at 

which images were binned into the AQ versus PAQ category could be lowered until all 

images placed into the PAQ category could not be assessed via the computer-based method.
1,2,4-6,8,10

While we are confident in the model we have trained, there are some limitations. First, only 

RetCam images were used for training and testing. We did not evaluate model performance 

on images from other cameras. Differences in field-of-view and lighting could potentially 

affect the reliability of the model. Recently, ophthalmic lenses for smartphones have been 

created.37,38 An interesting area of potential research involves training our model to 

accurately assess the quality of images acquired from these devices, thereby greatly 

enhancing the reliability of telemedicine applications. Second, the model was trained using 

images acquired from premature infants during routine ROP screenings. It is unclear 

whether this model can accurately classify images acquired from adults or older children 

with other ocular conditions, and further training of this model with images from those 

demographics would be beneficial. Third, the model was trained and validated on posterior 

pole images. In practice, nasal, temporal, superior, and inferior images may be used in 

addition to posterior pole images for diagnosis of ROP.30 Further training of this model will 

include images from various regions of the retina to increase reliability and applicability in 

true clinical applications. The final limitation of this model is the lack of ability to 

distinguish a retinal fundus image from images of other items (e.g. non-ophthlamic images). 

This model was trained as a retinal fundus image quality classifier, not as a general image 

quality classifier. One could argue that users of this model will only be acquiring and 

assessing retinal fundus images. But to ensure conformity, a future direction of this work 

could involve training a CNN to classify images as retinal fundus images or not prior to 

images being assessed for quality.

We are not the first group to produce a retinal image quality classifier; however, many other 

classifiers have severe limitations. To the best of our knowledge, Saha et al. have produced 

the only other retinal image classifier that takes advantage of a CNN.39 They used AlexNet, 

an award-winning but older CNN, for assessing the quality of diabetic retinopathy images. 

Their model performed with an accuracy of 100% on a data set of 3,572 images.39 However, 

their image set only included images on which all graders agreed upon the quality of the 

images (i.e. images without complete agreement were excluded from the test set) which 

could leave the data with a very bimodal distribution. Furthermore, their data set was 
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severely imbalanced, as only 143 of the 3,572 images were of unacceptable quality.39 In 

theory, a naive model (one that only predicts AQ for every image) would be correct 96% of 

the time. Consequently, it is possible that their CNN would not generalize well in practice. 

Other groups have implemented linear algorithms for image quality assessment of retinal 

fundus photos, which have performed well, but all training and test data sets were small in 

comparison to the data set we used to train, validate, and test our CNN.13,17,19,27,28 We 

believe that, because our CNN was rigorously trained on 4,000 images using cross-

validation and tested on two separate test sets consisting of 2,109 images and 30 ranked 

images, it will generalize better and be more robust in practice.

In this study, we implemented a convolutional neural network for the assessment of retinal 

fundus image quality in retinopathy of prematurity. We have shown that a convolutional 

neural network is sufficient for providing a high degree of discrimination between 

acceptable quality and possibly acceptable quality images, and can rank a set of retinal 

fundus images from worst to best quality. Potential applications of this algorithm range from 

inclusion in computer-based image analysis pipelines to implementation in fundus cameras, 

where imaging technicians could be alerted as to whether their captured images were of 

acceptable quality for diagnosis of disease. More broadly, it should be noted that this 

methodology is not limited to retinopathy of prematurity or retinal fundus imaging, as it has 

potential application in different ocular diseases or for different imaging modalities 

altogether.
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A deep convolutional neural network can quickly and accurately assess the quality of 

retinal fundus images acquired during routine retinopathy of prematurity screenings. This 

may significantly impact telemedicine and computer-based image diagnosis.
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Figure 1: Varying qualities of retinal fundus images.
Representative images from the (A) Acceptable Quality (AQ), (B) Possibly Acceptable 

Quality (PAQ), and (C) Not Acceptable Quality (NAQ) classes. Note that as image quality 

degrades, visualization of retinal vasculature becomes more complex, if not impossible. 

Because NAQ images were not highly represented in our data set (5.6%), they were grouped 

with the PAQ images into a single category. The final representation of AQ and PAQ images 

in our data set was 50.8% and 49.2%, respectively.
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Figure 2: Areas under the receiver operating characteristics curves (AUC).
(A) The AUCs for each convolutional neural network (CNN) produced by 5-fold cross-

validation are shown, with mean (SD) equal to 0.958 (0.005). Model 1 demonstrated the 

highest level of discriminatory power between acceptable quality images and possibly 

acceptable quality images, as was indicated by the AUC. Therefore, it was selected for final 

evaluation on the independent test set (B), where it performed with an AUC equal to 0.965, a 

sensitivity of 93.9% and a specificity of 83.6%.
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Figure 3. Correlation heatmap of expert image rankings versus the convolutional neural network 
(CNN).
The correlation matrix shows Spearman’s correlation coefficient values between the CNN 

image ranking, individual expert grader’s image ranking, and the expert graders’ consensus 

ranking. Experts were highly correlated with one another and the overall consensus ranking. 

The CNN performed nearly as well as individual experts on the ranked data set, as is 

demonstrated by the high correlation value to the expert consensus ranking.
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