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Abstract

The SLiM forward genetic simulation framework has proved to be a powerful and flexible tool for population genetic
modeling. However, as a complex piece of software with many features that allow simulating a diverse assortment of
evolutionary models, its initial learning curve can be difficult. Here we provide a step-by-step demonstration of how to
build a simple evolutionary model in SLiM 3, to help new users get started. We will begin with a panmictic neutral model,
and build up to a model of the evolution of a polygenic quantitative trait under selection for an environmental phe-
notypic optimum.
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Introduction
Forward genetic simulations play a central role in modern
population genetics and evolutionary biology (Carvajal-
Rodriguez 2010; Yuan et al. 2012; Bank et al. 2014; Hoban
2014; Thornton 2014; Haller and Messer 2017a, 2019; Haller
et al. 2019). Such simulations can be used to investigate a
remarkable variety of research questions, from predicting the
evolutionary dynamics of real populations (Kosheleva and
Desai 2018; Matz et al. 2018; Rougemont et al. 2018) to testing
hypotheses about past evolutionary mechanisms (Nowak
et al. 2014; Fijarczyk et al. 2018; Pouyet et al. 2018), validating
statistical or empirical methods (Haller and Messer 2017b;
Henden et al. 2018; Librado and Orlando 2018), and exploring
the evolutionary consequences of theoretical ideas (Champer
et al. 2018; Kim et al. 2018; Parada and Charlesworth 2018).

The SLiM forward genetic simulation framework has be-
come a popular tool for constructing such models due to the
power and flexibility provided by its scriptability in the Eidos
language, as well as its incorporation of SLiMgui, an interac-
tive graphical modeling environment (Messer 2013; Haller
and Messer 2017a, 2019). However, with the SLiM manual
(Haller and Messer 2016) and Eidos manual (Haller 2016) now
at a combined 600 pages, SLiM has evolved into a large and
complex software package that can be difficult for beginning
users to approach. Much of the SLiM manual consists of
“recipes” for various modeling scenarios, with extensive dis-
cussion of their inner workings, which makes it easier to get
started; but the learning curve remains daunting.

To help introduce new users to SLiM, this protocol article
will walk step-by-step through the construction of a simple
SLiM model. We will begin with a panmictic neutral model,
and build up to a model of individuals adapting to an envi-
ronmental phenotypic optimum through mutations repre-
senting quantitative trait loci (QTLs) of a polygenic trait.
Along the way, most of the foundational concepts of SLiM
will be introduced.

Building the Model

Installing and Getting Started
SLiM is a framework for forward genetic simulation; this
means that it simulates individual organisms, down to
the genetic level, forward in time from an initial state. All
genomes of all individuals are modeled (two per individual,
since SLiM generally models diploids), including all of their
mutations. In each simulated generation individuals mate
and produce offspring, and those offspring inherit their
genomes from their parents. Parental genomes can recom-
bine, and new mutations can occur during copying, with
possible effects on fitness. Selection acts upon the fitness
differences between individuals. All of this—the details of
genetic architecture, mate choice, offspring generation, re-
combination and mutation, selection, and so forth—is
controlled in SLiM by a script.

In this protocol, we will build and run our model script in
SLiMgui, an interactive graphical modeling environment
that is part of SLiM. The benefits of graphical modeling for
development, debugging, and exploration can be immense
(Grimm 2002), so we strongly encourage the use of SLiMgui.
However, SLiMgui runs only on Mac OS X; users on Linux
and other Un*x platforms can instead install SLiM following
chapter 2 of the SLiM manual (Haller and Messer 2016) and
run it at the command line with slim <script-file>.

Mac users should download the OS X Installer package
from the SLiM home page at https://messerlab.org/slim/ and
then double-click the installer, which will install SLiM’s com-
ponents. The installer places the SLiMgui.app application
and the SLiM and Eidos manuals, Eidos_Manual.pdf and
SLiM_Manual.pdf, in the /Applications folder (you may
move the manuals elsewhere). It also installs the slim
command-line tool at /usr/local/bin/slim; models devel-
oped in SLiMgui can be run at the command line, allowing,
for example, a computing cluster to be used for replicate runs
once model development in SLiMgui is complete.
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After running the installer, double-click the SLiMgui appli-
cation to launch it; you should see a new modeling window
similar to that shown in fig. 1 (it may not look exactly the
same, since there are “splitters” in the SLiMgui window you
can move to reveal or conceal various controls). Figure 1
labels various parts of the window, so it is worth studying;
some buttons are not labeled there, but if you hover the
mouse for a few seconds over the various buttons in this
window tooltips will appear explaining what each does.

In SLiMgui, the script is shown in the scripting pane
(fig. 1A). Note that SLiMgui’s initial window already contains
a default script (fig. 1A); we will not be using that default
script, so in each step of this protocol you should select the
existing script in the SLiMgui window, delete it, and then type
the model code for that step (or, of course, you can create a
new modeling window for each step if you wish). The scripts
for each step are also available as supplementary text files,
Supplementary Material online, with additional comments
(supplementary file S1–S3, Supplementary Material online);
if you don’t wish to type out each model, those text files can
be opened from SLiMgui’s File menu or their text can be
pasted into an existing SLiMgui window.

Step 1: A Simple Neutral Model
We will begin with a very simple model of a neutral chromo-
some evolving in a population of 1000 diploid individuals
(supplementary file S1, Supplementary Material online); see
Code Sample 1.

The first thing to discuss about this script is that it is
written in a language called Eidos (Haller 2016). Eidos is a
very simple language, patterned after R, but should also be
easy to learn for users familiar with languages such as Python
or Cþþ. This script shows examples of function calls, such as
the defineConstant() call, as well as method calls on SLiM
objects, such as the sim.addSubpop() call; we will explain
those concepts below. Note that each statement in the code
ends with a semicolon, “;”, and that blocks of statements are
enclosed by braces, “{}”. Code structure in Eidos is expressed
with braces, as in R, C, Cþþ, and many other languages; the
indentation of the code is purely aesthetic, not syntactically
significant as it is in, for example, Python. Comments in Eidos
begin with “//”, as with the comment “// neutral”; these
are purely for annotation, and are not executed.

The top level of this script defines three callbacks, which are
essentially blocks of code defined by the model script that are
called internally by SLiM during the execution of the model.

Each type of callback in SLiM runs at a particular time in the
simulation: once at initialization time for the initialize()
callback to set up the initial properties of the model, once at
the beginning of generation 1 for the 1 early() event to
create the simulated population, and once at the end of gen-
eration 10000 for the 10000 late() event to generate final
output from the model. (As their names suggest, early()
events run early in a specified generation, and late() events
run later; precisely when in the generation cycle they run is
described in the SLiM manual.) A quick-reference sheet sum-
marizing the basic callbacks used in SLiM is provided in sup-
plementary file S4, Supplementary Material online.

This script creates a subpopulation of K diploid individuals,
where K is defined by a defineConstant() function call. A
function call tells Eidos to execute a chunk of code to do
something useful—in this case, to define a new constant.
Defining constants allows fixed parameters of a model to
be separated out, making it easy to supply their values on
the command line when running the model outside SLiMgui.
The addSubpop() method call then uses K as the subpopu-
lation size. Method calls, like function calls, cause a chunk of
code to be executed to do something useful, but method calls
are associated with a particular target object; the method call
queries or modifies the state of the target. The target of the
addSubpop() method, named sim, is a global object defined
by SLiM that represents the simulation as a whole; the dot
operator, “.”, tells Eidos to call the method named
addSubpop() on sim to add the new subpopulation to the
simulation. The newly created subpopulation is named p1,
according to the string name passed to addSubpop(). The
new individuals in p1 have empty genomes, with no muta-
tions; they are thus genetically identical and have identical
fitness. As the model runs new mutations will arise and will be
inherited; mutations can be thought of as changes from the
initial empty “wild-type” genomic state.

The rates at which new mutations and recombination
crossovers will occur are defined in the initialize() call-
back. The initializeMutationRate(1e-7) call tells SLiM
to generate new mutations during meiosis at a rate of
10�7 per base position per generation. Similarly, the
initializeRecombinationRate(1e-8) call tells SLiM to
generate crossover events during meiosis at a rate of 10�8

per base position per generation. These rates can be modified
over time, and regionally varying rate maps along the chro-
mosome may be supplied rather than uniform rates.

The genetic structure for the model is defined by
calls to initializeMutationType(), initializeGenomic
ElementType(), and initializeGenomicElement(). The
call to initializeMutationType() defines a new mutation
type, m1. Mutation types represent particular classes of muta-
tions used by the model, such as neutral mutations, beneficial
mutations, deleterious mutations, or—as we will see in the
final model—QTLs. Mutation types are defined primarily by
the distribution of fitness effects (DFE) from which mutations
of each type are drawn. Here m1 is defined as representing
neutral mutations, with a fixed ("f") DFE using a selection
coefficient of 0.0 (and a dominance coefficient of 0.5, but
that doesn’t matter since the mutations are neutral). The call

initialize() { 
 defineConstant("K", 1000); 
 initializeMutationRate(1e-7); 
 initializeMutationType("m1", 0.5, "f", 0.0);    // neutral 
 initializeGenomicElementType("g1", m1, 1.0); 
 initializeGenomicElement(g1, 0, 1e6 - 1); 
 initializeRecombinationRate(1e-8); 
} 
1 early() { 
 sim.addSubpop("p1", K); 
} 
10000 late() { 
 sim.outputFixedMutations(); 
} 

Code Sample 1
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to initializeGenomicElementType() then defines a new
genomic element type, g1. Genomic element types represent
particular classes of genomic regions, such as coding and
noncoding regions, exons and introns and UTRs, or what-
ever other sorts of genomic regions are being modeled.
Different genomic element types are defined primarily by
the mix of mutation types from which new mutations in
these elements are drawn; for example, noncoding regions
might only undergo neutral mutations, whereas coding
regions might also undergo beneficial and deleterious
mutations. Here g1 is defined as generating mutations
from the mutation type named m1 that was just defined.
Finally, the initializeGenomicElement() call tells SLiM
that the chromosome contains a genomic element—a ge-
nomic region that should be simulated—that is of type g1,
beginning at base position 0 and ending at position 106�1
for a total length of 106 base positions. Since this is the only
genomic element defined, this element represents the en-
tire simulated chromosome in this model. In short, then,
this simple model has a chromosome consisting of a single
simulated region, spanning the base interval [0, 106�1],
that undergoes only neutral mutations; however, these

basic components can be put together in arbitrarily com-
plex ways to represent any genomic structure.

This model generates output at the end of execution using a
built-in output method named outputFixedMutations().
As its name suggests, this dumps a list of fixed mutations to
SLiM’s output. There are several other built-in output methods,
but one may also produce custom output by writing Eidos
code, as we will see in the next step.

Having discussed the structure of this model, it is now time
to run it. Assuming you have the model code above entered
in SLiMgui’s scripting pane, you should now click the recycle
button (fig. 1D); whenever the script changes and you want
to start over from the beginning, you need to recycle to clear
the output pane, choose a new random number seed, and
reset the simulation. Then click the play button (fig. 1C); this
will begin playing the simulation forward in time. As the
simulation runs, notice that the simulated subpopulation
p1 appears in the population view (fig. 1F); the generation
counter (fig. 1E) counts upward; squares representing simu-
lated individuals appear in the individual view (fig. 1G), all
colored yellow (indicating that all individuals have the
same fitness of one); and the output pane (fig. 1B)
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FIG. 1. A snapshot of a new modeling window in SLiMgui, with major components labeled by letters. (A) The scripting pane, which contains the
script that SLiM will run. (B) The output pane, where text output from the running model appears. (C) The play button, which starts execution of
the model in SLiMgui. (D) The recycle button, which resets SLiMgui to use the current model script. (E) The generation counter, which shows the
current generation in the simulation. (F) The population view, which lists the subpopulations in the population and shows some of their
properties. (G) The individual view, which shows the simulated individuals and their fitness values (indicated by color). (H) The chromosome
view, which shows the simulated chromosome across the population, including the frequencies of all mutations.
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displays output when the model finishes at generation
10000. As the simulation runs, the chromosome view
(fig. 1H) shows a rapidly changing display of the popula-
tion frequencies of all of the simulated mutations along
the chromosome; fig. 2 shows snapshots of the chromo-
some view from this model. SLiM generally does not ex-
plicitly model the genetic state at every base position
(with, e.g., a nucleotide sequence); instead, SLiM only
keeps track of the presence of mutations from a base
ancestral state. The snapshots in fig. 2 thus illustrate
how this model builds up diversity over time from its
initially empty (i.e., wild-type or ancestral) state.

All of this is discussed in considerably more detail in the
SLiM manual (Haller and Messer 2016); in particular, chapter 1
provides an overview of the conceptual underpinnings of SLiM,
and chapter 4 walks through a similar model in great detail.

Step 2: Adding Deleterious and Beneficial Mutations
In this step we will make our model nonneutral, adding pu-
rifying selection and adaptation through new beneficial muta-
tions. Mutations in SLiM have a selection coefficient that is
drawn from the distribution of fitness effects (DFE) of their
mutation type. So far, we have modeled neutral mutations
with a selection coefficient of 0.0; we will now add two new
mutation types, representing deleterious and beneficial muta-
tions (supplementary file S2, Supplementary Material online)
(Code Sample 2).

There are several changes here from the previous step. In
the initialize() callback we now make three calls to
initializeMutationType(), creating three different muta-
tion types. The first, m1, is unchanged, using a fixed ("f") DFE
with a selection coefficient of 0.0. The second, m2, uses a
gamma ("g") DFE to represent deleterious mutations, with
a mean selection coefficient of -0.01 and a shape parameter
of 0.1. The third, m3, uses an exponential ("e") DFE to rep-
resent beneficial mutations, with a mean selection coefficient
of 0.02. These choices are fairly arbitrary, but illustrate that
various kinds of DFE are supported by SLiM.

Having set up these mutation types, initializeGenomic
ElementType() now defines genomic element type g1 as
representing genomic regions that undergo all three types of
mutations, as expressed by c(m1, m2, m3); the c() function
sticks its parameters together, allowing all three mutation
types to be passed together to initializeGenomic
ElementType() as a single parameter. The next parameter,
c(1.0,0.1,0.01), tells SLiM that new mutations of these
mutation types should occur at the given relative frequen-
cies; for every one m1 mutation there will be, on average,
0.1 deleterious m2 mutations and 0.01 beneficial m3
mutations.

At the end of the initialize() callback we tell
SLiMgui to display m2 mutations in red and m3 mutations
in green by setting the color property of the mutation
types. This is the first time we have used properties in Eidos;
they are just little bits of information attached to objects
that can be accessed and set using the dot operator, “.”,
similarly to how the dot operator is used to call methods
on an object. The properties and methods defined for
SLiM’s objects in Eidos are documented in the SLiM man-
ual (Haller and Messer 2016). Note that the color names
"red" and "green", and many others, are predefined by
Eidos following the named colors in R.

The other change in this step is that the outputFixed
Mutations() call has been replaced by some customized
output. Here, we call the catn() function to concatenate
output to the Eidos output stream, followed by a newline
(the “n” in catn()). The output consists of a string,
"Fixed: ", followed by the selection coefficients of all fixed
mutations, pasted together into a big string by paste().
Those selection coefficients are obtained through properties,
but how exactly that works needs a little discussion.

First of all, SLiM turns fixed mutations into substitution
objects, by default. This is because fixed mutations generally
do not affect evolutionary dynamics; since every individual
carries them, they produce no fitness differences between
individuals, and can thus be ignored. This is not always true
(epistasis, in particular, violates this assumption), and so this

initialize() { 
 defineConstant("K", 1000); 
 initializeMutationRate(1e-7); 
 initializeMutationType("m1", 0.5, "f", 0.0);         // neutral 
 initializeMutationType("m2", 0.5, "g", -0.01, 0.1);  // deleterious 
 initializeMutationType("m3", 0.5, "e", 0.02);        // beneficial 
 initializeGenomicElementType("g1", c(m1, m2, m3), c(1.0, 0.1, 0.01)); 
 initializeGenomicElement(g1, 0, 1e6 - 1); 
 initializeRecombinationRate(1e-8); 
 m2.color = "red"; 
 m3.color = "green"; 
} 
1 early() { 
 sim.addSubpop("p1", K); 
} 
10000 late() { 
 catn("Fixed: " + paste(sim.substitutions.selectionCoeff)); 
} 

Code Sample 2
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default behavior can be changed; but usually it is true, and so
SLiM assumes it as the default to allow models to run more
efficiently. The substitutions property of sim provides a
vector of these substitution objects, representing the muta-
tions that have fixed in the population. A vector, in this
sense, is simply a collection of zero or more values of a
particular type; one can speak of a vector of integers or a
vector of objects. Eidos, like R, is a vector-based language; in
Eidos, a single line of vectorized code often does what an
entire for loop would do in other languages, allowing Eidos
to be relatively fast even though it is an interpreted lan-
guage. We actually used vectors before, when we called
c(m1, m2, m3) and c(1.0, 0.1, 0.01); the c() function
creates a vector out of the values it is passed. In fact, we
have been using vectors all along; everything in Eidos is a
vector, even single values like 1.0 or sim, because single
values are just vectors that happen to contain exactly
one element (called singletons in Eidos parlance). So,
sim.substitutions provides a vector containing all of
the substitutions in the simulation. We then chain an
access of the selectionCoeff property onto that; this is
a vectorized property access, fetching the value of the
selectionCoeff property from each substitution object
in the target vector. The result is a new vector that contains
the selection coefficients of all of the substitutions; the
paste() function then turns that vector into a single string
for output.

Running this model in SLiMgui (do not forget to recycle
before clicking play) produces a series of sweeps by beneficial
mutations, often with deleterious and neutral mutations car-
ried along by hitchhiking; fig. 3 shows snapshots of the chro-
mosome view from a typical run of the model. Notice
that given the specification of the genetic architecture in
the initialize() callback—mutation types, genomic ele-
ment types, genomic elements, etc.—all of the model

dynamics are handled automatically by SLiM. There is no
need to write any code to explicitly manage fitness or selec-
tion in the model, and indeed the script contains no code
whatsoever stating what should happen in any generation
from 2 to 9999; SLiM’s default behavior is automatic. In the
next step, however, since we will modify some of SLiM’s de-
fault behavior, we will need to write a little bit of code to
explicitly influence fitness in each generation.

Step 3: Adding QTLs and Selection on Phenotype
In the previous step we modeled beneficial and deleterious
mutations. The fitness of an individual was determined by
the selection coefficients of all mutations it carried in its
genomes (SLiM assumes multiplicative effects across individual
loci by default). In this step, we will adapt that script to instead
model mutations that represent quantitative trait loci (QTLs):
the mutations will affect the phenotype of an individual in an
additive fashion, and each individual’s fitness will be based on
its phenotype, rather than the selection coefficients of the QTL
mutations. The same QTL mutation might therefore be ben-
eficial or deleterious, depending upon the genetic background
in which it occurs and the overall phenotype generated by the
additive effects of all of the QTLs possessed by an individual.

To implement this in SLiM, we will alter SLiM’s default
behavior in a few key ways in the model’s script. The core
idea is that we will repurpose the selection coefficients of m2
mutations to represent QTL effect sizes instead. Normally,
SLiM uses the selection coefficients of mutations to multipli-
catively compute individual fitness values; but here we will
tell SLiM to consider m2 mutations neutral (ignoring their
selection coefficients), and we will implement our own
fitness-calculation machinery that uses the values stored
in the selection coefficient property as additive QTL effect
sizes instead. The resulting script (supplementary file S3,
Supplementary Material online) is shown in Code Sample 3.

A

B

C

FIG. 2. Snapshots of Step 1’s model running in SLiMgui at the end of generation 1 (A), 500 (B), and 10000 (C). These snapshots of the chromosome
view for this neutral model show (A) the empty initial chromosome, (B) the initial establishment of neutral diversity early in the model run, and (C)
an equilibrium level of neutral diversity after 10N generations. Each panel shows the simulated chromosome from beginning to end (left to right);
each bar represents one mutation, colored yellow (online only) because it is neutral, with a height corresponding to its frequency in the population.
Fixed mutations, of which there would be many in panel C, are not shown since by default they are removed from the simulation by SLiM (see text).
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The initialize() callback defines a few new constants
(OPT, SIGMA, and SCALE) related to the phenotypic fitness
function that we will define later. It sets up a neutral mutation
type m1 as before, but also creates an m2 mutation type to

represent QTLs. The m2 mutation type draws mutation effect
sizes from a DFE specified by a normal (Gaussian) distribution
(type "n") with mean 0.0 and standard deviation 0.2. As
mentioned before, by default SLiM would remove mutations

A

B

C

FIG. 3. Snapshots of Step 2’s model running in SLiMgui at the end of generation 1 (A), 200 (B), and 10000 (C). These snapshots of the chromosome
view for this nonneutral model show (A) the empty initial chromosome, (B) early in the run with a sweeping beneficial mutation (green bar) and a
deleterious mutation that is hitchhiking nearby (red bar), along with some neutral diversity (yellow bars) and low-frequency nonneutral
mutations, and (C) the model after 10N generations, with a variety of beneficial, deleterious, and neutral mutations at various frequencies.
Fixed mutations, of which there would be many in panel C, are again not shown.

initialize() { 
 defineConstant("K", 1000); 
 defineConstant("OPT", 10.0); 
 defineConstant("SIGMA", 5.0); 
 defineConstant("SCALE", dnorm(0.0, 0.0, SIGMA)); 
 initializeMutationRate(1e-7); 
 initializeMutationType("m1", 0.5, "f", 0.0);       // neutral 
 initializeMutationType("m2", 0.5, "n", 0.0, 0.2);  // QTL 
 m2.convertToSubstitution = F; 
 m2.color = "red"; 
 initializeGenomicElementType("g1", c(m1, m2), c(1.0, 0.001)); 
 initializeGenomicElement(g1, 0, 1e6 - 1); 
 initializeRecombinationRate(1e-8); 
} 
1 early() { 
 sim.addSubpop("p1", K); 
 cat("Mean phenotype: 0.00"); 
} 
fitness(m2) { 
 return 1.0;   // make QTLs intrinsically neutral 
} 
1:10000 late() { 
 inds = p1.individuals; 
 phenotypes = inds.sumOfMutationsOfType(m2); 
 inds.fitnessScaling = dnorm(phenotypes, OPT, SIGMA) / SCALE; 
  
 mean_phenotype = mean(phenotypes); 
 cat(format(", %.2f", mean_phenotype)); 
 if (abs(mean_phenotype - OPT) < 0.1) 
  sim.simulationFinished(); 
} 

Code Sample 3
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from the simulation if they become fixed in the population;
here, however, we want QTL mutations to be kept even when
they have fixed, since they will continue to influence fitness
through their effect on phenotype, so we set the
convertToSubstitution property of m2 to F (false). We
also configure m2 to display in red in SLiMgui, for visibility.
Finally, we tell SLiM that genomic element type g1 should
undergo both m1 and m2 mutations, in relative proportions
of 1.0 and 0.001; this gives us a mostly neutral model with
occasional QTL mutations.

The configuration of m2 makes all new mutations of type
m2 have selection coefficients drawn from the specified nor-
mal distribution. This is not quite what we want, however; we
want m2 mutations to be intrinsically neutral, as far as SLiM’s
built-in fitness-calculation machinery is concerned, since we
want to use those values to additively compute phenotypes
instead. To achieve this, we define a new type of callback, the
fitness(m2) callback. The fitness() callback mechanism
allows the fitness effect of mutations of a given type to be
redefined; SLiM will call a fitness() callback for every mu-
tation of its given type, in every generation, in every individual,
allowing fitness effects to vary over time or between individ-
uals. Here we simply return a fitness effect of 1.0, making m2
mutations neutral. With this callback, QTL mutations will still
have “selection coefficient” values drawn from the specified
normal distribution, but they will be considered neutral by
SLiM’s fitness-calculation machinery. We will instead use the
selection coefficient values of the QTL mutations as pheno-
typic effect sizes, as described below.

The final step to implement this model of QTL evolution is
the 1:10000 late() event (in Eidos the colon operator, “:”,
computes a range of values, so 1:10000 tells SLiM to run this
event every generation from 1 to 10000). The first line fetches
the individuals property from p1 (our subpopulation ob-
ject); this yields a vector of the individuals in p1, which is

assigned to a new variable, inds (variables are essentially
just symbolic names for values). Next we call sumOf
MutationsOfType(m2) on inds; this is a vectorized method
call, similar to the vectorized property access we saw earlier. It
returns a new vector, with one element per individual, con-
taining the sum of the selection coefficients of m2 mutations
in each individual (across both genomes); these sums are the
phenotypes of the individuals, calculated additively from the
effect sizes of all QTLs possessed by each individual. The result
is placed in a new variable named phenotypes. The next line,
which calculates fitness effects due to phenotype, is also vec-
torized: the dnorm() function calculates, for each phenotypic
value in the phenotypes vector, the probability density for a
normal distribution centered at OPT, with a standard devia-
tion of SIGMA, and returns a vector of fitness effects which are
then normalized by dividing them by the maximum density,
SCALE. These fitness effects are assigned, again in a vectorized
fashion, to the fitnessScaling property of the individuals
in inds; each individual is given its corresponding fitness
effect by the vectorized property assignment. These
fitnessScaling values modify the fitness of individuals
based on their phenotype, because SLiM multiplicatively
combines the fitnessScaling values of individuals with
any other fitness effects in the model to produce final fitness
values. The dnorm() function here thus describes the pheno-
typic fitness function for the model: a Gaussian function with
a width of SIGMA that determines the strength of selection,
and a fitness optimum at OPT.

In the second part of the 1:10000 late() event, we cal-
culate the mean phenotype across the subpopulation using
mean() and concatenate it to SLiM’s output with cat() (like
catn(), but without a newline added at the end). Together
with the initial cat() call in the 1 early() event, this will
output a comma-separated sequence of the mean phenotype
from each generation. This provides another example of

A

B

C

FIG. 4. Snapshots of Step 3’s model running in SLiMgui at the end of generation 1 (A), 200 (B), and 5652 (C). These snapshots of the chromosome
view for this QTL-based model show (A) the empty initial chromosome, (B) a fixed QTL and another QTL in mid-sweep (red bars) with reduced
and skewed neutral diversity due to those sweeps, and (C) the state of the model after completion of an adaptive walk to the optimum, with 14
fixed or high-frequency QTLs.
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custom output using Eidos, here produced generation by
generation rather than in a single output event. Finally, we
check whether the mean phenotype is within a tolerance of
0.1 of the phenotypic optimum, OPT; if it is, the adaptive walk
to the optimum is deemed complete, and we end the simu-
lation with a call to sim.simulationFinished().

Figure 4 shows snapshots of the chromosome view of this
model as it runs in SLiMgui. Here QTL mutations, shown in red,
have arisen at several random locations along the chromo-
some, and their additive effects have produced adaptation to
the fitness optimum by the end of the adaptive walk. In this
model, new QTLs arise randomly through mutation at any
genomic locus; it would be straightforward to define a genetic
structure in which QTLs exist only at predefined loci in the
genome using different genomic elements, genomic element
types, and mutation types. It would also be simple to start the
model with some QTL mutations already present in some or all
individuals, by adding QTL mutations to the genomes of the
initial generation as desired; one could thus model evolution
from a particular pattern of standing genetic variation in a trait.

Discussion
We have shown how to build a simple SLiM model from
scratch, providing a step-by-step introduction to the SLiM
framework for new users. The final model we built involved
the evolution of a polygenic quantitative trait modeled with
QTLs that additively produce a selected phenotype, but the
lessons learned should be general to all SLiM models.

Importantly, we have shown several screenshots from
SLiMgui to leverage the power of interactive, graphical model
development. SLiMgui has built-in help for Eidos and SLiM
(hold down the option key and click on any property name,
method name, or keyword). It provides code completion to
speed up typing (press escape while typing to see possible
completions for a prefix you have typed). It also provides
graphs of various simulation metrics, a built-in Eidos console
for interactive scripting while a simulation is running, perfor-
mance profiling to find the “hot spots” in a model’s code, and
much more. SLiMgui is not just a code editor, it is a full-
featured modeling environment, and a key part of SLiM for
beginners and advanced users alike.

The SLiM manual (Haller and Messer 2016) has over 100
different “recipes” for models of all sorts, from simulating
human evolutionary history to simulating a CRISPR gene
drive; one can create models of discrete subpopulations con-
nected by migration or models of subpopulations dispersing
across continuous spatial landscapes, models of cloning or
selfing or haploids with horizontal gene transfer, models with
balancing or frequency-dependent or temporally varying se-
lection, models of selective sweeps or assortative mating or
social learning, models of extinction-colonization dynamics or
pollen flow or habitat choice—the scriptability of SLiM pro-
vides tremendous flexibility. However, the basic concepts dis-
cussed in this article apply to all SLiM models, so let us review
them in conclusion.

One general concept regards the way SLiM defines the
genetic structure of organisms, with individuals containing

genomes that contain mutations defined by their mutation
type, and a chromosome composed of genomic elements
defined by their genomic element type. This structure is
the same in every SLiM model, but it can be made arbitrarily
complex. It is straightforward to build SLiM models of realistic
genetic structure such as introns and exons and UTRs; indeed,
one can represent the entire genetic map of a model organ-
ism such as Drosophila in SLiM.

Another general concept regards the initialize() and
fitness() callbacks, and early() and late() events, that
we saw here; these hooks for modifying SLiM’s default behav-
ior prove useful in a wide variety of contexts. SLiM provides
several more callback types, such as mateChoice(),
modifyChild(), and reproduction() callbacks, for custom-
izing other aspects of model behavior.

A final general concept is the Eidos scripting language itself,
since it is the foundation of all SLiM models. To take full
advantage of SLiM’s capabilities, it is important to learn
Eidos properly. Eidos provides dozens of useful functions, of-
ten based upon R functions of the same name; they are all
documented in the Eidos manual (Haller 2016). More funda-
mentally, it is important to embrace the vectorized philoso-
phy of Eidos; if you find yourself writing a for loop, ask
yourself whether the code could be vectorized instead
(note that the models shown here do not use a single loop).

SLiM 3 is free, licensed under the GNU GPL, and is open
source on GitHub. The latest version of SLiM, including man-
uals and quick-reference sheets, is available from https://
messerlab.org/slim/. We also recommend that new SLiM
users subscribe to the slim-discuss mailing list at http://bit.
ly/slim-discuss. The learning curve for SLiM can be steep, but
we hope that this protocol, and the resources we have cited
here, will help introduce a new generation of users to the
power, flexibility, and speed of SLiM.

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.
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