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Hepatitis B virus (HBV) entry into hepatocytes is mediated via a high-affi-

nity interaction between the preS1 glycoprotein and sodium/bile acid

cotransporting polypeptide (NTCP). To date, in vitro model systems rely

on high multiplicities of infection to achieve infection of cell lines overexpres-

sing human NTCP. This study investigates a novel regulatory pathway for

NTCP trafficking to the cell surface, induced by DMSO-mediated cellular

differentiation. DMSO rapidly induces high cell surface expression of

NTCP and results in increased susceptibility of cells to HBV infection.

Additionally, DMSO treatment induces actin, as well as Tubulin reshaping

within the cells. We show that direct disruption of the actin and Tubulin net-

work directly enhances NTCP expression and the subsequent susceptibility

of cells to HBV infection. DMSO induces these changes via alterations in

the levels of cyclic (c)AMP, which participates in the observed actin

rearrangements. Blocking of phosphodiesterases (PDEs), which degrade

accumulated cAMP, had the same effect as DMSO differentiation and

demonstrates that DMSO prevents phosphodiesterase-mediated cAMP

degradation. This identifies adenylate cyclase as a novel target for blocking

the entry of HBV via targeting the cell surface accumulation of NTCP.

This article is part of the theme issue ‘Silent cancer agents: multi-disciplinary

modelling of human DNA oncoviruses’.
1. Introduction
Hepatitis B virus (HBV) results in over 257 million chronic infections world-

wide and even though there is a protective vaccine available, nearly 4 million

new infections arise every year. The virus belongs to the Hepadnaviridae
family and has a partially double-stranded relaxed circular genome [1]. HBV

is nowadays considered the leading cause of liver cancer, and unfortunately,

there is no currently available therapy to cure the disease. Existing treatments

rely primarily on nucleoside analogues (NUCs) and interferon alpha (IFNa),

which work by suppressing the replication of the virus. These, however, are

life-long and discontinuation uniformly results in viral relapse [2]. In addition,

HBV can cause serious co-infections that are typically much harder to suppress

in patients [3]. Therefore, new treatments are urgently required.

The sodium taurocholate cotransporting polypeptide (NTCP or SLC10A1)

receptor is a glycosylated multiple transmembrane transporter predominantly

expressed in the liver, with its polypeptide being exclusively localized to the baso-

lateral membrane of hepatocytes, and is normally involved in the maintenance

and circulation of bile acids in the enterohepatic area of the body [4,5].

In 2012, NTCP was reported as the long-sought entry receptor for HBV and

hepatitis D virus (HDV) infection [6]. HBV binding and entry into hepatocytes

is known to be facilitated with the help of its viral envelope glycoproteins, with
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the most critical site being its N-terminal myristoylated preS1

region [7]. The exact mechanisms of attachment and pro-

ductive entrance into the host liver cells, however, are still

enigmatic [8]. HBV entry into hepatocytes is separated into

two distinct steps, where an initial low-affinity interaction

with heparan sulfate proteoglycans (HSPGs), including the

recently identified glypican 5 (GPC5) [9], on the hepatocyte

surface, mediated by the preS1 region of the L (large) protein

and the antigenic loop of the viral S (small) protein, is fol-

lowed by the attachment of the virus to its high-affinity

NTCP receptor [10]. This interaction then results in endocytosis

of the HBV particles and further viral infection [11].

HBV research has been considerably impeded over the

years by the lack of understanding of the molecular pathways

of HBV entry into human liver cells. Current technologies,

however, as well as the discovery of NTCP as the receptor

for HBV infection, have opened up the field of HBV research

and have allowed the establishment of in vitro systems for the

study of HBV infection. One of the best examples is the

exogenous expression of human NTCP in Huh7 and HepG2

cells that confers susceptibility to HBV and HDV infection

to normally non-susceptible cells. Nevertheless, efficient

infection of these cell lines requires the presence of both

DMSO and polyethylene glycol (PEG) during inoculation,

presumably partially by promoting virus attachment to the

cell surface [12].

Previously, it was discovered that NTCP protein expression

in HepG2–NTCP cells, despite being under the control of a

cytomegalovirus immediate-early (CMV) promoter, was

remarkably increased by the presence of DMSO [13]; this

would partially explain the need for DMSO addition to

increase the susceptibility of these cells to HBV infection

[14]. However, so far, no extensive studies have been per-

formed with the aim of dissecting the way by which DMSO

is exerting this effect on the NTCP receptor, and in general,

there appears to be an incomplete understanding of the vast

effects of DMSO on different biological processes [15]. The

effect of DMSO on NTCP appears to be an unusual process

and probably much more complex than initially expected.

DMSO, throughout history, has always been used mainly as

a vehicle control and a solvent for water-insoluble reagents,

and the only circumstances where DMSO has been used as

a differentiation agent are in HepaRG cells [16] and hepatoma

cell lines [17], as well as for stem cell differentiation. Some

examples include differentiation of HL-60 cells to neutro-

phil-like cells [18], P19 cells into cardiac and skeletal muscle

cells [19] and generally differentiation of human embryonic

stem cells [20]. NTCP is the first reported case of DMSO

having such an extensive effect on a receptor protein that

lies beyond differentiation and polarization of cells for correct

protein configuration and expression. Early studies of rat

NTCP already suggest that NTCP expression is in general

extensively regulated on a post-translational level through

regulating cell surface expression via intracellular pools of

cAMP and PKA [21,22]. However, data on human NTCP

thus far have not implicated similar regulatory pathways.

Here, we describe the mechanistic regulation of NTCP

by DMSO and its impact on the susceptibility of cells to

HBV infection. DMSO exposure results in an accumulation

of intracellular cyclic (c)AMP, which in turn acts as a cell

polarization agent by restructuring cellular cortical actin

and microtubules. This effect is at least partially mediated

via phosphodiesterase (PDE)4, which is highly expressed
in the liver. This mechanism may explain why DMSO

addition is critical for achieving HBV susceptibility of cell

lines overexpressing NTCP.
2. Results
(a) Human NTCP cell surface expression and

susceptibility to HBV infection are dependent on
the presence of DMSO

Most cell lines do not express the HBV receptor NTCP. Thus,

HepG2 cell lines were lentivirally transduced with a Flag-

tagged NTCP driven by a CMV promoter. Stable cell lines

were obtained after antibiotic selection and mRNA

expression levels of NTCP were measured using quantitative

(q)PCR, which showed that NTCP was overexpressed by

4-log10 in HepG2 cells (figure 1a). This expression was fur-

thermore enhanced by culturing the cells in the presence of

2% DMSO (figure 1b). However, despite this apparent tran-

scriptional overexpression, protein analysis of the former

samples by western blot demonstrated that significantly less

NTCP overexpression could be detected in HepG2 cells

when cultured in complete DMEM in the absence of DMSO

(figure 1c). Kinetic and dose-dependence analysis revealed

that maximal NTCP expression is achieved following 15 h

of exposure to 2% DMSO. Furthermore, removal of DMSO

from the culture conditions resulted in a reduction of NTCP

protein expression after 12 h (electronic supplementary

material, figure S1). Since NTCP is highly glycosylated, we

additionally determined the time required to produce func-

tionally glycosylated NTCP upon exposure of cells to 2%

DMSO. For this purpose, cells were exposed to 2% DMSO

and Tunicamycin, an inhibitor of N-linked glycosylation

that was added to the cultures at the indicated time points

(figure 1d ). This demonstrated that the first functionally gly-

cosylated NTCP protein is detectable 8 h following exposure

to DMSO. A similar kinetic was also determined by immuno-

fluorescence microscopy, where NTCP is detectable on the

ER of cells at 4 h post-DMSO exposure, and it passes through

the Golgi network onto the cell surface between 8 and

24 h post-DMSO exposure (figure 1e,f ). This effect is further-

more specific for NTCP, since using a similar CMV

promoter-driven lentiviral construct did not exhibit

DMSO sensitivity when expressing GFP as a control gene

(electronic supplementary material, figure S2).

To determine the functional consequence of DMSO-

induced NTCP expression, we performed HBV infections

using a multiplicity of infection of 1000 HBV genome

equivalents per cell in the absence or presence of DMSO

differentiation for 24 h (figure 2a,b). Both, analysis of secreted

HBV DNA (figure 2a) and immunofluorescence analysis of

HBcAg-positive cells (figure 2b), revealed that 24 h exposure

of HepG2–NTCP cells to 2% DMSO greatly enhances HBV

susceptibility of these cells.

(b) DMSO treatment reorganizes the cellular actin
network, resulting in increased NTCP expression and
HBV susceptibility

Despite the use of DMSO in cellular differentiation of

hepatoma cell lines, little is known in regard to the molecular
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events resulting in the increase in HBV susceptibility of

DMSO-differentiated HepG2–NTCP cells. In addition to

inducing NTCP expression, DMSO also results in morpho-

logical changes to the cell, as well as loss of visible actin

stress fibres (figure 3a). To evaluate whether this effect is

independent of the observed increase in NTCP protein

expression, we determined whether targeted disruptions of

either the actin or microtubule network influence NTCP

levels (figure 3a,b). Strikingly, targeted depolymerization of

actin using either Cytochalasin D (CytoD—4 mg ml21) or

Latrunculin A (LatA—0.1 mg ml21), in the absence of

DMSO, resulted in the expression of NTCP at the cell surface

(figure 3a). Comparative analysis using western blot further-

more demonstrated that the individual effect of Cytochalasin

D and Latrunculin A was as pronounced as treatment of cells

with 2% DMSO, even though combination with DMSO

resulted in a synergistic effect on NTCP expression

(figure 3b). Latrunculin A, which not only prevents actin

polymerization but also enhances actin depolymerization,

exhibited a stronger effect on the induction of NTCP cell sur-

face expression. Since it is well established that microtubule

regulation and actin filament maintenance are interlinked,

coordinating cell motility, and both actin filaments and

microtubules can regulate protractive and contractile forces,

we further evaluated the impact of microtubule-modifying

agents on NTCP expression. Thus, cells were treated with

compounds disrupting microtubule dynamics, including

Colchicine, demecolcine and Taxol. Even though, similar to

disrupting actin fibres, microtubule disruption resulted in

enhanced expression of NTCP, this was not as pronounced

as compared to Cytochalasin D or Latrunculin A (electronic

supplementary material, figure S3).

To assess the consequence of Cytochalasin D and Latruncu-

lin A treatment for the relative susceptibility to HBV infection,

HepG2–NTCP cells were pre-treated with either 2% DMSO
and/or Cytochalasin D or Latrunculin A for 24 h prior to infec-

tion with 1000 HBV genome equivalents per cell (figure 4).

As evidenced by secretion of HBV DNA (figure 4a) and

immunofluorescence staining of HBcAg (figure 4b), treatment

of cells with either Cytochalasin D or Latrunculin A, in the

absence of DMSO, rendered cells more susceptible to HBV

infection compared to exposure to DMSO alone. Similar to

NTCP protein expression, the susceptibility of cells was great-

est when disrupting actin filaments with Latrunculin A,

compared to Cytochalasin D. This demonstrates that in

HepG2–NTCP cells, the actin network restricts HBV infection

through blocking NTCP cell surface expression.

(c) DMSO interferes with actin polymerization by
increasing intracellular cAMP levels

It has previously been documented that rat NTCP plasma

membrane localization is dependent on the phosphorylation

status of NTCP, which is cAMP-dependent [23]. Furthermore,

cAMP has been shown to impact actin phosphorylation, thus

contributing to active depolymerization of actin filaments

[24]. Modulation of F-actin and cell mobility largely depend

on the intracellular pool of cAMP, which regulates actin

polymerization via protein kinase A, p38 mitogen-activated

protein kinases and cAMP-responsive element binding protein

(CREB) [25]. To assess whether DMSO resulted in increased

cAMP we quantified intracellular cAMP levels following 24 h

of contact of the agent with the cells, which demonstrated

that DMSO increased cAMP within the cells (figure 5a). Block-

ing the biogenesis of cAMP using the specific adenylate cyclase

inhibitor MDL12 greatly reduced intracellular cAMP levels

and, most importantly, abolished the DMSO-induced accumu-

lation of cAMP. Next, cells were treated with exogenous cAMP

to assess whether this would, similarly to DMSO treatment,

induce NTCP expression. Indeed, treatment of cells with
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10 mM cAMP had the same effect on NTCP expression

as DMSO stimulation (figure 5b). Immunofluorescence analy-

sis confirmed that cAMP has a comparable effect to DMSO in

inducing NTCP expression, which can be blocked by MDL12

and rescued by providing exogenous cAMP (figure 5c). Using

phospho-kinase arrays to evaluate the phosphorylation of

cAMP-responsive pathways, we furthermore determined

that DMSO, as well as direct addition of exogenous cAMP,

resulted in activation of p38a and CREB (figure 5d ). This

demonstrates that DMSO activates the production of cAMP,

which in turn activates signal transduction pathways required

for inducing actin depolymerization.

Comparable to the impact of cAMP on cellular NTCP

expression, cells also exhibited increased susceptibility to

HBV infection following the addition of exogenous cAMP

(figure 6). Following infection with 1000 genome equivalents

of HBV per cell, cAMP pre-treatment rendered cells more sus-

ceptible to HBV infection compared to DMSO treatment, as

determined by secretion of HBV DNA and immunofluores-

cence staining of HBcAg (figure 6a,b). This shows that the

DMSO-induced cAMP accumulation, as well as regulating

downstream signalling, directly regulates the cells’ susceptibility

to HBV infection.

(d) Phosphodiesterases degrading cAMP are responsible
for restricting NTCP expression on cells

cAMP is degraded in cells through the action of phosphodi-

esterases, which comprise a total of 12 families, and which

are characterized by their activity on cAMP or cGMP, as well

as tissue expression. PDE4D and PDE12 are the most abundant
phosphodiesterases in the liver acting specifically on cAMP

[26]. To confirm their expression in HepG2–NTCP cells we

quantified their mRNA expression, which demonstrated that

particularly PDE4D and PDE12 are highly expressed in these

cells as compared to PDE1A and PDE1C, which are only

expressed at low levels (figure 7a). Next, to evaluate the role

of phosphodiesterases in the DMSO-induced expression of

NTCP, we used RNAi to specifically deplete PDE1A, PDE1C,

PDE4D or PDE12 in HepG2–NTCP cells (figure 7b; electronic

supplementary material, figure S4). Even though knock-

down of neither phosphodiesterase itself resulted in NTCP

expression, cells lacking PDE4D and PDE12 expressed signifi-

cantly higher NTCP levels when exposed to DMSO (figure 7c).

This was also independently confirmed by immunofluores-

cence microscopy following treatment of cells with the pan-

phosphodiesterase inhibitor Caffeine, as well as with the

PDE4D-specific inhibitor Roflumilast (figure 7d). Strikingly,

pharmacological inhibition of phosphodiesterases, specifically

PDE4D, using small-molecule inhibitors resulted in the induc-

tion of NTCP expression, even in the absence of DMSO

treatment, in a dose-dependent manner (electronic supplemen-

tary material, figure S5). This shows that DMSO purposely

inhibits cellular phosphodiesterases in HepG2–NTCP cells,

preventing the degradation of cAMP.

To assess whether this DMSO-induced phosphodiesterase

inhibition translates to enhanced susceptibility of cells to HBV

infection, we treated HepG2–NTCP cells with DMSO and/or

Roflumilast for 24 h before infection using 1000 genome equiva-

lents of HBV per cell. As determined by immunofluorescence

microscopy and flow cytometry of HBcAg-positive cells,

the pharmacological inhibition of PDE4D increased the
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susceptibility of HepG2–NTCP cells approximately 10-fold,

similar to the increase observed when pre-treating cells with

DMSO (figure 8a,b). Strikingly, no synergistic effect was

observed when combining DMSO with Roflumilast treatment,

indicating that the infection-enhancing effect of DMSO is pri-

marily exerted via the inhibition of PDE4D. However,

modulation of intracellular cAMP levels by inhibition of

PDE4D, adenylate cyclase or disruption of actin filaments still

retained the dependency of HBV infection on NTCP, indicating

that no alternative entry pathways exist in these cells (electronic

supplementary material, figure S6).
3. Discussion
In the present study, we show how human NTCP expression

is tightly regulated by the presence of DMSO in cell culture

media, and how this affects the susceptibility of cells to

HBV infection. While this phenomenon was previously

described [27], we specifically demonstrate how the presence

of DMSO enhances the expression of NTCP on a transcrip-

tional and a translation level, while it also results in more

NTCP being translocated to the cell surface. The effect of

DMSO on NTCP appears to be a very precisely orchestrated

procedure, which is both time- and dose-dependent, while

it is specific to NTCP as other cellular proteins are not necess-

arily affected in the same manner. Additionally, DMSO

directly affects NTCP and not the CMV promoter driving
NTCP expression. Removing DMSO from the cell culture

media can easily reverse this effect. In the absence of

DMSO, the levels of NTCP expression quickly diminish,

even though NTCP protein is definitely more stable than

the mRNA. In addition to resulting in elevated cell surface

expression of NTCP, DMSO furthermore alters the cellular

cytoskeleton, resulting in the rearrangement of the actin and

microtubule microstructures. This may be an indirect effect

caused by the induction of cell stress; however, this effect

directly coincides with an elevation of intracellular cAMP

levels, which have previously been shown to play an impor-

tant role in phosphorylation of actin [28–30]. Furthermore,

disruption of actin filaments and microtubules directly results

in elevation of cell surface NTCP in the absence of cAMP

elevation, suggesting this to be among the final steps in

facilitating NTCP trafficking to the plasma membrane.

The elevation of cAMP levels furthermore results in the

initiation of a PI3 K-dependent signal transduction path-

way, whose effect on NTCP cell surface expression can be

counteracted by either blocking the PI3 K signal transduction

through Wortmannin or inhibiting the de novo production of

cAMP via targeting of adenylyl cyclase. This mechanism is

clearly centred on cAMP, since the addition of exogenous

cAMP to cells, in which adenylyl cyclase has been blocked,

rescues this effect. Caffeine, which is a broad phosphodiester-

ase inhibitor, had the opposite effect and thus directly

implicates PDE in restricting NTCP cell surface expression

and the subsequent susceptibility of cells to HBV infection.
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Based on substrate specificity and tissue-expression levels, we

narrow down the effect on PDE4, which directly controls

NTCP cell surface expression levels and HBV susceptibility.

Since pharmacological inhibition of PDE4 activity, by Roflu-

milast, completely abolishes the effect of DMSO on the

susceptibility of HepG2–NTCP cells to HBV infection, we

hypothesize that DMSO-mediated inhibition of PDE4 is the

main mechanism by which DMSO increases the susceptibility

of cells to HBV infection.

A similar effect on NTCP expression, as seen when

inhibiting PDE4D, was also seen when inhibiting another

liver-specific PDE, PDE12. However, currently there are no

available small-molecule PDE12 inhibitors, so in the future,

when one becomes available, it will be interesting to further

investigate the effect of its inhibition on NTCP cell surface

expression and susceptibility of cells to HBV infection,

while also comparing it to the effect of Roflumilast.

Cellular phosphodiesterases, which are essential for form-

ing second messenger molecules, including cAMP and

cGMP, are usually characterized by their unique tissue-

expression patterns [31]. Both cAMP and cGMP have

previously been implicated in the regulation of ion channels,

but the regulation of NTCP cell surface expression may be an

additional function that might be regulated by liver-specific

PDE. The engagement of PI3 K signalling via cAMP has

already been demonstrated to be of importance for the trans-

location of rat NTCP to the cell surface, which involves the

cAMP-initiated de-phosphorylation of NTCP [32]. However,

the herein-described mechanism for NTCP post-translational

regulation reveals a thus far unknown role for PDE-derived
cAMP in the regulation of human NTCP plasma membrane

transport (figure 8c).

The identification of NTCP as the bona fide receptor for HBV

has sparked the development of novel entry inhibitors based

on peptidomimetics of the HBV preS1 glycoprotein. These

block HBV attachment to NTCP via a competitive interaction.

Targeting the cAMP-mediated transport of NTCP to the cell

surface may present a suitable alternative to restricting HBV

access to its receptor and thus preventing infection events.

Interestingly, most currently used HepG2–NTCP cell

lines for the study of HBV infection are monoclonal cell

lines, which were selected on the basis of facilitating HBV

infection upon treatment with DMSO. This may have

resulted in the selection of cell clones with low baseline

expression of distinct PDE. However, infection of these cell

lines with HBV still requires very high multiplicities of infec-

tion and the presence of PEG during infection, suggesting the

presence of additional receptors/co-receptors or host factors

required for events essential to ensure viral persistence

downstream of receptor-mediated entry.
4. Material and methods
(a) Chemicals, reagents and antibodies
Paraformaldehyde (PFA), Triton

TM

X-100, Tunicamycin, Cytocha-

lasin D, Latrunculin A, Colchicine, Demecolchine, Taxol, cAMP,

Wortmannin, MDL12, Caffeine and Roflumilast were obtained

from Sigma-Aldrich. DMSO was from VWR International. For

detection of the NTCP protein, an anti-FLAG antibody
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(DYKDDDDK Epitope Tag antibody; ThermoFisher Scientific)

was used, while for the detection of HBV core particles, an

anti-HBcAg was ordered from Dako, Agilent Technologies Anti-

bodies against b-actin and g-Tubulin were from Sigma-Aldrich,

while PCNA was obtained from Abcam. Small interference

RNAs (siRNAs) were ordered from ThermoFisher Scientific.

cAMP direct immunoassay kit was purchased from Abcam.

Human phospho-kinase arrays were performed according to

the manufacturer’s instructions (R&D Systems).

(b) Cell culture
HepG2 (human liver hepatoma) cells were purchased from

ATCC. HepDE19 cells were provided by Haitao Guo (Indiana

University). All cells were maintained in Dulbecco’s modified

Eagle’s medium (DMEM; Gibco) further supplemented with

10% fetal bovine serum (FBS; Gibco), referred to as complete

medium. HepDE19 cells were maintained in DMEM/F12

medium supplemented with 10% FBS, 500 mg ml21 G418 and

1 mg ml21 Tetracycline (Sigma-Aldrich). Cells were grown in a

5% CO2 atmosphere in a humidified incubator set at 378C.

(c) NTCP overexpression
Human NTCP cDNA cloned into a pReceiver lentiviral vector,

driven by a CMV promoter and encoding a C-terminal FLAG-tag,

was purchased from GeneCopoeia [EX-C0391-LV158]. Lentiviral
pseudoparticles expressing human NTCP were prepared as pre-

viously described [33]. Briefly, HEK293T cells were transfected

with three plasmids expressing the human immunodeficiency

(HIV) gag/pol proteins, the vesicular stomatitis virus glycoprotein

(VSVg) and the NTCP construct. Supernatants were collected at 48

and 72 h, filtered and supplemented with 20 mM Hepes (Gibco)

and 4 mg/ml Polybrene (Sigma-Aldrich) before further use. For

the creation of stable cell lines, HepG2 cells were transduced with

the lentiviral pseudoparticles and the medium was changed 48 h

post transduction to select stable HepG2–NTCP cells with G418

(Geneticin 400 mg ml21; Sigma-Aldrich).
(d) Real-time PCR
Total RNA was extracted from cells using the RNeasyw Mini kit

(Qiagen). Complementary DNA (cDNA) was synthesized using

a high-capacity cDNA reverse transcription kit (ThermoFisher

Scientific). Quantitative real-time polymerase chain reaction

(qRT-PCR) was performed on a QuantStudio
TM

7 Flex Real-

Time PCR system using the Taqman assay system (ThermoFisher

Scientific). Taqmanw Gene Expression assays against NTCP

(human NTCP Hs00161820_m1) and PDEs 1A, 1C, 4D and

12 (Hs00897273_m1, Hs01095682_m1, Hs01579625_m1 and

Hs00698272_m1, respectively) were from ThermoFisher Scientific.

Expression levels were normalized to GAPDH reference gene

(Hs02786624_g1; ThermoFisher Scientific) and were specifically
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analysed using the 2DDCT formula on the Prism 5 computer

software (GraphPad).

(e) Immunoblotting
For protein analysis, whole-cell lysates were obtained by lysing the

cells in 1x radioimmunoprecipitation assay (RIPA) buffer. The

samples were rapidly vortexed and kept on ice for 30 min prior

to centrifugation for the removal of insoluble material. Proteins
were separated on a 10% polyacrylamide gel, transferred to

nitrocellulose membranes and probed with suitable antibodies.

( f ) Immunofluorescence
Cells were grown to approximately 80% confluence on coverslips;

they were washed with phosphate-buffered saline (PBS), fixed

with 4% PFA/PBS for 20 min at room temperature, washed

three-times, permeabilized with 0.1% Triton X-100/PBS for
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5 min at room temperature. After washing with PBS, nonspecific

binding of the antibodies was blocked with 10% FBS/PBS for

30 min at room temperature. They were then stained for 1 h at

room temperature with the rabbit anti-FLAG antibody diluted in

5% FBS/PBS, followed by an anti-rabbit AlexaFluorw 488

(ThermoFisher Scientific) for one hour at room temperature.

In the case of HBcAg detection, an AlexaFluorw 594 conjugated

secondary antibody was used for visualization. For specific

staining of the ER and the Golgi, AlexaFluorw 594 Concanavalin

A and AlexaFluorw 647 Lectin HPA (Helix pomatia agglutinin;

ThermoFisher Scientific) antibodies were used respectively to

stain the cells for a further hour at room temperature. For specific

staining of actin and Tubulin, AlexaFluorw 647 Phalloidin and a

mouse a-Tubulin (Sigma-Aldrich) were used, respectively. For

Tubulin, a secondary anti-mouse AlexaFluorw 594 antibody was

used for visualization purposes. Images were taken on an Axiovert

135 TV (Zeiss) fluorescent microscope or an EVOS FL Auto Cell

Imaging System (ThermoFisher Scientific), as well as a confocal

microscope (LSM Pascal, Zeiss).

(g) Flow Cytometry
Cells were fixed with 4% PFA/PBS in suspension. The cells were

either permeabilized with 0.1% Triton X-100/PBS or were not

permeabilized. Unspecific binding of antibodies was blocked as

previously described, followed by staining of the cells with a

PE-conjugated anti-FLAG (L5 clone; BioLegend) antibody for

1 h at room temperature. The residual antibody was then

washed away from the cells and the cells were immediately

run on a BD LSR II system (BD Biosciences). Data were analysed

using the FlowJo v7.61 software (Treestar).
(h) HBV infections
Infectious HBV was generated from HepG2.2.15 cells (kindly

provided by Peter Karayiannis, University of Nicosia) or

HepDE19 cells. For infection experiments, cells were seeded at

80% confluence on collagen-coated plates. Cells were maintained

in complete medium, in the presence or absence of 2% DMSO,

for 24 h prior to infection. Infections, in the presence of 2%

DMSO and 4% PEG 8000 (Sigma-Aldrich), were performed over-

night (16 h). Total DNA was extracted from the collected cells

using a DNeasyw Blood & Tissue kit (Qiagen). HBV DNA was

detected by qPCR using specific HBV PCR primers as previously

described [34]. qPCR was performed on a QuantStudio
TM

7 Flex

Real-Time PCR system.
(i) Statistics
Statistical analyses were performed using the GraphPad Prism

Software. Statistics were calculated using one-way ANOVA

analysis. p-Values below 0.05 were considered statistically

significant.
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