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Animal groups frequently move in a highly organized manner,

as represented by flocks of birds and schools of fish. Despite

being an everyday occurrence, we do not fully understand how

this works. In particular, what social interactions between

animals give rise to the flock structures we observe? This

question is often investigated using self-propelled particle

models where particles represent the individual animals.

These models differ in the social interactions used, individual

particle properties, and various technical assumptions. One

particular technical assumption relates to whether all particles

update their headings and positions at exactly the same time

(synchronous update) or not (asynchronous update). Here, we

investigate the causal effects of this assumption in an attraction-

only model and find that it has a dramatic impact. Polarized

groups do not form when synchronous update is used, but are

produced with asynchronous update, and this phenomenon is

robust with respect to variation in particle displacements and

inclusion of noise. Given that many important models have

been implemented with synchronous update only, we speculate

that our understanding of the social interactions on which they

are based may be incomplete. Perhaps previously unobserved

phenomena will emerge if other potentially more realistic

update schemes are used.
1. Introduction
Moving animal groups such as schools of fish and flocks of

birds often move in a highly coordinated fashion. How do such

organized groups emerge despite the fact that each member of the
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group only experiences its immediate surroundings and often no leader can be identified? This question is

typically investigated using self-propelled particle (SPP) models. In a typical SPP model, a number of

particles move in the plane, or space, and update their headings at each time step according to a

specified local interaction rule operating on the position, and/or the heading, of nearby particles. An

example of a common local interaction rule is one where particles are repelled from nearby particles

(repulsion), take the average heading of particles at intermediate distances (orientation), and are attracted

to particles which are further away (attraction) [1,2]. A large number of models implementing various

subsets of attraction, repulsion and alignment have been proposed and analysed in recent years [3,4].

SPP models have proven successful in explaining how collective motion may emerge from repeated

local interactions between individuals in general settings and in specific experimental and real-world

situations [3,4]. However, the use of SPP models has also attracted some criticism, both as models of

real-world phenomena and in relation to how they are constructed [5–7]. Over the past decade,

models have been adapted in various ways to resolve some of the issues. For example, models have

included non-constant speeds [5], more realistic neighbour detection [8–10], more realistic visual

system [11], leaders and shepherds [12–14], explicit environmental and social coupling [15],

alignment-free interactions [16–20] and much more.

Although other specific concerns are outlined in [5–7], most that have been addressed focus on

improving the models by making some aspect of the individual particles or their interactions more

realistic. What about more low-level assumptions and choices? For example, regardless of how

sophisticated the individuals and the social interactions between them are, all SPP models must include

instructions for how to update particle headings and positions. One option is to update all particle

positions and headings at exactly the same time (synchronous update), or use some type of

asynchronous update scheme where particles may update their headings and positions at different times.

This issue has been thoroughly investigated in related fields and shown to be important. For example, in

robotics [21–24], cellular automata [25–29], coupled map lattices [30] and Ising spin systems [31]. In

particular, direct comparison of asynchronous and synchronous versions of particular cellular automata

show that asynchronous update tends to increase the stability of the automaton (see [28] for an overview).

Direct comparisons of this type are largely absent from the SPP model literature, and in most models,

it is assumed that all particles calculate and update their headings synchronously. This assumption has

been questioned by several authors and some have chosen to implement asynchronous update schemes

[32–36]. These studies have revealed that implementing an asynchronous update scheme allows for some

previously elusive empirical observations to be reproduced by SPP models. In particular, speed

distributions in fish schools [32], interactions of a topological nature consistent with those observed in

starling flocks [33], and collective motion in locusts [35] and soldier crabs [36]. However, despite these

particular empirically motivated findings, systematic direct comparisons of various update schemes in

standard SPP models have not been conducted, and it is still largely unknown what effects the choice

of update scheme may have on models of this type. From a mathematical/computational point of

view this choice may well have a dramatic effect; potentially in a way similar to other well-

documented choices made in model construction like choices between discrete and continuous or

spatial and non-spatial models [37].

Here we compare the effect of implementing the synchronous and a particular asynchronous update

scheme in the simplest SPP model known to produce the three standard groups (polarized groups, mills

and swarms), the local attraction model (LAM) [34]. If this choice has an effect on this model, it is likely to

have an effect on more sophisticated models, and as much of our current understanding of collective

motion in moving animal groups is based on SPP models, this would be a valuable insight.
2. Model and methods
The LAM is an SPP model in which N particles move at constant speed in two dimensions and interact

via local attraction only [34] (figure 1a). On every time step, each particle calculates the position of the

local centre of mass (LCM) of all particles within a distance of R from it (its neighbours). The new

heading of particle i ( �Di
tþ1) is a linear combination of the normalized direction toward the LCM (Ĉi

t),

its normalized current heading (D̂i
t) and a normalized uniform noise vector (Êi

t).

�Di
tþ1 ¼ cĈi

t þ D̂i
t þ eÊi

t: (2:1)

The parameter c specifies the relative strength of attraction to the LCM when the relative tendency to

proceed with the current heading is 1 and the parameter e specifies the intensity of the vectorial noise
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Figure 1. (a) Illustration of how a particle at position Pt calculates the Ĉt and D̂t vectors in the heading update formula (equation
(2.1)) on each time step. Black dots represent the neighbours of the particle and the blue square represents the LCM of the
neighbours. (b) The groups present in the simplest version of the LAM model; (b(i)) Polarized group, (b(ii)) Mill and (b(iii))
Swarm. Dots represent position and rods the current heading (̂Dt ). Note that the mills are undirected, i.e. particles traverse a
mill in both the clockwise and counterclockwise directions.

synchronous update algorithm asynchronous update algorithm

1: for t from 1 to T do 1: for t from 1 to T do
2:       for i from 1 to N do2:      determine the neighbours of all particles
3:            determine the neighbours of particle i3:      update heading of all particles
4:           update heading of particle i4:      update position of all particles
5:           update position of particle i
6:       end for
7:       randomize particle order
8:  end for

5: end for

(b)(a)

Figure 2. Pseudocode for the synchronous update (a) and the asynchronous update (b). For each time step t from 1 to the
maximum simulation time T both algorithms update the position of each of the N particles, but how the three update steps
(determine neighbours, update heading and update position) are carried out is different. With the synchronous update, each
step is completed for all particles before the next step starts, whereas with the asynchronous update all three steps are carried
out for one particle (i) before the first step is carried out for the next particle (i þ 1). See electronic supplementary material,
codeS2.m for the exact implementation of the asynchronous update (lines 53 – 92 and 148 – 152) and the synchronous update
(lines 99 – 143).
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term. The particle will then move a distance of d in the direction specified by �Di
tþ1. From [34], we know

that different groups will form depending on if c is less than, approximately equal to, or larger than 1.

More specifically, if c� 1 polarized groups form (figure 1b(i)). If c� 1 swarms will form (figure

1b(iii)). If c � 1 undirected mills will form (figure 1b(ii)). At least this holds when an asynchronous

update scheme is used and the noise intensity e ¼ 0.

2.1. Synchronous and asynchronous update schemes
The synchronous update scheme is the standard updating scheme where all particles calculate their new

headings and update their positions at exactly the same time on each time step (figure 2a). The

asynchronous update scheme chosen here is one in which all the particles update their headings and

positions sequentially on each time step, and the order in which they do so is randomized from one

time step to the next (figure 2b). This particular choice is motivated in the discussion.
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2.2. Simulations and measures

First, we ran 100 simulations for each c from 0.04 to 2 in increments of 0.02 in both the synchronous case

and in the asynchronous case without noise (e ¼ 0). Keeping all other parameters fixed at N ¼ 50, R ¼ 4,

d ¼ 0.5. Periodic boundary conditions were used and at the start of each simulation each particle was

assigned a uniformly distributed position and heading. A simulation will terminate when the

maximum time T is reached, or when a specific group type has been identified. In this article, T ¼
15 000 time steps, except when investigating polarized group formation in the synchronous case in

which it is set to T ¼ 108. A simulation may terminate before the maximum time is reached if a

certain group has formed early. This is determined by continuously measuring the polarization a and

scaled size s throughout the simulation and comparing them to values associated with known groups.

The polarization measures the degree to which the N particles are heading in the same direction and

is defined by

a ¼ 1

N

XN

i¼1

D̂i

�����

�����, (2:2)

where N is the total number of particles and D̂i is the normalized current heading of particle i [38]. By

definition, a ranges from 0 to 1 and polarized groups have large a values and mills have small a values.

Swarms and random configurations have intermediate a-values. The size measure of a group of N
particles distributed on a square of side length L is given by

s ¼
(DPx)(DPy)

L2
, (2:3)

where DPx is the length of the range of particle x-coordinates and DPy is the length of the range of particle

y-coordinates [34]. It provides an estimate of how much of the available space the group of particles

occupy. If no group formed s is large, cohesive polarized groups have small s, mills have a s value

that decreases with c, and swarms have very small s. Combining these two measures allows us to

distinguish between the three groups in figure 1b and the case when no group has formed. In this

study, we chose L ¼ 10 to ensure that at most one group is present at the end of each simulation so

that the polarization and scaled size measures are well defined. If L is larger, multiple copies of the

groups may be present (see electronic supplementary material, codeS2.m).

If over 50 consecutive time steps s , 0.01, a cohesive group has formed and the a-values will inform

us about which one it is. If over 50 consecutive time steps a . 0.995, a polarized group has formed, and if

over 50 consecutive time steps 0.01 , s , 0.25 and a , 0.02 a large mill has formed. If any of these three

situations are detected, the simulation will terminate early. Once a simulation has terminated, either by

reaching the maximum time or terminating early, we collect the mean of a and s over the last 50 steps of

the simulation, and the number of time steps it took until the simulation terminated t.

We also ran a set of simulations to determine how varying d and e affects group formation. We used

d ¼ 0.001, 0.3, 1 and 2, and e ¼ c/10, c/2, c and 5c, and for each d and e value we ran 70 simulations

following the simulation protocol described above.

To investigate the formation of polarized groups in more detail, we ran a set of simulations containing

a mix of Na asynchronously updating particles and N 2 Na synchronously updating particles with c ¼
0.1. More specifically, we considered four total group sizes N ¼ 10, 50, 100 and 200, and ran 100

simulations for each (N, Na)-pair with Na from 0 to N and then calculated the average polarization as

a function of proportion of asynchronously updating particles Na. We did this in two ways, one where

the asynchronously updating particles update before the synchronously updating particles on each

time step, and one where they update after the synchronously updating particles on each time step.
3. Results
Depending on the choice of synchronous (figure 2a) or asynchronous update (figure 2b), the tendency of

the model to produce polarized groups (figure 1b(i)) is very different. In figure 3, we see that for c , 0.2

there is a dramatic difference between the asynchronous update and synchronous update. In the former,

we see the signature of polarized groups (large a, small s) and in the latter, no group (small a, large s).

Figure 4 shows the time to polarized group formation for c from 0.04 to 0.18 over 100 simulations in the

asynchronous case. We see that the time to formation decreases with increasing c and tends to be less

than 10 000 time steps. Corresponding simulations in the synchronous case with an upper time limit
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Figure 3. Polarization and size with asynchronous update (a) and synchronous update (b). The curves represent the mean and the bars
the standard deviations over 100 simulations for each c [ [0.04, 2] in the noise-free (e ¼ 0) case. In (a), we see that for c [ [0.04,
0.22] cohesive polarized groups form (a large and s small), for c [ [0.22, 1.4] mills form (a small and s small and decreasing with c),
and finally for c [ [1.4, 2] mobile swarms form (s small and a small to intermediate). In (b), we see that for c [ [0.04, 0.22] no group
forms (s large and a around the value expected if random headings), for c [ [0.22, 1.7] mills form (a small and s small and
decreasing with c), and finally for c [ [1.7, 2] relatively stationary swarms form (s small and a small).
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of 108 time steps did not produce a single polarized group. For c from just above 0.2–1, the asynchronous

and synchronous update both produce mills and this regime appears largely unaffected by update

scheme choice. For c larger than 1, the asynchronous and synchronous update produce qualitatively

different results. In the asynchronous case, mills quickly degenerate as c increases above 1 and from

then on partially mobile swarms are produced. In the synchronous case, mills are produced for c
larger than 1 and only become truly degenerate and swarm-like very close to c ¼ 2.
3.1. Influence of varying the displacement d
The effects of varying d on the model behaviour are illustrated in figure 5. For d ¼ 0.001, the

asynchronous and synchronous update models both produce dense swarms with erratically

fluctuating polarization values for all c from 0.04 to 2. As d increases through 0.01 both updates start

producing mills and as d increases beyond 0.3 the asynchronous update model starts producing

polarized groups, whereas the synchronous update model starts producing no group in the



0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18
c (relative strength of local attraction)

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10 000

11 000

tim
e 

st
ep

s 
to

 p
ol

ar
iz

ed
 g

ro
up

 f
or

m
at

io
n 

(t
)

Figure 4. Time to cohesive polarized group formation over 100 simulations for each c [ [0.04, 0.18] with asynchronous updates.
The curve represents the mean and the bars the standard deviations.
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Figure 5. Effects of varying the displacement d on group formation in the model. For d ¼ 0.001, 0.3, 1 and 2 with asynchronous
update: (a) polarization (b) size, and with synchronous update: (c) polarization (d ) size. The curves represent the mean and the bars
the standard deviations over 70 simulations for each c value. Comparing the d ¼ 0.001 curves in (a) – (d ), we see that both
updates produce similar results; very dense groups (s very small) that exhibit wildly fluctuating polarization values for all c.
For d ¼ 0.3, 1 and 2, we see in (a) that the asynchronous update produces polarized groups over a range of c values that
increases with d, and by comparing (a) with (b) we see that the synchronous update produces no group over the
corresponding range of c for each d.
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Figure 6. Effects of varying the noise intensity e on group formation in the model. For e ¼ c/10, c/2, c and 5c with asynchronous
update: (a) polarization (b) size, and with synchronous update: (c) polarization (d ) size. The curves represent the mean and the bars
the standard deviations over 70 simulations for each c value. Comparing the e ¼ c/10 curves in (a) and (b) with figure 3a, and the
curves in (c) and (d ) with figure 3b we see that the differences in both cases are small. Combining (a) and (b), we see that cohesive
polarized groups still form for e ¼ c/2, but that the mill and swarm regimes are severely affected and now produce something that
can be described as mill-swarm hybrids whose size decreases with c. By comparing (a) and (b) with (c) and (d ), we see that the
impact of increasing the noise intensity has a similar impact on the mill and swarm regimes of both models and for e � c they
produce essentially the same type groups in these regimes.
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corresponding range of c-values. This behaviour persists as d increases through 1, and the upper bound

on the c range that produces polarized groups in the asynchronous case, and no group in the

synchronous case, increases with d. For example, polarized groups are produced up until c � 0.2

when d ¼ 0.5 (figure 3) and up until c � 0.4 when d ¼ 1, and c � 0.8 when d ¼ 2.

3.2. Influence of varying the noise intensity e
The effects of varying e on the model behaviour are illustrated in figure 6. For noise intensities up to c/10,

the behaviour of the asynchronous and synchronous update models are largely unaffected (cf. figure 3).

At e ¼ c/2 the behaviour of the models for small c, i.e. asynchronous update produces polarized groups

and synchronous update produces no groups, is largely unaffected. However, for e ¼ c/2 the mill and

swarm regimes are strongly affected in both cases, and from this noise intensity on they will produce

similar types of groups in these regimes. Up until e ¼ c mills and swarms are still produced, but as e
increases beyond this value they start to degenerate, and at e ¼ 5c no cohesive group will form. We

also note that while cohesive polarized groups do not form when e ¼ c, we observe a high degree of

polarization (more than 0.7) for certain c values with the asynchronous update.

3.3. Influence of varying the proportion of asynchronously updating particles Na

We established that the production of polarized groups does not require complete asynchrony in

updates. Rather a certain proportion of the particles must update asynchronously for polarized groups
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Figure 7. Mean polarization of groups of size N ¼ 10, 50, 100 and 200 as a function of the proportion of asynchronously updating
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to form. Figure 7 shows the mean polarization (a) over 100 simulations as a function of proportion of

asynchronously updating particles for groups of sizes 10, 50, 100 and 200 and we observe that the

proportion of asynchronously updating particles required for consistent polarized group formation

decreases with N if we exclude the N ¼ 10 case. In particular, polarized groups are consistently

produced when the proportion of asynchronously updating particles is larger than 0.4 for N ¼ 50, 0.3

for N ¼ 100 and 0.2 for N ¼ 200. We also found that whether the asynchronous update was before or

after the synchronous has no discernible effect on this phenomenon. Therefore, we only include the

result from when the asynchronous update was first in figure 7 (see electronic supplementary

material, figure S1 for both).
4. Discussion
We have shown that the choice between asynchronous and synchronous update has a dramatic effect on

group formation in the LAM. In particular, the formation of polarized groups is inhibited in the

synchronous case (figure 3). Since many influential models of collective motion exclusively use

synchronous updating, further analysis of these models may reveal previously unseen groups and

collective phenomena which add to the asynchrony-induced speed distribution and topological-like

interactions described in [32,33]. How a model will behave under the local interaction rules alone

when other potentially more realistic update schemes are used is largely unknown. Perhaps properties

that are rare or non-existent in groups generated by standard SPP models, for example, the

multistability and transition behaviour reported in [39], are sensitive to choice of updating scheme. In

particular, it appears that the synchronous update may calm the system down, as exemplified by the

swarm phase in our study. In the asynchronous case, swarms are more mobile, as indicated by high

polarization values for c . 1.4 in figure 3a. By contrast, in the synchronous case the swarms are

almost stationary, exhibiting very low polarization for c . 1.7 in figure 3b. This is a stark contrast to

the effects of synchrony and asynchrony on cellular automata described in [28] and on the coupled

map lattice in [30] where it was reported that replacing synchronous update with asynchronous

updates acts to stabilize the local dynamics.

In addition, our study establishes that attraction in combination with asynchrony in heading update

alone induces polarized collective motion, adding to the growing literature on alignment-free models

capable of producing polarized groups in two and three dimensions [16–20]. Work on models of this

type is motivated, in part, by the need to explain how polarized collective motion emerges in schools

of fish where no alignment responses can be detected [40,41]. These alignment-free models are

attraction–repulsion models and the cause of their polarization inducing capacity is likely to be an

interplay between attractive and repulsive forces, often in combination with some known polarization
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inducing mechanism such as asymmetric interactions (e.g. blind zones). And while these models may be

preferable in some cases, we believe that there are other situations where using asynchrony in update (in

combination with attraction) may be more appropriate. For example, in situations where it is known that

the individuals are updating in an asynchronous manner, e.g. guppies exhibiting burst-and-glide

swimming [42,43] and locusts exhibiting pause-and-go motion [44,45].

We also establish that polarized groups reliably form in simulations with a mix of asynchronously and

synchronously updating particles, and that the proportion of asynchronously updating particles required

decreases with the total number of particles for N . 10 (figure 7). This is potentially important because it

shows that if a small proportion of individuals are updating asynchronously, even if these individuals

are constantly changing, the group is able to agree on a common heading while interacting only via

attraction. Suggesting that perhaps collective migration phenomena, typically explained by the existence

of a small proportion of informed individuals within groups where individuals have an explicit

tendency to align their headings [12,46] may be explained without this tendency to align. Instead the

common migration heading may emerge from attractive interactions alone in combination with

asynchronous updates. This would be a particularly useful mechanism for explaining collective

migration in species of fish where explicit alignment responses could not be detected [40,41].

We also show that including noise (figure 6) and varying d (figure 5) does not prevent polarized groups

from forming when asynchronous update is used and does not enable polarized groups to form with

synchronous update. The variation of d study also establishes that the lower limit on c for mill formation

(i.e. upper limit on c for polarized group formation/no group) appear unaffected by the choice of

asynchronous and synchronous update. In [34], a simple heuristic was used to derive an approximate

lower limit on c for mill formation in terms of R and d [34, eq. 7] and shown to approximate the

polarized group-mill boundary well via simulations [34, fig. 3]. In terms of the notation used in the

current manuscript, the approximate lower limit on c for mill formation from [34] becomes 2d/R, and for

d ¼ 0.3, 1 and 2 this gives 0.15, 0.5 and 1, which are close to the transitions regions we observe in figure

5 in both the synchronous and asynchronous case. While this does not explain why polarized groups

form in the asynchronous case and not in the synchronous case it does intuitively help explain why the

range of c over which polarized groups/no group form increases with d. Namely, because the range of c
over which mills form decreases with d which permits other groups, or no group, to form where mills

used to form. The study of varying d also suggests that the smallest c value for which polarized groups

form in the asynchronous case may be dependent on d. In figure 5a, we see that at c ¼ 0.04 the mean

polarization differs between d ¼ 0.3, 1 and 2. In particular, the mean polarization for d ¼ 0.3 is

approximately 0.5, whereas for d ¼ 1 it is approximately 1. At present, we do not have an explanation for

this phenomenon and future work is planned to address it via a thorough study of the c! 0 limit.

Despite being criticized, the synchronous update still seems to be the default choice in SPP model

construction. We speculate that there are many reasons for this. Most well-known models were originally

presented in that way, and it is more straightforward to obtain a continuum approximation of the model

and thus make other analysis tools available. In addition, if one decides to use asynchronous updates,

which particular scheme should one choose? The asynchronous update scheme used here, and in part in

[34], was chosen mainly because it has the same update rate at the time step level as the synchronous

update against which it was compared, the randomization of update sequence between time steps

prevents artefacts arising from a strict persistent update order, and it was straightforward to implement

in a way that allowed for a mix of asynchronously and synchronously updating particles. However,

other asynchronous update schemes have been implemented [32,33,36,45–47] and these may be more

suitable in some situations. In particular, we note that our asynchronous update differs significantly

from the asynchronous update employed in [32,33,46], which is based on stochastic ‘neighbour picking’.

Where the asynchrony is introduced via probabilistic selection of individuals to update within each time

step (equal probability with replacement) and probabilistic interaction partner selection for each

individual chosen to update. This differs from the asynchronous update scheme presented here where all

particles will update in sequential random order on each time step and interact equally with all

neighbours in the interaction zone. While the former approach, and the stochastic multiple-choice action

approaches employed in [36,45], is more appropriate for studying the combined effects of noise at the

level of individual behaviours/interactions and stochastic asynchronous update, our approach

complements it by isolating update order-related effects via the use of deterministic interactions.

It should be emphasized that we are not claiming that the asynchronous update scheme used here is

more realistic than the synchronous one against which it was compared. We do claim that this choice in

itself may be critically important in the study of collective motion via SPP models. Perhaps, in some

situations, it may be as important as the form of the social interaction rule itself, as in our example
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presented here. Therefore, we suggest that in future theoretical studies of minimal SPP models a variety

of different update schemes be explored, presented and compared. In modelling specific experiments, or

observations, we suggest using pilot data to estimate the update distribution and use that to inform the

update choice selection. It would be very unfortunate if a carefully designed model that has the capacity

to reproduce key properties observed in a specific experiment is abandoned, or made more complicated

by adding more social interactions or constraints, because an underlying assumption like this one was

overlooked. Our suggestions are in line with the programmes proposed in [5–7], and we believe that

our work represents a concrete example illustrating the importance of continuing to work in the

directions set out by these authors.
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