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Human papillomaviruses (HPVs) infect the epithelia of skin or mucosa,

where they can induce hyperproliferative lesions. More than 220 different

HPV types have been characterized and classified into five different

genera. Mucosal high-risk HPVs are causative for cancers of the anogenital

region and oropharynx. Clinical data from patients with the rare genetic dis-

order epidermodysplasia verruciformis (EV) indicate that genus beta-HPVs

cooperate with ultraviolet (UV) radiation in the development of cutaneous

squamous cell carcinoma. In addition, epidemiological and biological find-

ings indicate that beta-HPV types play a role in UV-mediated skin

carcinogenesis also in non-EV individuals. However, the mechanisms used

by these cutaneous viruses to promote epithelial carcinogenesis differ sig-

nificantly from those of mucosal HPVs. Recent studies point to a delicate

cross-talk of beta-HPVs with the cell-autonomous immunity of the host ker-

atinocytes and the local immune microenvironment that eventually

determines the fate of cutaneous HPV infection and the penetrance of dis-

ease. This review gives an overview of the critical interactions of genus

beta-HPVs with the local immune system that allow the virus to complete

its life cycle, to escape from extrinsic immunity, and eventually to cause

chronic inflammation contributing to skin carcinogenesis.

This article is part of the theme issue ‘Silent cancer agents: multi-

disciplinary modelling of human DNA oncoviruses’.
1. Introduction
Human papillomaviruses (HPVs) are double-stranded DNA viruses that infect

mucosal and cutaneous epithelia. They form a large family that includes more

than 220 HPV types [1]. A subgroup of HPVs is clearly associated with the

development of neoplasia in the anogenital and upper respiratory tracts.

They are classified as mucosal high-risk (HR) HPV types and belong to the

genus alpha of the HPV phylogenetic tree [1].

HPV types belonging to genus beta have a cutaneous tropism and are sub-

divided into five species (beta-1–5) [1]. Genetically, they differ from other HPV

genera, in that they lack E5 or E8 open reading frames [2]. Genus beta-HPVs

were detected in the skin of patients with the rare recessive genetic disorder epi-

dermodysplasia verruciformis (EV) [3–5]. These individuals are permissive

hosts for persistent beta-HPV infection in the skin. Persistent infection presents

as disseminated pityriasis versicolor-like lesions and flat warts, starting in early

childhood [6]. About 30–60% of EV patients develop cutaneous squamous cell

carcinoma (cSCC) in skin areas exposed to sunlight [2,7]. Two beta-1 types,

HPV5 and HPV8, were the first beta-HPVs identified, and the International

Agency for Research on Cancer (IARC) classified them as ‘possibly carcino-

genic’ (Group 2B) in EV patients [8]. Epidemiological studies suggest an

association of beta-HPVs and keratinocyte carcinomas also in the general
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human population [9]. However, owing to their commensal

nature, a final proof is still challenging.
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2. Mucosal high-risk human papillomaviruses
persist throughout carcinogenesis

In contrast to cutaneous HPVs, mucosal HR-HPVs have been

extensively studied. The products of two mucosal HR-HPV

early genes, E6 and E7, are the main viral oncoproteins.

They subvert the regulation of pathways involved in key cel-

lular events, such as the cell cycle, apoptosis, DNA repair,

senescence and differentiation, thus promoting the immorta-

lization and transformation of infected cells [10,11]. A major

oncogenic activity of mucosal alpha HR-HPVs involves pro-

teolytic degradation of p53 by the E6 protein, which forms

a complex with the ubiquitin ligase E6-AP [12,13]. Therefore,

in strong contrast to other cancers, including skin cancer, p53

mutations are rarely detected in HR-HPV-induced cancers.

The majority (70–90%) of HR-HPV infections remain

asymptomatic and are efficiently cleared by the immune

system within 1–2 years [14–16]. However, once these

HPV types escape immune control, they can establish persist-

ence, a prerequisite for carcinogenesis, and even the cancer

cells maintain oncogene expression [17].

Genetic features and behavioural variables that impair the

immune response significantly increase the risk of cancer

development [18]. In addition, specific human leukocyte anti-

gen polymorphisms are associated with the fate of HR-HPV

infections [19,20].

Importantly, HR-HPV types can deregulate innate and

adaptive immune responses, supporting immune escape

and persistence [21,22]. Continuous deregulated expression

of the viral oncogenes leads to accumulation of chromosomal

alterations and transformation of the infected cell. Thus, in

this scenario, it is evident why the establishment of chronic

persistent HR-HPV infection is an essential condition for

the development of high-grade premalignant and malignant

lesions.
3. Cutaneous human papillomaviruses operate
differently from mucosal human
papillomaviruses

(a) The ‘hit and run’ hypothesis
Valuable animal models have demonstrated the transforming

potential of beta-HPVs [23–26].

There is accumulating evidence that cutaneous beta-HPVs

are involved in human epithelial skin carcinogenesis, albeit

via mechanisms that differ from those used by alpha HR-

HPVs [27–29]. Beta-HPVs can establish persistent infections

in EV patients or in patients with certain immune

deficiencies. However, cSCCs arising in the general popu-

lation harbour only few HPV-DNA-positive nuclei, as

shown by in situ hybridization [30], and transcriptome analy-

sis indicates that HPV is not actively transcribed in non-EV

cSCCs [31].

Based on recent observations in animal models using

natural infection, conditional transgenic mice, and in

human explant cultures, the postulate that the presence of

cutaneous HPV is necessary throughout carcinogenesis has
been challenged [26,32,33]. The proposed model is that

beta-HPVs act at early stages of skin carcinogenesis, and

later become dispensable for the maintenance of the malig-

nant phenotype, compatible with a ‘hit and run’

mechanism [34].

As an initial key step in skin carcinogenesis in lesional skin

of EV patients, beta-HPV8 infection expands the DNp63-posi-

tive progenitor/stem cell compartment by suppressing the

stemness-repressing microRNA-203 [35]. This increases a ker-

atinocyte population with a particular susceptibility to skin

carcinogenesis [36]. Mechanistically, the major beta-HPV

oncoprotein E6 [24] targets CCAAT/enhancer-binding

protein alpha (C/EBPa), a novel regulator of microRNA-

203. Apart from its role in epidermal differentiation,

C/EBPa serves as a potent suppressor of ultraviolet (UV)-

induced skin carcinogenesis [37,38]. Thus, targeting C/EBPa

appears to be a critical early step in beta-HPV-mediated co-

carcinogenesis with UV light. Furthermore, beta-HPV E6

interferes with another important regulator of keratinocyte

differentiation, Notch, via binding to its upstream regulator

Mastermind-like protein 1 (MAML1) [39,40]. As a second

step, keratinocytes expressing beta-HPV E6 become more

resistant to UV-induced apoptosis, i.e. by targeting the pro-

apoptotic factor Bak [41,42]. Beta-HPV E6 interferes with the

DNA damage response, thus facilitating the accumulation of

UV-induced DNA mutations (summarized in [43]). These

comprise p53 mutations, which are also common in cSCCs

of EV patients [44]. With an increased burden of critical

mutations, the lesion may then progress to cSCC, while the

viral episome becomes dispensable and is lost, potentially

owing to a hostile microenvironment in non-EV skin.
(b) Determinants of disease penetrance
The potential of cutaneous beta-HPVs to act as co-carcino-

gens in UV-induced carcinogenesis has been clearly

established in animal models. Nevertheless, the proof of

their causal association with skin carcinogenesis in the gen-

eral human population is still a challenge, because they are

‘ubiquitous and infect the skin of all people as a commensal

flora’ [9, p. 291].

Critical questions remain: what determines the pene-

trance of disease, and how do beta-HPVs establish a state

of infection that lasts long enough to catalyse all the necess-

ary events, eventually leading to symptomatic disease and

cancer? There are several lines of evidence that host cell-

autonomous and extrinsic immunological conditions play

an eminent role in the control of beta-HPVs in the general

population. Studies in EV patients were seminal for this

understanding [45]. Recent data strongly indicate that in

these patients, the beta-HPV-specific keratinocyte-intrinsic

restriction is lost owing to genetic mutation. As a conse-

quence, EV patients apparently provide a host cell

environment that is permissive for potent gene expression

and viral replication.

In individuals with other distinct genetic disorders that

result in deteriorated T-cell immunity, beta-HPV infection

may clinically present as atypical EV, indicating a second

line of beta-HPV control by adaptive T-cell immunity. The

risk of cSCC development is also considerably higher in the

skin of organ transplant recipients (OTRs) who receive immu-

nosuppressive treatments [46], and in elderly people with

decreasing immune function [47]. This further points to an
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important role of the extrinsic immune system, particularly

adaptive T-cell immunity, for controlling these viruses.

Conversely, if cell-autonomous and/or extrinsic immuno-

logical control fails, the virus may be able to partially or fully

complete its life cycle, and the levels of oncogene expression

may be key to determine the probability and extent of stem/

progenitor cell expansion and tumour initiation.

Interestingly, the beta-HPV life cycle also appears to be

adapted to UV-light-induced inflammatory responses in the

skin. Thus, beta-HPVs are activated by UV-mediated signal-

ling [48,49], and they even have intrinsic properties to

promote inflammatory responses [50,51]. It may be specu-

lated that this fuels chronic inflammation, promoting

progression to malignancy.

Thus, beta-HPVs show an intimate cross-talk with the

immune system at various stages of infection. This review high-

lights the interactions of beta-HPVs with the host keratinocyte’s

cell-autonomous immunity and the local immune microenviron-

ment during the establishment of cutaneous beta-HPV infection

and during progression to cancer (summarized in figure 1).
74:20180287
4. Cell-autonomous and extrinsic immune
control of beta-human papillomavirus
infection

(a) Cell-autonomous control
(i) EVER proteins and CIB1
In consanguineous EV families, a susceptibility locus for EV

was mapped to chromosome 17q25, which harbours two

adjacent genes, EVER1 (TMC6) and EVER2 (TMC8), that

are mutated in about 50% of EV cases [52]. EVER1 and

EVER2 encode two highly conserved transmembrane chan-

nel-like proteins that are localized in the endoplasmic

reticulum [53]. It is assumed that the keratinocyte-intrinsic

functions of EVER proteins are most critical for beta-HPV

control, because EV patients display no enhanced suscepti-

bility to pathogens other than beta-HPVs [45] and EVER2

deficiency is associated only with mild changes in T lympho-

cytes [54]. To date, there are only few data on EVER function.

Initial studies suggested that both EVER1 and EVER2 are

involved in the regulation of zinc levels in keratinocytes and

potentially also in immune cells [55,56]. EVER1 and EVER2

are able to repress zinc-dependent transcription. However,

in a different study, endogenous deficiencies of neither

protein were found to be associated with overt disturbed

zinc homeostasis [57].

Beta-HPV replication and viral transcription are regulated

by the non-coding region (NCR), located upstream of the early

gene region. The beta-HPV NCR differs from that of other

HPVs in its small size of about 400 bp. EVER2-deficient cells

were shown to activate the HPV5 NCR through a c-Jun N-term-

inal kinase (JNK)-dependent pathway [58]. Moreover, EVER2

induces tumour necrosis factor alpha (TNFa)- and TNF-related

apoptosis-inducing ligand (TRAIL)-dependent apoptosis [59].

Recently, identification of a third EV susceptibility gene

encoding the pleiotropic factor calcium- and integrin-binding

protein 1 (CIB1) [60] has shed more light on the potential

molecular basis underlying EV [57]. Notably, CIB1 protein

levels were also found to be low in EVER1- or EVER2-

mutated keratinocytes. In normal cells, CIB1 forms a complex

with EVER1 and EVER2. The alpha HPV16 E5 and the
gamma HPV4 E8 proteins were shown to interact with

CIB1. Although there is no formal proof, it is assumed that

these viral proteins interfere with CIB1-dependent restriction.

The hypothesis drawn from these observations is that CIB1

may represent an intrinsic antiviral restriction factor specific

for beta-HPVs, because these viruses do not encode a viral

protein that can help to overcome CIB1-dependent restriction

[57]. Thus, the beta-HPV life cycle may only be efficiently

supported in the absence of functional CIB1.

(ii) Interferon regulatory factors
Further investigations support the notion that beta-HPVs are

also under the control of innate immunity, particularly the

interferon system. In the beta-HPV regulatory region,

response elements for the interferon regulatory factors IRF-3

and IRF-7 were identified [49]. Both factors play an important

role in the regulation of type I interferons and antiviral

immunity [61].

Sensing of viral nucleic acids by pathogen recognition

receptors causes activation of IRF-3, which is constitutively

expressed in keratinocytes. Activated IRF-3 strongly suppresses

beta-HPV8 NCR activity, thus inducing a state of cell-auton-

omous immunity against HPV8. Interestingly, the HPV8 E6

protein neither binds to IRF-3 nor blocks its activity, which is

in strong contrast to the mucosal HR-HPV16 E6 oncoprotein

[49,62]. Thus, IRF-3 remains an Achilles heel of beta-HPV,

opening new avenues for IRF-3-activating compounds in

antiviral immunotherapy. Treatment of keratinocytes with the

IRF-3 activators poly(I:C) (a synthetic analogue of double-

stranded RNA) or RNA bearing 50 phosphates (50pppRNA)

[49] leads to potent suppression of beta-HPV NCR activity.

Whether poly(I:C) can further lead to necroptosis, as observed

in cervical cancer cells, remains to be determined [63,64].

In contrast to IRF-3, the related factor IRF-7 increases

HPV8 NCR-driven promoter activity [49]. IRF-7 can be acti-

vated by UV light [65], and UV is known to be an activator

of beta-HPVs [48]. Cutaneous beta-HPVs have adapted to

UV-triggered signalling pathways, even if they are part of a

previous defence response. It may be speculated that this

subversion of IRF-7 may result in a pro-tumorigenic feed-

forward loop, because enhanced beta-HPV expression may

further increase or accelerate pro-carcinogenic UV responses.

This demonstrates that IRFs play a dual role in beta-HPV

biology: whereas IRF-3 mediates suppression, IRF-7 activates

the virus.

(b) Extrinsic immunity
(i) Common gamma-c or Jak3 deficiency
EV-like pathologies (termed ‘atypical EV’) have also been

reported in patients with genetic deficiencies other than

EVER1, EVER2 or CIB-1 [45]. Atypical EV has been observed

in 50% of patients with severe combined immune deficiency

(SCID) owing to gamma-c cytokine receptor subunit

(gamma-c) or Jak3 mutations, as a late-onset disease many

years after successful haematopoietic stem cell transplantation

[66]. It was speculated that persistent natural killer (NK) cell

deficiency may play a role, because EV-like disease is not

observed in patients with other SCIDs who have normal

NK cell activity after immune reconstitution. Alternatively,

gamma-c or Jak3 mutations may cause a keratinocyte-intrinsic

defect that accounts for the high susceptibility to EV-like

disease.
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Figure 1. Schematic presentation of the cross-talk between beta-HPVs and the cell-autonomous or extrinsic immune system that may determine disease penetrance
and progression to skin cancer. In healthy epithelium, Langerhans cells are present; during beta-HPV-driven co-carcinogenesis and progression to invasive cancer, the
local immune system is deregulated and the stroma becomes infiltrated with myeloid cells. Red nuclei indicate DNp63-positive progenitor/stem cells. CCL20, CC-
chemokine ligand 20; C/EBP, CCAAT/enhancer-binding protein; CIB1, calcium- and integrin-binding protein 1; cSCC, cutaneous squamous cell carcinoma; DDR, DNA
damage response; HPV, human papillomavirus; IRF, interferon regulatory factor; OTRs, organ transplant recipients; TLR, Toll-like receptor; UV, ultraviolet.
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(ii) Inherited T-cell defects
Atypical EV is also found in patients with distinct primary T-cell

deficiencies (summarized in [45]). However, EV-like disease is

of low penetrance in these patients, and most of them display

an enhanced susceptibility not exclusively to beta-HPV but to

a much broader spectrum of pathogens. NK cell numbers are

apparently normal in these patients. This points to a specific

contribution of T-cell immunity to beta-HPV control.

(iii) Organ transplant recipients and beta-human
papillomaviruses

A large body of evidence supporting a role of adaptive T-cell

immunity for the control of beta-HPV infection and disease

also comes from molecular or serological epidemiological

studies of OTRs who receive immunosuppressive treatments

[46]. In such OTRs, the incidence of cSCCs is increased more

than 100-fold, and infections with multiple beta-HPVs are

observed with higher viral loads than in the general popu-

lation [9,67]. Although OTRs generally do not present with

symptoms of overt EV-like disease [45], actively replicating

beta-HPV infection was demonstrated in actinic keratosis

and epithelium adjacent to cSCCs of these patients [68].

Taken together, these studies strongly suggest that beta-

HPVs are under strict control of host cell-autonomous as

well as extrinsic, particularly T-cell-mediated, immunity.

(c) Immune escape during beta-human papillomavirus
infection

In EV patients, beta-HPVs can efficiently replicate, probably

owing to loss of cell-autonomous antiviral restriction. How-

ever, it was unclear how beta-HPVs can escape from innate

and adaptive immune control, which appears to function

normally in these patients. Several studies indicate that beta-

HPV-encoded proteins, once sufficiently expressed, interact
with distinct immune signalling pathways in the host cell

that allow the virus to further escape from immune control,

supporting its persistence. Several important examples are

detailed below.

(i) Interference with TLR9 expression
UV irradiation and other cellular stress signals can induce

Toll-like receptor 9 (TLR9) expression. This pattern-recog-

nition receptor is activated by unmethylated CpG

sequences in DNA molecules [69]. Beta-HPV38 E6 and E7

oncoproteins are able to inhibit the expression of TLR9, and

they seem to share this function with mucosal HR-HPV

[70,71]. In addition, HPV38 E6 and E7 oncoproteins are

able to block the UV-mediated activation of TLR9 by prevent-

ing the recruitment of p53 and c-Jun to the TLR9 promoter

[72].

(ii) Suppression of Langerhans cell recruitment
A striking observation in lesional epidermis of EV patients is

the lack of Langerhans cells [73,74]. Langerhans cells are

involved in skin immunosurveillance by cross-presenting

antigens from neighbouring keratinocytes to CD8þ effector

T lymphocytes [75].

In healthy individuals, UV light can cause transient

immunosuppression by inducing the egress of Langerhans

cells from the epidermis [76]. However, subsequent induction

of the CC-chemokine ligand 20 (CCL20) in the uppermost

epidermal layers will lead to a reconstitution of the epidermis

with CD1aþ Langerhans cell precursors in a CCL20/CCR6-

dependent manner [77,78]. Interestingly, the lesional epidermis

of EV patients lacks not only Langerhans cells but also the

Langerhans cell-attracting chemokine CCL20 [74].

The transcription factor C/EBPb was identified as the key

regulator of constitutive differentiation-specific CCL20

expression in the normal epidermis [74]. However, in the
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epidermis of EV patients, the beta-HPV E7 protein is

expressed in the same granular layer where CCL20 is found

in normal human skin [79]. HPV8 E7 specifically sequesters

C/EBPb and thereby interferes with its binding to the

CCL20 promoter. This results in potent suppression of

CCL20 expression and of Langerhans cell recruitment [74].

Thus, once expressed at a sufficient level, beta-HPV-

encoded proteins are able to disrupt the epithelial immune

barrier at different levels, eventually allowing viral persistence

in EV patients.
rnal/rstb
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(d) Stromal inflammation in beta-human
papillomavirus infection and progression to cancer

A remaining question was whether beta-HPVs can alter the

local microenvironment, promoting progression to cancer.

Stromal inflammation, a hallmark of cancer, fuels immune

deviation and progression of the disease [80].

It has recently been shown that EV lesions are strongly

infiltrated with inflammatory immune cells, particularly

myeloid cells, from productive infection to cancer [22,51].

There is increasing evidence that beta-HPVs can directly pro-

mote inflammation. This is in strong contrast to mucosal HR-

HPVs, which potently suppress pro-inflammatory signalling

[81–84]. Rather, in cervical carcinogenesis, where stromal

inflammation occurs at later stages of the disease, HR-HPV-

transformed cells instruct stromal fibroblasts and immune

cells to produce inflammatory mediators, promoting disease

progression [85–87].
(i) Potent induction of S100A8/A9 proteins by E2
In HPV8-positive skin of EV patients, infiltration with neutro-

phils starts in the stroma of productive lesions. This is

paralleled by a dramatic upregulation of the differentiation-

associated calprotectin complex, which consists of the Ca2þ

and Zn2þ binding proteins S100A8 and S100A9, in the

infected epithelium [51]. S100A8/A9 proteins serve as alar-

mins and induce immune cell chemotaxis, particularly of

granulocytes [88].

S100A8/A9 expression is a direct consequence of viral

infection. Notably, the viral transcription factor E2 has been

identified as an inducer of this response, whereas HPV8

oncoproteins E6 and E7 suppress S100A8/A9 expression.

HPV8 E2 is known to synergise with the differentiation-

specific transcription factor C/EBPb to induce keratinocyte

differentiation [89]. HPV8 E2 exploits the same mechanism

for S100A8/A9 induction, leading to neutrophil recruitment

[51]. This function is not shared by the HPV16 E2 protein,

potentially explaining the differences observed with mucosal

HR-HPVs. In addition to S100A8/A9, keratinocytes co-

expressing HPV8 E2 and C/EBPb also produced other

neutrophil-attracting chemokines, including interleukin

8 (IL-8), ENA-78, and NAP-2, which may further contribute

to neutrophil attraction [51].

A role of HPV8 E2 in promoting chronic inflammation is

consistent with observations in transgenic mice, where the

HPV8 E2 protein expressed under control of the K14 promo-

ter induces epidermal thinning, ulcerations and chronic

inflammation [90]. Together, these observations strongly

suggest that the property of beta-HPV E2 in enhancing

inflammation appears to be intimately linked to its capability

to promote differentiation [51,89,91,92].
In turn, infiltrating tumour-associated myeloid cells can

provide factors like matrix metalloproteinase 9, promoting

tumour growth and inducing vasculogenesis and matrix

remodelling [85,93]. Thus, it can be assumed that beta-HPV

infection enhances not only S100A8/A9-driven chronic

inflammation but potentially also tumour progression, as

has been observed in an animal model [94].

(ii) Beta-human papillomavirus oncoproteins and inflammation
An intrinsic property of activating tumour-promoting inflam-

mation has also been demonstrated in mice expressing the

complete early region (CER) or only the E6 protein of

beta-HPV8 [23,24]. In HPV8 CER transgenic mice, the inflam-

matory signal transducer and activator of transcription 3

(STAT3) pathway are highly active, and keratinocyte-specific

STAT3 heterozygosity impairs the development of skin

tumours [95]. Potent activation of the STAT3 pathway has

also been observed in cervical precancerous lesions [85,87];

it is thus a common trait of HPV-driven carcinogenesis and

a potential target for immunotherapy.

Beta-HPV5 E6/E7 oncoproteins were shown to induce

monocyte chemoattractant protein 1 (MCP1, CCL2)

expression in keratinocytes [50]. The underlying mechanism

remains to be clarified. However, this is in contrast to muco-

sal HR-HPV-encoded oncoproteins, which suppress CCL2

expression [81].

In beta-HPV38 oncoprotein immortalized cells, UVB

leads to a much higher upregulation of cytokines, including

IL-6, IL-8 and transforming growth factor beta (TGFb), than

in control keratinocytes [96]. Consistent with the findings

for HPV8 oncoproteins [51], this was not the case for

S100A8/A9. Also, TNFa upregulation was observed in the

presence of HPV38 oncoproteins and relative control cells

but not with mucosal HR-HPV16 [96]. Mechanistically,

HPV38 was shown to activate NF-kB in human keratinocytes,

supporting their survival under cytokine or UV exposure

[97]. Both enhancement of UV-induced inflammation and

prevention of cell death are believed to be implicated in the

formation of premalignant skin lesions and subsequent

cSCCs in UV-exposed HPV38 E6/E7 transgenic mice [25].

These studies showed that the presence of beta-HPV-encoded

proteins can upregulate the basal levels of inflammatory cyto-

kines and further increase inflammation upon UVB

irradiation.

It is not clear how inflammation can positively affect the

viral life cycle. It can be speculated that the active induction

of inflammation may be part of an adaptation of beta-HPVs

to a UV-activated microenvironment in the skin, in a way

similar to the positive response of HPV8 to UV-activated

IRF-7. However, as a side effect, the chronic inflammatory

response in persistent beta-HPV infections in patients with

EV or atypical EV may also promote skin carcinogenesis.
5. Conclusion and perspectives
Despite their commensalic nature in the general population,

the evidence is accumulating that cutaneous genus beta-

HPVs are important co-carcinogens with UV. Their biology

is highly adapted to the skin, which is constantly at risk of

UV exposure and damage. Thus, their life cycle and interplay

with cell-autonomous immunity or the host microenviron-

ment differ from those of mucosal HR-HPV in many aspects.
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Beta-HPVs have the potential to promote the initial steps

of UV-driven skin carcinogenesis. When sufficiently

expressed, they expand the UV-sensitive stem/progenitor

cell compartment, prolong local UV-induced immunosup-

pression by preventing the repopulation of the epidermis

with Langerhans cells, promote the lifespan of their host

cells through prevention of UV-induced apoptosis, lower

the threshold to UV-induced DNA damage responses and

enhance UV-induced tumour-promoting inflammation.

Once critical genetic alterations are established, such as

mutations in the tumour suppressor p53, beta-HPVs may

become dispensable for the maintenance of the malignant

phenotype (figure 1). This is compatible with a ‘hit and

run’ mechanism of beta-HPV-supported skin carcinogenesis

in the general population.

However, disease penetrance (i.e. EV or EV-like symp-

toms and development of skin cancer) is strongly controlled

by host restriction factors and extrinsic immunity. Once

these ‘brakes’ are released, viral expression and replication

can occur, with all their deleterious consequences. This may

happen occasionally in the general population, at a higher

frequency in patients with acquired or inherited T-cell

defects, and apparently on a regular basis in patients with

classic EV.

In order to define novel strategies for therapeutic inter-

vention against beta-HPVs beyond their sensitivity towards
IRF-3-activating compounds, it is important to better under-

stand their highly skin- and UV-light-adapted life cycle as

well as their cross-talk with host cell-autonomous and

extrinsic immunity.
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