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Cottontail rabbit papillomavirus (CRPV) was the first DNA virus shown to

be tumorigenic. The virus has since been renamed and is officially known

as Sylvilagus floridanus papillomavirus 1 (SfPV1). Since its inception as a

surrogate preclinical model for high-risk human papillomavirus (HPV)

infections, the SfPV1/rabbit model has been widely used to study viral–

host interactions and has played a pivotal role in the successful development

of three prophylactic virus-like particle vaccines. In this review, we will focus

on the use of the model to gain a better understanding of viral pathogenesis,

gene function and host immune responses to viral infections. We will discuss

the application of the model in HPV-associated vaccine testing, in thera-

peutic vaccine development (using our novel HLA-A2.1 transgenic

rabbits) and in the development and validation of novel anti-viral and

anti-tumour compounds. Our goal is to demonstrate the role the SfPV1/

rabbit model has played, and continues to play, in helping to unravel

the intricacies of papillomavirus infections and to develop tools to thwart

the disease.

This article is part of the theme issue ‘Silent cancer agents: multi-disciplinary

modelling of human DNA oncoviruses’.
1. The cottontail rabbit papillomavirus/rabbit model system: a
historical perspective

Cottontail rabbits (Sylvilagus floridanus) of the midwest United States often

manifest large warty structures on cutaneous skin sites [1] (figure 1). In

1933, Shope & Hurst [2] reported the isolation of an infectious agent from

these structures. This agent retained its infectivity upon filtration and a

virus responsible for the pathology was soon identified [3]. The virus was

first called Shope papillomavirus (SPV) but later became known as the cot-

tontail rabbit papillomavirus (CRPV) [4], and is now known as Sylvilagus
floridanus papillomavirus 1 (SfPV1). Early studies focused on the pro-

gression of lesions to carcinomas and demonstrated that the virus could

also infect domestic rabbits (Oryctolagus cuniculus) [5]. The latter discovery

opened the door for a small animal model to investigate papillomavirus

pathology. Among important findings in the early years were the following:

(i) wild rabbit lesions were far more viral DNA and virus particle-rich than

domestic rabbit lesions [6] (figure 1); (ii) naked viral DNA is infectious [7],

including plasmid DNA cloned between the early and late regions of the

viral genome [8]; (iii) tumours in domestic rabbits were more prone to can-

cers and a subset of these metastasized to the lung and other organs [7–10];

(iv) viral DNA copy number in benign lesions was correspondingly higher

in wild rabbit lesions (figure 1) [9,10]. DNA in cancers, however, was

hard to detect in both species, although viral transcripts could be found

[11,12]; (v) sera from both SfPV1-infected wild and domestic rabbits could
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Figure 1. Discovery of Sylvalagus floridanus papillomavirus 1 (SfPV1) and the development of the SfPV1/domestic rabbit model. Wild cottontail rabbits with long
horny growths around the ears and chin and on the torso are common in the midwest (a). The growths are actually warts induced by papillomavirus infections. The
virus isolated from these warts is infectious and induces tumour growth in the wild rabbit (b, arrows) and domestic New Zealand white (NZW) rabbits (c). Most
tumours on domestic rabbits progress to cancer within a year or more of infection (c). Viral capsid protein and viral DNA are detected in infected tissues of cottontail
rabbit lesions (d,e) and NZW domestic rabbit ( f,g) by immunohistochemistry (IHC) and by in situ hybridization (ISH), respectively.
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neutralize the virus in vitro and in vivo [6,13,14]; (vi) the

genomic structure was determined. Strongest homologies

were found with HPV1 [15,16]; (vii) viral transcripts have

been mapped and the cap sites have been determined [17].

The virus encodes 10 genes, two of which (LE6, the corre-

sponding protein is translated from the first open reading

frame starting at 154 bp, with 272aa in length and E7)

code for two essential transforming proteins [18,19], two

of which are capsid proteins (L1 and L2) [14,20], two of

which are involved in the control of replication and gene

regulation (E1 and E2) [21–26] and two others, E9^E2C

(renamed E8^E2) which has no effect on growth of the

lesions but acts as a transcriptional repressor in mammalian

cells [26] (https://pave.niaid.nih.gov/) and E4 which plays

a role in DNA amplification and L1 expression [27]

(figure 2); (viii) unlike LE6 and E7 that are essential for

SfPV1 infection, two additional oncogenes SE6, the corre-

sponding protein is translated from the first open reading

frame starting at 445 bp, with 175aa in length and E8
(renamed E10) (https://pave.niaid.nih.gov/) both have an

effect on tumour growth but not on viral production

[31–33]; (ix) early genes E1 and E2 are also absolutely

required for infection [24,28,34] (figure 2); (x) E6 and E7

are expressed in malignant lesions and have been posited

to be targets for therapeutic interventions [17,31]; (xi) both

episomal and integrated DNAs were found in SfPV1-

induced carcinomas, and DNA was highly methylated in

malignancies in domestic rabbits [32]; (xii) both progressive

and regressive variants of the virus exist [33,35,36]; and

(xiii) cells infected with SfPV1 were found to co-localize

with hair follicle stem cells [37].
2. Investigation of virus – host interactions using
the Sylvilagus floridanus papillomavirus 1
/rabbit model

(a) Sylvilagus floridanus papillomavirus 1 pathogenesis
Much has been learned about viral pathogenesis using the

SfPV1 model. Studies have been greatly facilitated by the

fact that viral DNA is capable of producing infections

[8,38,39]. Viral infections are initiated in the basal cells and

thus must gain access to these cells via abrasions in the

skin. Wounding has thus been recognized as essential for

papillomavirus infections. Initially, our laboratory used a

combination of turpentine and acetone to induce hyperplasti-

city in the skin and then worked the DNA (in the form of

plasmid) or virus into the skin with a needle [8]. We sub-

sequently investigated simple wounding without chemicals

and developed a protocol that is far more benign for both

technician and animal [40]. Using this protocol, we have

achieved infectivity efficiencies orders of magnitude higher

and results that are highly reproducible from experiment to

experiment [41]. Other laboratories have employed a gene-

gun to induce infections from DNA [35,42,43]. In these

laboratories, the viral DNA—excised, re-ligated or in plasmid

form—was coated onto the ‘bullets’ for delivery into the skin

[27]. In our hands, this technique was less efficient and less

reproducible; however, it has the advantage of delivering

DNA that contains no extraneous intervening sequences [31].

Many studies have been conducted using plasmid DNA

and much important information has been gleaned. A key

feature of the system is that mutations can be easily inserted
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Figure 2. The SfPV1 (CRPV) genome. Genes found to be essential to produce
papillomas include LE6, E7, E1 and E2 [19]. Two late genes L1 and L2 are
required for the viral life cycle [14]. Other genes including E4, SE6, E8
(renamed E10) [16,27] and E9ˆE2C (renamed E8ˆE2) [22] (https://pave.
niaid.nih.gov/) are not essential for SfPV1 infection and tumour growth
in vivo [28]. E5 is not considered a functional gene, although it showed
transformation activity in vitro [29,30].
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into the viral genome and functionally tested in vivo. Using

this strategy, the E4 gene was found to be essential for the

completion of the productive cycle, although not essential

for infection [27]. The E5 gene start codon was mutated and

found to be dispensable for infection [15,16]. The E8 gene

was reported to be essential by one research group [44] and

dispensable by another [16]; differences in methodology

probably played a significant role in these outcomes [41].

SiRNA-expressing cassettes were engineered into the viral

genome to monitor infectious outcome in situ [45].

Both progressive and regressive variants of SfPV1 are

extant. Genetic mutations were used to determine that a

15 bp region at the C terminus of the E6 gene was responsible

for this difference [36]. This region contains a PDZ binding

domain that is important for the functioning of E6 [46]. Inter-

estingly, a single mutation in wild-type (progressive) E6 that

corresponds to one of the changes in the regressive E6 results

in different outcomes in inbred and outbred laboratory rab-

bits [47]. Thus, genetic makeup of both host and virus play

a crucial role in the outcome of infection.

Multiple SfPV1 mutants have been generated in our labora-

tory including many with mutations in the upstream

regulation region [28]. All mutants have been tested in vivo to

yield interesting insights into the function and plasticity of the

SfPV1 genome and its interaction with the host. A novel

‘tandem repeat’ strategy has been established to enhance

tumour growth in cases where mutations have created

genomes that resulted in diminished tumour growth. The

mutant genomes that were cloned with an additional fragment

of SfPV1 demonstrated improved tumour growth when

compared with those without this tandem repeat [28,48].

Papillomaviruses have developed multiple strategies to

escape host immune surveillance. One is the use of rare codons

[49–51]. To explore whether synonymous codon modifications
in the SfPV1 genome would impact disease outcome in rabbits,

we engineered a panel of mutants with synonymous codon

changes in two oncogenes (E6 and E7) to make them more mam-

malian-like [52]. This strategy has been used to increase L1

expression of different human papillomavirus (HPV) types

in vitro [53,54]. We detected dramatic phenotypic changes as a

result of the codon optimizations [52]. Intriguingly, codon-

modified E6 synergized with codon-modified E7 and induced

early cancer development in domestic rabbits [52]. Some of

these constructs, by contrast, showed higher regression rates

than those of the wild-type [55]. These findings suggest that

synonymous codon modifications can alter the immunogenicity

of the virus and lead to either rapid progression or eventual

regression depending upon the changes made. Our unpublished

observations (N. M. Cladel 2008) include a cancer, which spon-

taneously regressed. Codon modifications of papillomavirus

genes hold promise for future studies of host immune response,

cancer development and viral gene functions. Synonymous

mutations were once considered to be of little or no functional

importance until recent studies demonstrated the significant

function or phenotypical changes in difference model systems

[56–59]. The findings reported here for SfPV1 contribute to the

growing body of evidence that, in fact, synonymous changes

can result in profound changes in gene expression.

(b) Host immune response to Sylvilagus floridanus
papillomavirus 1 infections

Host immunity, including innate and adaptive immune

responses, contributes to disease control as well as progression

when circumvented [35,60–65]. A particular major histocom-

patibility complex class II (MHCII) genotype has been linked

to the regressive phenotype for SfPV1 infections [66]. Further

studies demonstrated that the rabbit MHCII (DRA–DQA)

haplotype plays a role in tumour regression [35]. An inbred

rabbit line (EIII/JC) mounts a vigorous response to SfPV1

infections and animals experience a regression rate of about

10%. By contrast, the outbred rabbits have a very low

regression rate (about 1%) [47]. The human leukocyte antigens

(HLA)-A2.1 transgenic rabbits also demonstrated higher

immunogenicity when compared with outbred domestic

rabbits [67]. Host T and B-cell-mediated immune responses

are important factors in SfPV1-associated infections and dis-

eases [60,64,68]. Tumour regression was correlated with

infiltration of CD4 and CD8T cells that target early proteins

E2 and E6 [60,69]. Taking advantage of these findings, prophy-

lactic and therapeutic vaccines composed of DNA, peptides or

protein were designed to target early genes as amplified below

[31,70–72]. When host immune responses were suppressed

with cyclosporine A, the regressive strain became persistent,

supporting the observations that CD4 and CD8T cells play a

critical role in controlling disease progression [47,69].
3. Prophylactic and therapeutic vaccine
development using the Sylvilagus floridanus
papillomavirus 1/rabbit model

(a) Prophylactic vaccines using the early and late genes
as targets

A study in domestic rabbits using tumour suspensions to

immunize animals demonstrated that tumour cells contained
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Figure 3. Therapeutic vaccination with HLA-A2.1 restricted epitope DNA vaccines targeting early gene E1. Control (HLA-A2.1-negative) and HLA-A2.1 transgenic rabbits
(HLA-A2.1-positive) rabbits are both positive for rabbit MHCI as shown by immunohistochemistry on the left. Animals infected with SfPV1 were divided into four groups
and vaccinated with two different E1 epitope DNA vaccines (E1/303 – 311 and E1/161 – 169) at week 4 post-infection [95]. Two booster immunizations were conducted
at three-week intervals (arrows). Significantly smaller tumours were found in the transgenic rabbit group immunized with epitope E1/303 – 311 when compared with
the other three groups (by geometric mean diameter (GMD) in mm, p , 0.05, unpaired Student t-test) indicating the immune response was effective and specific.
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an antigen or antigens that could stimulate immune

responses in the host [6]. Furthermore, sera harvested from

these immunized animals neutralized the virions both

in vitro and in vivo [73,74]. These studies demonstrated that

the host could generate anti- SfPV1 antibodies and eventually

led to the finding that immunization with L1 virus-like par-

ticles (VLPs) of rabbits could yield long-lasting protection

from infection [75–77]. This finding, in turn, led to the devel-

opment of the current L1 VLP vaccines, which are highly

effective and which are projected to markedly reduce the inci-

dence of HPV infection and subsequent cervical cancer in

recipients [78]. In addition to stimulating strong humoral

immune response, L1 protein was also found to elicit broad

cellular immune responses in humans. The cellular immune

responses resulting from the L1 vaccination have been further

demonstrated in the rabbit model [79,80]. The L2 protein is

far less immunogenic than the L1 protein, but has the advan-

tage of producing antibodies that are cross-protective across a

number of viral species [81,82]. Recent developments in pseu-

dovirus and quasi-virus production have paved the way for

the testing of prophylactic vaccines against multiple HPV

types in the SfPV1/rabbit model [83,84]. We produced infectious

hybrid viruses by encapsidating the SfPV1 genome into capsids

of several oncogenic HPVs (HPV16, 18, 31, 45 and 58). All of

these hybrid viruses were infectious in rabbits as determined

by the generation of tumours [84,85].

Protective immunity by early gene products has been

tested in the rabbit model as well as in other animal

models for more than a decade. Owing to the poor immuno-

genicity of these proteins, low or undetectable antibody levels

were found in most immunized animals [86,87]. By contrast,

cell-mediated immune responses were found to play a critical

role in the host protection against viral infections [63,86–89].

Interestingly, the method of delivering the antigen also plays

an important role in the outcome [90–92]. Antigens can be

delivered as protein products, peptides or as DNA and the

outcomes can be different depending upon the mode of deliv-

ery. For example, DNA delivered by gene-gun promoted

strong cell-mediated immune response while intramuscular

injection of DNA offered no protection, even though
some cell-mediated immune responses were generated in the

immunized animals [87].

(b) Therapeutic vaccines using the early and late genes
as targets

Although prophylactic vaccines provide excellent protection

against new infections, they offer no protection against estab-

lished infections. Therefore, a vaccine that could resolve

active infections would be highly desirable. The SfPV1

rabbit model has been used to investigate effective targets

for therapeutic purposes [17,72,93,94]. Because early genes

promote cell-mediated immune responses in the host and

hold promise to clear the infection, early proteins (E1, E2,

E6 and E7) have been tested for their therapeutic potential

in different formats. These include DNA vaccines delivered

by gene-gun or by viral vector [31,95] (figure 3). E1 and E6
proteins have proved to be more effective for eliminating

established tumours than E7 and E2, while the combination

of the four early genes yielded the best results [70,89,96].

Recent promising studies used long peptides of E6 and E7

proteins as immunogens [72,94]. This immunization strategy

showed a strong therapeutic effect in the SfPV1/rabbit model

as well as in human clinical trials [94,97–99].
4. The Sylvilagus floridanus papillomavirus 1/
rabbit model for the testing of anti-viral
compounds

The SfPV1/rabbit model is valued for its reproducibility and

has been widely used for many years to test anti-tumour

compounds [100,101]. Topical cidofovir treatment has been

shown to be effective in resolving the tumours, but the recur-

rence rate is high [101] (figure 4). The effect can be improved

by combining cidofovir treatment with DNA vaccination by

gene-gun [102]. Our laboratory has tested many other com-

pounds over the last several decades. Unfortunately, the

efficacy was not optimal in most studies [55,103]. New
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Figure 4. Therapeutic treatment with cidofovir and vehicle (cremophor) at weeks 2 – 4 post-viral infections [101]. Two groups of animals were infected with wild-
type (wt.) SfPV1 (induces large tumours) and SfPV1E8ko (induce small and persistent tumours) at two back sites, respectively. Two tumours induced by either wt.
SfPV1or SfPV1E8ko on the left (L) side of the rabbits were treated with either 1.0% cidofovir formulated in cremophor (a) or cremophor (b) from week 2 to week 4
post-infection. The right (R) two sites were not treated and served as controls for the treated sites on the same animal. The animals were monitored for tumour
growth weekly and pictures were recorded. Cidofovir-treated sites were free of tumours induced by both wt. SfPV1 and SfPV1E8ko at week 7 post-infection, while no
reduction in tumours was found on the vehicle-treated sites (p , 0.05, unpaired Student t-test).
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strategies involving changes in methods of delivery, formu-

lations and combination treatments hold promise in the

coming years [101–105]. Our ultimate goal is to find ways

to eradicate papillomavirus-associated diseases and cancers;

it is our expectation that the SfPV1/rabbit model will

continue to prove very useful in this quest.
5. Limitations and future directions
The SfPV1/rabbit papillomavirus model induces infection

with long-term persistence and malignant progression of

lesions both consistently and reproducibly. Eighty years of

studies with this unique model have proved it to be one of

the best surrogate models for studying high-risk HPV infec-

tion [55,100]. Over the past several decades, we and others

have generated a large panel of mutants to aid in the study

of the pathogenesis of papillomavirus [55]. These mutant

constructs will allow us to dissect the function of different
genes and their role in the pathogenesis of papillomavirus-

associated skin infections. However, SfPV1 only infects

cutaneous sites and therefore is not the ideal model to

mimic anogenital infections and diseases. For future direc-

tions, we look forward to more comparative studies with

human samples. These additional studies will help to

uncover mechanisms that could ultimately lead to a novel

treatment for HPV-associated diseases and cancers.
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