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Current HPV vaccines target a subset of the oncogenic human papillomavirus

(HPV) types. If HPV types compete during infection, vaccination may trigger

replacement by the non-targeted types. Existing approaches to assess the risk

of type replacement have focused on detecting competitive interactions

between pairs of vaccine and non-vaccine types. However, methods to trans-

late any inferred pairwise interactions into predictors of replacement have

been lacking. In this paper, we develop practical predictors of type replace-

ment in a multi-type setting, readily estimable from pre-vaccination

longitudinal or cross-sectional prevalence data. The predictors we propose

for replacement by individual non-targeted types take the form of weighted

cross-hazard ratios of acquisition versus clearance, or aggregate odds ratios

of coinfection with the vaccine types. We elucidate how the hazard-based

predictors incorporate potentially heterogeneous direct and indirect type

interactions by appropriately weighting type-specific hazards and show

when they are equivalent to the odds-based predictors. Additionally, pooling

type-specific predictors proves to be useful for predicting increase in the over-

all non-vaccine-type prevalence. Using simulations, we demonstrate good

performance of the predictors under different interaction structures. We dis-

cuss potential applications and limitations of the proposed methodology in

predicting type replacement, as compared to existing approaches.

This article is part of the theme issue ‘Silent cancer agents: multi-disciplinary

modelling of human DNA oncoviruses’.
1. Introduction
Predicting the impact of vaccination against a pathogen can be challenging if

the pathogen consists of many, potentially interacting (sub)types. When the

vaccine targets only a subset of the pathogenic types, it is particularly relevant

to evaluate the risk of replacement by the non-targeted types. In this paper, we

expand existing methodology for predicting type replacement for multi-type

pathogens with the focus on the human papillomavirus (HPV).

HPV is one of the most common oncogenic DNA viruses in humans. Persist-

ent infection with HPV can cause cancer in various parts of the body [1].

In particular, 12–15 HPV types are classified as high-risk or probable high-risk

due to their association with cervical cancer [2]. Currently, three HPV vaccines

are available, covering two, four and nine HPV types. All three vaccines protect

against HPV 16 and 18, two high-risk types that together account for approxi-

mately 70% of all cervical cancers in unvaccinated populations. HPV 31, 33

and 45, accounting for an additional 10–15% of cases [3], are among the
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cross-protective types of the bivalent and quadrivalent

vaccines and are included in the nonavalent vaccine [4].

In countries where HPV vaccination has been implemen-

ted with high coverage, circulation of both the vaccine and

cross-protective HPV types has decreased considerably [5,6].

However, concerns have been raised that the ecological niche

vacated by the targeted types could be taken over by the

non-targeted high-risk HPV types [7–9]. Thus far, post-

implementation surveillance data have been reassuring, as

only sporadic increases in the prevalence of infection with

some non-vaccine types have been observed without a clear

signal of type replacement [4,10–12]. While waiting for the

long-term impact of HPV vaccination to become apparent,

evaluation of the potential for type replacement remains crucial.

Whether HPV vaccination will trigger type replace-

ment depends on the existence and strength of competitive

interactions between HPV types. HPV types may compete

during coinfection, by either diminishing each other’s oppor-

tunities to establish a productive infection or by promoting

viral clearance (e.g. through activation of antigen-presenting

cells) [13–17]. Owing to such competitive mechanisms, the

hazard of acquiring (or clearing) a given HPV type may be

reduced (or increased, respectively) by infection with other

types. In epidemiological terms, different type interactions

can be conveniently quantified in terms of appropriately

defined hazard ratios [18–20].

We have previously shown, in a simple model of one vac-

cine and one non-vaccine type, that the cross-hazard ratio of

acquisition versus clearance can be used to predict type repla-

cement, provided that the two types interact symmetrically

and there is no long-lasting cross-immunity [21]. The latter

assumption seems plausible for HPV as even the existence

of natural homologous immunity is still debated [22,23].

Given susceptible–infected–susceptible (SIS) transmission

dynamics, the appropriate cross-hazard ratio is, moreover,

equivalent to an odds ratio of coinfection, and thus estimable

from cross-sectional prevalence data [21]. Here, the odds ratio

is defined as the odds of infection with one type in the

presence versus absence of coinfection with the other type.

With more than two interacting types, not only does predic-

tion of replacement require inference of interactions between

multiple types but also an adequate way of combining them.

To predict how vaccination will affect the prevalence of a

given non-vaccine type, one needs to take account of its direct

interactions with the vaccine types as well as any indirect inter-

actions via other non-vaccine types. Meaningful prediction

should also incorporate possible heterogeneities in strength or

direction (competition versus synergy) of type interactions.

Previous studies evaluating the potential of HPV-type

replacement have focused on inferring interactions between

pairs of vaccine and non-vaccine types [7,24–27]. In these

studies, for each vaccine type, pairwise odds ratios have been

compared to pooled odds ratios (pooled across the non-vaccine

types) to identify likely candidates for type replacement. With

this approach, however, each non-vaccine type is evaluated

multiple times according to its interactions with different vac-

cine types, while the occurrence of type replacement is

determined by all these interactions jointly. In addition, the

pooled odds ratio, which has been interpreted as the tendency

of the vaccine type in question to be involved in coinfection,

lacks a clear interpretation for prediction of type replacement.

In this paper, we consider prediction of replacement

following vaccination in a setting with an arbitrary number
of interacting vaccine and non-vaccine types. We propose

predictors of type-specific replacement, i.e. increase in the

prevalence of individual non-vaccine types, and pooled predic-

tors of increase in the overall non-vaccine-type prevalence.

The predictors are initially defined in terms of steady-state

hazards of type-specific acquisition and clearance. Using a

mechanistic SIS model, we explain how the predictors relate

to the underlying mode of type interactions and show under

which interaction structures these hazard-based predictors

can be estimated as odds ratios from cross-sectional prevalence

data. Finally, we evaluate the performance of the proposed

predictors by means of numerical simulations.
2. Material and methods
(a) Prediction framework
We derive predictors of type replacement for a pathogen consist-

ing of many potentially interacting types. The prediction method

applies to any pathogen for which naturally acquired immunity

is short-lived, so that the transmission dynamics of each type can

be approximated by an SIS model. The predictors are constructed

in terms of the following data collected at the pre-vaccination

steady state:

— prevalence of each (co)infection state, estimable from cross-

sectional data;

— type-specific hazards ( per capita rates) of acquisition and

clearance, estimable from longitudinal data.

Figure 1a shows the eight (co)infection states and the respective

transitions for a pathogen with three types. Type interaction is

assumed to operate through current (co)infection, with one or

multiple types modifying acquisition hazards of other types, or

modifying clearance hazards of coinfecting types. Interactions

between different types are allowed to be either competitive or

synergistic and to vary in strength. Furthermore, we focus

on predicting replacement by non-vaccine types that are not

cross-protected by the vaccine, as these types are the most salient

for evaluating the potential for replacement.

(b) Type-specific and overall replacement
We consider replacement, here defined as increase in the preva-

lence of non-vaccine-type infection once the vaccine types are

eliminated in the post-vaccination steady state, at two levels:

— type-specific replacement, defined as increase in the preva-

lence of a given non-vaccine type i. This occurs whenP
i[X I0X=

P
i[X IX . 1, where I0X and IX denote the post- and

pre-vaccination steady-state prevalence of infection state X,

respectively. The sums here are taken over all states contain-

ing type i, e.g. states f3, 13, 23, 123g in a three-type system

when considering i ¼ 3;

— overall replacement, defined as increase in the overall non-

vaccine-type prevalence. This occurs when
P
jX>NVTj.0 I0X=P

jX>NVTj.0 IX . 1, where NVT is the set of all non-vaccine

types, and j � j denotes the number of types in a given set.

The sums are taken over all states containing at least one

non-vaccine type, e.g. states f2, 3, 23, 12, 13, 123g in a

three-type system when considering NVT ¼ f2, 3g.

(c) Predictors in a two-type setting
Previously, we have shown that the following pairwise odds

ratio is an exact predictor of type replacement in a simple SIS

model of one vaccine type (type 1) and one non-vaccine type



1

2

3

k12

k21

k13

k31

k23k32

(b)

3 13

1

23 123

2 12

qfÆ2

qfÆ1

qfÆ3

q2Æ23 q12Æ123

q1Æ13

q2Æ12

q3Æ13

q23Æ123

q13Æ123
q3Æ23

q1Æ12

(a)

Figure 1. (a) The eight infection states and transitions pertaining to acquisitions in a three-type system. For convenience, the reverse transitions (i.e. clearances) are not
shown. The colours indicate the aggregate states for vaccine type¼ f1, 2g, i ¼ 3 and the corresponding type-3 acquisitions; AVT in yellow, AVT,i in green, Ai in
blue, A0 in red. (b) Graphical representation of the interaction parameters under the symmetric multiplicative structure or pairwise-asymmetric multiplicative structure in
a three-type system. Under the pairwise-symmetric multiplicative structure, pairs of reverse interaction parameters would moreover be identical (i.e. kij¼ kji).
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(type 2), provided the two types interact symmetrically [21]:

OR1,2 ¼
I12

I1

� ��
I2

I;

� �
: (2:1)

This pairwise odds ratio compares the odds of non-vaccine-

type infection between those infected and uninfected with the

vaccine type.

Whenever the pre-vaccination steady-state value of OR1,2 is

less than one, replacement will occur. This correspondence fol-

lows from OR1,2 being equivalent to the following pairwise

cross-hazard ratio:

HR1,2 ¼
q1!12

q;!2

� ��
q12!1

q2!;

� �
, (2:2)

where qX!Y denotes the transition hazard from state X to Y.

The numerator (denominator) of expression (2.2) is the hazard

ratio of acquiring (clearing) the non-vaccine type in those

infected versus those uninfected with the vaccine type and

thus quantifies interaction in acquisition (clearance). In other

words, the numerator (denominator) quantifies to what extent

vaccine-type infection accelerates or decelerates acquisition

(clearance) of non-vaccine-type infection. As a whole, the ratio

captures the joint effects of interactions both in acquisition and

clearance on the occurrence of non-vaccine-type infection.

Of note, the above pairwise odds ratio (2.1) has been used

for inferring interactions between HPV genotypes [7,25–27],

whereas the pairwise cross-hazard ratio (2.2) has been used

for describing competition between Streptococcus pneumoniae
serotypes [28].

(d) Predictors in a multi-type setting
(i) Type-specific cross-hazard ratio as a predictor of type-specific

replacement
We now generalize the pairwise cross-hazard ratio (2.2) to a

setting with an arbitrary number of interacting vaccine and

non-vaccine types. To predict replacement by a given non-

vaccine type i, we first aggregate the infection states into the

four disjoint collections of states given in table 1 (figure 1a).

Based on the transitions between these four aggregate states,

we propose the following generalization of the four hazards in
the pairwise cross-hazard ratio (2.2):

HRVT,i ¼
P

X[AVT
IXjAVT

qX!X<{i}P
X[A0

IXjA0
qX!X<{i}

 !, P
X[AVT,i

IXjAVT,i
qX!Xn{i}P

X[Ai
IXjAi qX!Xn{i}

 !
,

(2:3)

where IXjA ¼ IX=
P

Y[A IY denotes the relative prevalence of state X
conditioned within aggregate state A. Each term in expression (2.3)

is a weighted average of hazards as it aggregates hazards of

acquiring or clearing type i with weights given by the conditional

steady-state prevalence of the states from which the transitions

occur. In effect, this weighting adjusts for the time each individual

spends being at risk for the respective transitions [29]. Similar to the

pairwise cross-hazard ratio (2.2), the numerator and denominator

of the type-specific cross-hazard ratio (2.3) are hazard ratios

of acquiring and clearing type i in those infected with at least one

vaccine type (jX > VTj . 0) versus those uninfected with any of

the vaccine types (jX > VTj ¼ 0), respectively. In short, the type-

specific cross-hazard ratio (2.3) combines interactions by the

vaccine types on the non-vaccine type of interest.

Example with multiple vaccine types. Assume that VT¼ f1, 2g,
NVT ¼ f3g, and there is interaction only in acquisition (figure 1a),

and consider the type-specific cross-hazard ratio (2.3) as a

predictor for replacement by type 3. As the denominator of

expression (2.3) now equals one, the predictor reduces to

HR12,3 ¼
I1j{1,2,12}q1!13 þ I2j{1,2,12}q2!23 þ I12j{1,2,12}q12!123

q;!3
, (2:4)

where I1jf1,2,12g ¼ I1/C, I2jf1,2,12g ¼ I2/C, I12jf1,2,12g ¼ I12/C, and

C ¼ I1 þ I2 þ I12.
(ii) Type-specific odds ratio as a predictor of type-specific
replacement

The type-specific cross-hazard ratio HRVT,i as given in (2.3)

requires estimation of type-specific acquisition and clearance

hazards from longitudinal data. However, collecting such data

may be cumbersome and expensive due to repeated observations

of the infection states in the same study subjects. It would thus be

advantageous if the cross-hazard ratio HRVT,i could be approxi-

mated using steady-state cross-sectional (i.e. prevalence) data



Table 1. Four disjoint collections of infection states constructed for the definition of the type-specific cross-hazard ratio (2.3). Here, VT denotes the set of
vaccine types.

AVT ¼ {X : jX > VTj . 0, i � X}

states with vaccine type(s), without type i

A0 ¼ {X : jX > VTj ¼ 0, i � X}

states without vaccine type(s), without type i

AVT,i ¼ {X : jX > VTj . 0, i [ X}

states with vaccine type(s), with type i

Ai ¼ {X : jX > VTj ¼ 0, i [ X}

states without vaccine type(s), with type i
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only, in a similar way as in the two-type setting using the

pairwise odds ratio (2.1).

In a setting with more than two types, the pairwise odds

ratio (2.1) can be generalized to the following type-specific

odds ratio:

ORVT,i ¼
P

X[AVT,i
IXP

X[AVT
IX

 !, P
X[Ai

IXP
X[A0

IX

 !
, (2:5)

which is the odds of infection with non-vaccine type i in the pres-

ence versus absence of coinfection with any of the vaccine types.

The approximation of HRVT,i by ORVT,i is exact given detailed

balance, i.e. when IXqX!Y ¼ IYqY!X for any pair of states X, Y
(see electronic supplementary material, section A for the

proof). In reality, whether this property holds depends on the

underlying structure of type interactions.

Example continued. In the previous example where VT ¼ f1, 2g,
NVT ¼ f3g (figure 1a), the type-specific odds ratio (2.5) becomes

OR12,3 ¼
I13 þ I23 þ I123

I1 þ I2 þ I12

� ��
I3

I;

� �
: (2:6)
(iii) Overall odds and cross-hazard ratios as predictors of overall
type replacement

Pooling across pairwise odds ratios has been used to summarize

interactions of all non-vaccine types with each vaccine type sep-

arately [7,25]. However, this approach lacks a clear interpretation

for predicting type replacement. Here, we propose the following

overall odds ratio for predicting overall replacement:

OR ¼
Y

i[NVT

ORVT,i: (2:7)

The use of a pooled odds ratio for prediction can be justified by con-

sidering the ratio of the odds of overall non-vaccine-type infection in

the pre- versus post-vaccination steady states. This odds ratio is

essentially the true impact of vaccination with value less than one

characterizing overall replacement. Assuming mutual indepen-

dence between all non-vaccine types, this true odds ratio of overall

infection can be approximated by the product of true odds ratios

of type-specific infections (see electronic supplementary material,

section B for the derivation). As each true type-specific odds ratio

can be predicted by the corresponding ORVT,i, we envision their

product (2.7) to be a predictor for overall replacement.

Owing to the relation between HRVT,i and ORVT,i, we also

propose the following overall cross-hazard ratio as a predictor

for overall replacement:

HR ¼
Y

i[NVT

HRVT,i: (2:8)
(e) Simulated structures of type interactions
Thus far, we have made no assumptions about the structure of

type interactions, i.e. no constraints on kXi and hXi in defining

qX!X<{i} ¼ kXi � q;!i and qX<{i}!X ¼ hXi � q;!i. To investigate the

performance of the proposed predictors and their robustness
against different interaction structures, we considered the follow-

ing three alternative structures in simulations (see electronic

supplementary material, section C for their exact descriptions).

The first interaction structure is pairwise-symmetric and

multiplicative so that each (co)infecting type contributes multipli-

catively to the acquisition hazard of an incoming type, i.e.

qX!X<{i} ¼ (
Q

j[X k ji) � q;!i, or to the clearance hazard of a coin-

fecting type, i.e. qX<{i}!X ¼ (
Q

j[X h ji) � qi!;. Here kji and hji

describe how (co)infection with type j modifies acquisition and

clearance of type i, respectively. Values of kji and 1/hji equal to,

less and larger than one correspond to independent, competitive

and synergistic interactions, respectively. In other words, compe-

tition decreases the acquisition rate, whereas synergy decreases

the clearance rate. Furthermore, pairs of interaction parameters

are assumed to be identical, i.e. kij ¼ kji and hij ¼ hji, resulting in

symmetric interaction matrices. With n types, the numbers of par-

ameters governing the interactions in acquisition and clearance are

both reduced from n(2n21 2 1) to n(n 2 1)/2 (figure 1b). This pair-

wise-symmetric multiplicative structure preserves the detailed

balance property (see electronic supplementary material, section

D for the proof), so that HRVT,i and ORVT,i are equivalent.

Departure from the above structure may disrupt this equival-

ence of HRVT,i and ORVT,i. Two alternative structures are the

pairwise-asymmetric multiplicative and the groupwise-symmetric

multiplicative structure. The pairwise-asymmetric multiplicative

structure relaxes the symmetry constraint kji ¼ kij. The groupwise-

symmetric multiplicative structure assumes the multiplicativity to

act per groups of types instead of individual types. For example,

in a four-type system with groups A ¼ f1, 2g, B ¼ f3, 4g, and inter-

action parameters kA, kB (within groups), kAB¼ kBA (between

groups), the hazards of acquiring type 1 from state 23 and 234 are

both kAkBAq;!1.

( f ) Performance analysis
To evaluate the performance of the proposed predictors, we simu-

lated the effect of vaccination using a deterministic SIS transmission

model (see electronic supplementary material, section C for details

of the model). We investigated how the performance of the predic-

tors depends on the numbers of vaccine and non-vaccine types and

their interaction structure. For each setting, different sets of model

parameters, including interaction parameters and type-specific

transmissibility, were randomly generated.

The interaction parameters of the two symmetric structures

were uniformly generated on a log scale in the interval (1/3, 3), ran-

ging from competitive to synergistic interactions. To examine the

effect of increasing asymmetry under the pairwise-asymmetric

structure, asymmetric interaction parameters (k0ij, k0ji) were obtained

by either perturbing the generated parameters of the pairwise-

symmetric structure (kij), or by generating new k0ij, k0ji independently

of each other. Perturbation of the pairwise-symmetric para-

meters was done by adding deviations on a log scale, i.e.

log (k0ij) ¼ log (kij) þ e/2 and log (k0ji) ¼ log (kij) 2 e/2. In effect, ee

is the ratio between a pair of reverse interaction parameters, k0ij/k0ji
with increasing e inducing more asymmetry. When generating k0ij,-
k0ji independently, there was no constraint on their ratio.

For each parameter set, prediction of replacement was made at

the simulated pre-vaccination steady state and compared to the
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‘true’ outcome (replacement/no replacement) at the post-

vaccination steady state. For each setting, the performance of

each predictor was defined as the proportion of correct predictions

among all generated parameter sets (see electronic supplementary

material, section E for the exact simulation procedure).
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3. Simulation results
(a) Performance under the pairwise-symmetric

multiplicative structure
As the pairwise-symmetric multiplicative structure obeys

detailed balance, the hazard-based and odds-based predic-

tors are equivalent (HRVT,i ¼ ORVT,i and HR ¼ OR) and

indeed performed identically (row 1 of figure 2).

With one non-vaccine type, the predictors (HRVT,i ¼

ORVT,i ¼HR ¼ OR) were always correct, even when some

vaccine types would interact synergistically while others

would compete with the non-vaccine type. Thus, the predictors

correctly captured the balance between the opposing forces of

competition and synergy.

With multiple non-vaccine types, prediction of both type-

specific and overall replacement became more difficult due to

interactions between the non-vaccine types. For example, in a

system with VT ¼ f1g, NVT ¼ f2, 3g, if k13 ¼ 1, k12 . 1 and

k23 , 1 (figure 1b), vaccination indirectly triggered replace-

ment by type 3 by decreasing type-2 infection and thus

increasing type-3 infection. Rewriting expression (2.3) shows

that this indirect effect is indicated by the second factor in

HR1,3 ¼ k13 �
"

(I; þ I2k12k23) � (I; þ I2)

(I; þ I2k12) � (I; þ I2k23)

#
: (3:1)

In particular, the expression in the brackets is less than one

when either k12 or k23 (but not both) is less than one (see elec-

tronic supplementary material, section F for the derivation of

(3.1)). However, if the direct and indirect effects acted in oppo-

site directions, the predictors did not always adequately

capture their combined effect (see electronic supplementary

material, section G for an example). Indeed, with multiple

non-vaccine types, the performance decreased as the number

of non-vaccine types increased (follow each subfigure in

figure 2 across the d diagonals). Nonetheless, the performance

of all predictors remained well above 94%. In addition, when

the overall predictor failed with a value close to one, the overall

prevalence of non-vaccine-type infection usually changed only

modestly (see electronic supplementary material, section G for

an example).
(b) Performance under alternative interaction structures
Under the alternative interaction structures, the hazard-based

and odds-based predictors were no longer equivalent but still

performed comparably, except when the asymmetry was

strong (figure 2). With one non-vaccine type, the hazard-

based predictions remained almost perfect, unlike the

odds-based ones. Under the groupwise-symmetric structure,

the predictive performance decreased more rapidly as the

number of non-vaccine types increased, as compared to the

pairwise-symmetric structure. However, it was still above

80% in simulations with up to seven types (row 2 of figure 2).

Under the pairwise-asymmetric structure, the perform-

ance of both sets of predictors decreased with increasing
asymmetry (row 3–5 of figure 2). Nevertheless, the perform-

ance of the hazard-based predictors remained above 85%

even when pairs of kij and kji were generated independently,

inducing strong asymmetry. The decreasing performance was

more vivid for the odds-based predictors, which went down

to 70% in the corresponding settings. The superiority of the

hazard-based predictors can be illustrated in the following

example of two types. Suppose that the vaccine type com-

petes with the non-vaccine type (k12 , 1) while the reverse

interaction is synergistic (k21 . 1). Then HR1,2 ¼ k12 , 1 pre-

dicts replacement correctly, whereas the symmetrically

defined OR1,2 may not because it averages over k12 and k21.

The above results were based on simulations in which

interactions occurred only in acquisition. Additional simu-

lations that allowed interactions in both acquisition and

clearance showed almost identical performance of both the

hazard-based and odds-based predictors (compare figure 2

to electronic supplementary material, section H).
4. Discussion
This paper aims to develop methodology for predicting type

replacement for pathogens with many, potentially interacting

types using pre-vaccination epidemiological data. We have

proposed a predictor of replacement by individual non-vaccine

types (i.e. increase in type-specific prevalence) and another

predictor of the increase in the overall non-vaccine-type

prevalence. Both predictors are initially defined in terms of

hazards of acquiring and clearing the non-vaccine types and

thus, in principle, require estimation from longitudinal data.

In addition, we have derived alternative predictors that can

be readily estimated from cross-sectional prevalence data as

odds ratios. All proposed predictors demonstrated satisfactory

performance (mostly above 85%) across a range of simulated

structures of type interactions, except when the interactions

were strongly asymmetric.

The predictor of replacement by a given non-vaccine type

is constructed as a weighted cross-hazard ratio of acquiring

versus clearing infection with the non-vaccine type in ques-

tion, comparing those infected and uninfected with any of

the vaccine types. The odds-based alternative is defined as

the odds of infection with that non-vaccine type in presence

versus absence of infection with any of the vaccine types.

We note the similarity between type interaction and vac-

cine efficacy of multi-valent vaccines as both are defined in

terms of cross ratios of weighted hazards in a multi-type set-

ting. In both cases, it proves useful to weigh hazards with the

steady-state prevalence, conditioned on appropriate risk sets.

In defining estimators for vaccine efficacy against one or

more vaccine types, the risk sets are those from which acqui-

sitions of the vaccine types may occur [29]. Likewise, in the

current paper, the risk sets are those from which acquisitions

(or clearances) of the non-vaccine type may occur (see the

type-specific cross-hazard ratio (2.3)).

The predictors of overall replacement take form as products

of either the hazard-based or the odds-based type-specific pre-

dictors. In effect, the overall predictors are obtained by pooling

the type-specific predictors on a logarithmic scale. In various

studies that have used pairwise odds ratios to evaluate HPV-

type interactions, pooling has been performed across the pool

of non-vaccine types for each vaccine type separately

[7,25,26]. These pooled odds ratios have been interpreted as
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Figure 2. Performance (proportion of correct predictions among all generated parameter sets) of predictors HRVT,i, HR, ORVT,i, and OR under alternative multiplicative
structures for interaction in acquisition (and no interaction in clearance). Row 1: pairwise-symmetric. Row 2: groupwise-symmetric. Rows 3 – 5: increasing pairwise-
asymmetric with increasing values of e for more asymmetry between pairs of reciprocal interaction parameters. Performance of HRVT,i and ORVT,i were obtained by
averaging over the performance of each non-vaccine type i.

royalsocietypublishing.org/journal/rstb
Phil.Trans.R.Soc.B

374:20180298

6



royalsocietypublishing.org/journal/rstb
Phil.Trans.R.Soc.B

374:20180298

7
the affinity of a given vaccine type to be involved in coinfection

with any of the non-vaccine types, but their relevance for pre-

dicting type replacement has remained elusive. Our results

substantiate the predictive value of pooled odds ratios regard-

ing overall replacement, but suggest that pooling is better

performed on the entire set of vaccine types, instead of for

each vaccine type separately. Furthermore, the pairwise odds

ratios have been compared to the pooled ones to identify

likely candidates for type replacement [7,25,26]. Accordingly,

the potential for replacement by a given non-vaccine type has

been assessed separately for each vaccine type, while our

type-specific predictors capture interactions with all vaccine

types in a comprehensive way.

Our simulation study revealed how the applicability of

the new predictors depends on the underlying structure

of type interactions. The predictors performed best under

the pairwise-symmetric multiplicative structure, in which

the hazard-based and odds-based predictors are equivalent.

The predictors were mostly able to capture the opposing

forces of competition and synergy as well as the interplay

between interactions in acquisition and clearance. Under

other simulated structures, the hazard-based predictors still

performed well, while the odds-based predictors performed

fairly up to a reasonable degree of asymmetry. As a rule of

thumb, symmetric interactions facilitate prediction of type

replacement, while complex and heterogeneous interactions

may necessitate more sophisticated predictors that capture

details and directions of interactions. For HPV, little is

known about the structure of interactions between genotypes

as the very existence of interaction is already difficult to deter-

mine. For instance, any imbalance between type-specific

prevalence may mask possible asymmetric interactions,

and although pooling of multiple types may increase

the power of detecting interaction, it may also obscure

type-specific patterns. Nevertheless, our simulation study

demonstrated that the new predictors are robust against

various interaction structures.

We cannot ensure good performance of the proposed pre-

dictors under mechanisms of interactions other than the ones

we considered. For instance, if the pathogen types interact

through natural cross-immunity that is long-lasting, infec-

tions with different types may be positively associated

(i.e. as given by odds ratios greater than one) while there is

a risk of type replacement [30,31]. This shortcoming is

inherent to the difficulty to distinguish between susceptible

individuals and those who have acquired natural immunity,

as is the case for HPV infection which induces only a weak

antibody response [32]. Nevertheless, if immunity is confined

to be type-specific, the predictors work equally well in a two-

type model [21], and we envision the proposed predictors

to remain applicable also in a multi-type setting. Another

mechanism that we did not consider is competition for

transmissibility, e.g. through reduction of viral load during

coinfection [13–15]. Although competition for transmissibil-

ity is not captured by the proposed predictors, it is likely

correlated with competition in clearance, as HPV persistence

is also determined by viral load [16]. Hence, the predic-

tors may retain good predictive ability even when not all

mechanisms of interactions are captured.

Despite the theoretical appeal of the proposed predictors

and their promising performance in simulations, some chal-

lenges still need to be addressed. First, more extensive
simulations are needed to investigate how well the predictors

perform with high numbers of pathogen types. Here, simu-

lations were performed with at most seven types, while HPV

consists of up to 15 high-risk types. Second, our method

assumes elimination of all vaccine-targeted types, although

some vaccine types or cross-protective types may persist,

especially when vaccination coverage is low [4,5]. If persistence

of targeted types would mostly prevent or limit the extent of

type replacement, our method may still provide good predic-

tions as a worst-case scenario. However, formal analysis

would be required to sharpen this intuition. Third, it remains

to be investigated whether the hazard-based and odds-based

predictors can be accurately estimated from limited data. In

particular, although the hazard-based predictors performed

better in simulations, it is not straightforward which ones are

more suitable for the empirical setting. In general, hazard-

based estimates are more robust against different sources of

bias (e.g. due to population entry and unobserved heterogen-

eity) [31] but require a larger sample size than estimation of

type-specific point prevalence. In addition, statistical methods

need to be developed to deal with possible confounding due to

common risk factors, which were neglected in our analysis.

In particular, multivariate statistical methods (e.g. generalized

estimating equations and random effect models) may be

adapted to adjust for observed heterogeneity or control

for unobserved heterogeneity when estimating the new

predictors, which are essentially odds and hazard ratios.

For HPV, most epidemiological studies have concluded

a low risk of type replacement based on a lack of systema-

tic patterns of negative associations in the co-occurrence of

vaccine and non-vaccine types [12,25]. The methodology

presented in this paper may help to translate the obser-

ved patterns into explicit prediction of the overall risk of

replacement. Additionally, application of our type-specific

predictors could discover hitherto hidden potential for

type replacement, as this potential is not only determined

by direct interactions with the vaccine types but also

shaped though indirect interactions with other non-vaccine

types. As the circulation of vaccine types will be further

reduced in the near future, more data will become avail-

able to validate any predictions about the long-term

impact of HPV vaccination. The proposed methodology

could also be used to give better insights into the under-

pinnings of type competition in Streptococcus pneumoniae,

a pathogen for which replacement has been widely

observed after the introduction of the pneumococcal

conjugate vaccination [33,34].

To conclude, we developed novel methodology for pre-

dicting type replacement in a setting of many interacting

types. We did so by relating available epidemiological data

to the underlying mechanisms of how pathogen types may

interact. The proposed predictors may help to better antici-

pate and understand the impact of vaccination against

pathogens with many coexisting (sub)types.
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