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Climate change increases environmental fluctuations which

thereby impact population demography. Species with

temperature-dependent sex determination may experience

more extreme sex ratio skews, but this has not been considered

in species with chromosomally determined sex. However,

anticipatory maternal effects cause lifelong physiological

changes impacting sex ratios. Here we show, in mice, that

more sons were born to mothers in good condition when

their breeding environment matched their gestational

environment, consistent with theoretical predictions, but

mothers in mismatched environments have no condition–sex

ratio relationship. Thus, the predicted effect of condition on

sex ratio was obscured by maternal effects when the

environment changed. This may explain extreme sex ratio

skews in reintroduced or translocated populations, and sex

ratio skews may become more common and less predictable

with accelerating environmental change.
1. Introduction
Maternal effects are defined as the causal influences of the mother’s

phenotype or genotype on developing offspring [1] and can have

profound effects on offspring life history through, for example,

lifelong physiological changes in offspring [2–4]. During gestation,

the mammalian mother in particular has a prolonged period of

contact during which the environment that the mother experiences

can interact with the development of the offspring, particularly

through the uterine environment, thereby affecting the offspring’s
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phenotype [3]. These maternal effects may be developmental, or the previous experiences of the parents may

also be transmitted epigenetically [5]. Furthermore, the uterine environment can be influenced by the

offspring’s siblings, similarly causing physiological changes [6]. Therefore, the uterine environment can

have extensive, long-lasting influences on the offspring through both maternal and sibling effects.

Pre-programming of offspring to environmental conditions through maternal effects can be

advantageous, as it allows phenotypic plasticity of offspring to occur at a faster rate than would be seen

by adaptation through natural selection [7]. For example, snowhoe hares (Lepus americanus) appear to

show prenatal glucocorticoid programming which influences their baseline stress levels and

susceptibility to stressors, preparing them for the stress levels experienced by their mothers [8].

Conversely, those born in low predation years exhibited higher stress levels [8]. However, environments

are not static and therefore, the environment that the mother experiences during gestation may not be

the same as the post-natal environment that the offspring experiences, which may result in decreased

offspring fitness (reviewed in [9]). For example, high predation from lynx is linked to crashes in the

snowshoe hare populations which then remain low, despite the removal of the threat, due to

intergenerational, maternally inherited stress hormones from the population decline period [8].

Therefore, the mismatch between pre- and post-natal environments can be detrimental to offspring [10].

Artificially simulated increases or decreases in maternal stress during late gestation can result in a

mismatched stress response in offspring, which may lead to abnormal predator responses [10], increased

anxiety behaviours [11] and decreased cognitive abilities [12]. Such alterations may then impact other

life-history traits, including survival and reproductive success (e.g. [8]).

Stress physiology has been linked mechanistically to sex allocation, both directly and through an

interaction with glucose (e.g. [13–15]). Stress causes a male bias in litters [16,17], which has been

experimentally reversed using dexamethasone, a synthetic glucocorticoid [18]. The reversal of the litter

bias was attributed to a reduction in stress caused by dexamethasone, but since stress results in higher

levels of circulating glucose [19], it is possible that changes in glucose are more directly responsible

for the sex ratio changes. Male and female conceptus are sexually dimorphic in their susceptibility to

glucose levels [20], with increased glucose levels favouring male conceptus growth and development

[21]. It has been shown mechanistically that application of dexamethasone at conception results in a

decrease in circulating glucose, and as expected a female bias in the resultant litter [13].

Hypotheses of sex ratio adjustment predict that parents should adjust the sex ratio of their offspring with

local conditions or ability to invest, if net fitness returns are sex-specific [22–25]. For example, directional sex

allocation is predicted where one sex is differentially advantaged in reproductive success by extra

investment [25]. Generally, studies support the trend [26,27], but there remains a level of unexplained

variation [28], and unpredictable effect sizes between individuals [29]. This variation suggests the

possibility of constraints imposed on a female’s ability to respond to the environment [30]. Changes to

baseline physiology as a result of maternal effects may explain some of the inter-individual variation [31].

Recently, we conducted a study on laboratory mice that used oral application of dexamethasone, to

experimentally induce an altered-stress gestational environment. Dexamethasone, when applied to a

mother during late gestation, caused physiological changes in the stress response of her female

offspring. These physiological changes decreased the female’s offspring sex ratio resulting in more

daughters under normal environmental conditions, due to a mismatch between her pre- and post-

natal environments [31]. The same experimentally induced low-stress environment experienced only at

the time of conception also decreased her offspring sex ratio [13]. Given that treatment during

gestation and at conception results in a female-biased sex ratio in subsequent litters, it could be

hypothesized that application of the treatment at both time points would have an additive effect.

However, considering the sex ratio bias is likely due to a mismatch in maternal effects, the application

of both treatments may result in the bias disappearing, as the environments match. Here, we test the

effects of these combined prenatal and conception treatments of dexamethasone on laboratory mice.

We propose two hypotheses: (1) that the combined treatments result in an additive response of

decreased offspring sex ratios, predicted if females are responding independently to each of the

environmental treatments, or (2) that the combined treatment results in a negated effect, predicted if

the response is due to maternal effects and the pre- and post-natal environments matching.
2. Material and methods
We used BALB/c mice bred and housed at the University of Tasmania, Australia. They were kept under

12 L : 12 D photoperiod in a temperature and humidity controlled room and provided with mouse chow



Table 1. The list of variables from laboratory mice collected to determine the influence on sex allocation in females with
matching and mismatching pre- and post-natal environments. Body measurements were taken at seven weeks old.

variable description

anogenital

distance

the distance between the anus and the genital opening, measured using digital callipers. An

indicator of prenatal androgen exposure [32]

blood glucose blood was collected via tail tipping, glucose levels were measured using an Accu-Chek Performa

Nano glucometer

body condition calculated from the residuals of an ordinary least-squares linear regression of body mass and pes

length [33]. Pes length is measured from the base to the tip of the footpad, using digital

callipers

digit ratio digit ratio was calculated as the ratio of second to fourth digit on the hind right foot. Digit length

is measured using digital callipers from the tip of the toe to the start of the footpad. Observers

were blind to the treatment of the animal. A biomarker for prenatal sex steroid exposure [34]

sibling sex ratio the sex ratio of the litter from which the focal female was taken

maternal effect
–late gestation

focal animals
2 × females/litter where available

sample size – 20

20 pregnant dams treated
with dexamethasone on
day 16–19 of gestation

sample size – 16 sample size – 11

sample size – 18

offspring sex ratio
bred to unrelated male
–no treatment given

offspring sex ratio
bred to unrelated male
–treated with dexamethasone on
day 0–3 of gestation

measured outcome

m
is

m
at

ch
ed

m
at
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ed

Figure 1. The experimental design of a sex allocation study investigating whether maternal effects influence a female’s ability to
respond to environmental pressure. The sample sizes at each stage of the experiment are listed.
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(Barastocw irradiated food) and filtered water ad libitum. The control females used in this study are stock

female mice from the colony; they have undergone no treatments. The animals used in this experiment

were siblings of those in Edwards et al. [30]. Table 1 outlines a list of collected variables.
2.1. Generating focal females
The experimental design is outlined in figure 1. Twenty nulliparous dams were housed in groups of up to

five until seven weeks of age when they were separated into pairs. One male was introduced to each cage

and remained with the females until mating was confirmed via the presence of a copulatory plug.

Following the methods outlined in Edwards et al. [31], we used dexamethasone to reduce stress in

pregnant dams in late gestation. Dexamethasone is a synthetic glucocorticoid that simulated an

artificial low-stress environment in the mothers [13,18]. Fetuses are very sensitive to glucocorticoids

[35,36], and therefore protective enzymes (e.g. 11 beta-hydroxysteroid dehydrogenase type 2) exists in

the placenta to metabolize approximately 80% of naturally occurring glucocorticoids. Dexamethasone,

however, is not metabolized by the placenta, and so the effects are expected to be exaggerated [37].
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The interaction of dexamethasone with the mother’s body and free dexamethasone interacting with the

offspring results in a perceived low-stress environment for the offspring.

At day 16 after the confirmation of a copulatory plug, 1.0 mg ml21 of dexamethasone (as used by [13])

was added to the drinking water of the dams, and this was replaced with fresh water after 3 days.

Although this method results in variable dosages, it eliminates any increase in natural GCs from the

stress of handling and injections [18], which could potentially negate the treatment [13]. The females

were then left to litter without interruption. Two focal females from each litter were kept for the

purpose of this study; however, four dams only produced one female. The mismatched treatment was

prioritized and therefore this study consisted of 20 mismatched focal females and 16 matched focal

females (figure 1).
rnal/rsos
R.Soc.open
2.2. Breeding of environmentally mismatched focal females
Mismatched females were mated to unrelated males and allowed to birth naturally with pups being

sexed by anogenital distance. One female did not conceive, and another committed infanticide prior

to offspring sexing and so was removed from the analysis. The final sample size of environmentally

mismatched females was 18 (figure 1).
sci.6:181885
2.3. Breeding of environmentally matched focal females
On the day that the environmentally matched female was added to the male’s cage for mating, the water

was treated with 1.0 mg ml21 of dexamethasone, which remained in the cage with the female until day 3

after the presence of a copulatory plug was noted. This treatment simulated a low-stress environment

and therefore matched that of the prenatal environment. The females were then allowed to birth

naturally and pups were again sexed using anogenital distance. Two females did not conceive, and

three others committed infanticide prior to offspring sexing and so were removed from the analysis.

The final sample size of environmentally matched females was 11 (figure 1).
2.4. Statistics
We used generalized linear models (GLM) with binomial error and an intercept of 1 to verify whether the

sex ratios of the two treatment groups and control laboratory mice differed from parity. Results presented

are the 95% confidence intervals on the estimate. Significant results are depicted by those intervals that

do not include zero.

We used a multivariate analysis of variance (MANOVA) to determine whether the treatment had an

effect on any physical body measurement. We used an analysis of variance (ANOVA) to determine

whether the litter size between the matched and mismatched mice varied. We also used a generalized

linear mixed model with binomial error to investigate the effects of environmental matching and body

condition on offspring sex ratio, while accounting for dam ID. The original model included treatment,

blood glucose, sibling sex ratio, anogenital distance, body condition and digit ratio as fixed effects and

dam ID as the random effect. Using stepwise model simplification, the most parsimonious model

included only treatment and body condition, and their interactive effect, along with dam ID. Further

to this, the data were then divided into subsets for each of the treatments, and GLM were run to

investigate the effect of body condition on each of the treatment groups’ offspring sex ratios.

All analyses were performed in R version 3.2.2 [38].
3. Results
The environmentally mismatched mice had sex ratios that were significantly lower than the expected 50 :

50 ratio (GLM: 20.839, 20.116; figure 2); however, neither the environmentally matched group (GLM:

20.492, 0.492) nor the control mice (GLM: 20.657, 0.239) differed from parity. The treatment did not

influence physical body measurements (F1,27¼ 24.0, Pr(.F ) ¼ 0.45), or litter size (F1,27 ¼ 2.46,

Pr (.F ) ¼ 0.13).

When we incorporated condition, there was no effect individually of either treatment (Z1,27¼ 1.44,

P(,Z ) ¼ 0.15) or body condition (Z1,26 ¼ 0.03, P(.Z) ¼ 0.97). However, there was a significant

interaction between the two terms (Z1,25 ¼ 2.00, P(.Z ) ¼ 0.045; figure 3). Body condition influenced
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Figure 2. The offspring sex ratios from control laboratory mice and those mice whose pre- and post-natal environments match are
not significantly different from parity. While those mice whose pre- and post-natal environments do not match have sex ratios that
are significantly lower than parity. Note that ‘*’ signifies a significant difference and ‘n.s.’ signifies a non-significant difference from
the expected 50 : 50 ratio. The dotted line indicates the expected 50 : 50 ratio.
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Figure 3. The offspring sex ratios from mice whose pre- and post-natal environments match shows a strong positive relationship
with body condition, while those with mismatching pre- and post-natal environments do not show any relationship with body
condition. Full circles and solid line depict matching environments, open circles and dashed line depict mismatching environments.
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sex ratio in the matched group with more sons born to mothers in better condition (Z1,10 ¼ 2.21, P(,Z ) ¼

0.03), but not in the mismatched group (Z1,17 ¼ 20.03, P(,Z) ¼ 0.97; figure 3).
4. Discussion
When female mice were treated with dexamethasone both prenatally, and later at conception, the

resultant offspring sex ratio was not different from the expected 50 : 50 ratio. Control laboratory female

mice also produce sex ratios not different from the expected 50 : 50 ratio; however, female mice treated

only once, either prenatally or later at conception, will produce female-biased litters. This allows the

rejection of hypothesis 1, where the sex ratio is a direct result of the treatment, and therefore treating

at both time points would have been additive, producing a strong female bias. These results are in

line with hypothesis 2, that the offspring sex ratio is a result of maternal effects-driven environments

and has resulted in no offspring bias. When treated only prenatally, there is a mismatch between the
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prenatal and post-natal environment that results in female mice producing biased offspring sex ratios.

Our results suggest that treating at the time of conception creates the same environment for which the

animal was ‘pre-programmed’ for, and therefore as the environments match, there is no need for sex

ratio adjustment to occur. The prenatal treatment may have caused lifelong physiological changes in

the females who are now incapable of producing equal sex ratios under normal laboratory conditions;

these physiological changes are not reflected in morphology, as no physical body changes were

detected between the treatment groups.

When the environment changed, there was no relationship between maternal body condition and

offspring sex ratio, but when gestational and conception environments matched, the predicted

condition-dependent sex allocation in line with the Trivers–Willard hypothesis [25] was observed.

This supports our hypothesis that anticipatory maternal effects can result in a constraint on maternal

sex allocation when the environment changes.

We previously suggested [31] that lowered luteal cortisol [39] and subsequently lowered levels of

gluconeogenesis [40] caused changes in free glucose levels [37] influencing offspring sex ratios [26].

Lowered maternal stress levels during late gestation program the physiology of the offspring to be at

its optimum in a matching environment [10]. Therefore, using the same dosage of dexamethasone

presented in the same manner at conception time, to lower the female’s stress levels, should mirror

the same environment that she was programmed for, and therefore, we would expect to see that the

sex ratio of offspring remains at parity. Sex allocation theory suggests that parents should adjust sex

ratios in relation to current local conditions or ability to invest [22,24,25,41], which females were able

to do in a matched environment, but not when the stress environment had changed. A changed

environment constrained the female’s ability to respond to environmental conditions as predicted by

sex allocation theory [30].

The mismatch between the maternal environment and the conception environment in the

mismatched mice results in two effects that would have been misinterpreted if we had not known the

gestational experience of the mice; (a) a significant female bias overall, and (b) no relationship

between condition and sex ratio. Previous studies have assumed that all mothers are similarly able to

adjust the sex ratio in line with hypothetical predictions, but our study indicates that physiological

constraints show that this assumption is likely unjustified in many cases and help to explain the

inconsistent results of field studies of sex allocation. Previous studies have shown that anticipatory

maternal effects are advantageous when offspring are born into that same environment but are

disadvantageous when the environment changes, resulting in population-level effects (e.g. snowshoe

hare recovery after lynx die-off [8]). Mismatched maternal effects may therefore remove the adaptive

benefits of maternal programming.

Our finding has implications for the management of a variety of species, particularly with

interventional management. Translocated individuals or individuals shifted between captive and wild

populations may show unexpected reproductive responses due to the mismatch between their

development during gestation and adult reproductive environment, possibly contributing to male-

biased sex ratios observed in founder populations after reintroduction [42,43]. Furthermore, with

increasingly variable environments due to climate change, subtle effects on reproduction may become

more marked and contribute to unexpected breeding outcomes in a variety of populations.
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