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Abstract

Direct regression modeling of the subdistribution has become popular for analyzing data with 

multiple, competing event types. All general approaches so far are based on non-likelihood based 

procedures and target covariate effects on the subdistribution. We introduce a novel weighted 

likelihood function that allows for a direct extension of the Fine-Gray model to a broad class of 

semiparametric regression models. The model accommodates time-dependent covariate effects on 

the subdistribution hazard. To motivate the proposed likelihood method, we derive standard 

nonparametric estimators and discuss a new interpretation based on pseudo risk sets. We establish 

consistency and asymptotic normality of the estimators and propose a sandwich estimator of the 

variance. In comprehensive simulation studies we demonstrate the solid performance of the 

weighted NPMLE in the presence of independent right censoring. We provide an application to a 

very large bone marrow transplant dataset, thereby illustrating its practical utility.
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1 Introduction

Competing risks occur when subjects are exposed to multiple, mutually exclusive event 

types. The model may formally be defined as a jump process, with a single transient state 

and several absorbing states that we refer to as the competing events. In such settings one 

only observes the time of the first event, denoted by T, and the type of that event, denoted by 

ε ∈ {1, …, k}. As an example, in the bone marrow transplant dataset analyzed in Section 5, 

recurrence of leukemia and death in remission are the competing events of interest.

Let C denote a possible censoring time and Z a vector of covariates. It is assumed that C is 

independent of (T, ε) given Z. A common approach is to model the cause specific hazards, 

defined as α j
∗(t ∣ Z): = limΔt 0 P{t < T ≤ t + Δt, ε = j ∣ T > t, Z} for j = 1, …, k, which can 

be interpreted as the instantaneous risk of dying from the event of type j at time T 
conditional on not having experienced any of the competing events prior to T. Modeling the 

cause specific hazard for the event of interest is straightforward from the point of view that it 
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relies on a traditional risk set of individuals not having experienced any of the k events. In 

many applications however, the cumulative incidence function (CIF), defined as Fj(t|Z) = 

P(T ≤ t, ε = j|Z) and also referred to as the absolute risk of an event over time, is of interest. 

An efficient prediction of the CIF may be achieved by modeling the cause specific hazards 

of all event types, see e.g. Kalbfleisch and Prentice (1980, 2002). The relation between the 

cause specific hazards and the CIF, however, is complex and an accurate prediction of Fj(t|Z) 

requires correctly specified models with appropriate sample sizes for all cause specific 

hazards α1
∗(t ∣ Z), …, αk

∗(t ∣ Z).

A common pitfall in the analysis of competing risks is the use of a product limit estimator 

based on the cause specific hazard to estimate the corresponding CIF, as illustrated e.g. by 

Tai at al. (2001). This generally leads to a systematic overestimation of the CIF in the 

presence of competing events. Similar issues arise in regression modeling on the cause 

specific hazard, since the effect of a covariate on the cause specific hazard for a specific 

event type is not interpretable with regard to the corresponding CIF, see Latouche et al. 

(2013). In extreme cases a covariate may have a strong effect on α j
∗(t ∣ Z) but no effect on 

Fj(t|Z).

For modeling the cause specific hazard, competing risk events are removed from the risk set 

in the same way as censored individuals, despite a conceptual difference between censorings 

and competing events: per definition, a competing risk event precludes the possibility of a 

subsequent event of interest, while for independently censored individuals it is assumed that 

an event of interest will occur with the same probability as for the individuals with no prior 

event.

An alternative approach to competing risks regression modeling is based on the idea that 

individuals are retained in the risk set instead of being removed. Gray (1988) has first 

defined the subdistribution hazard

α(t ∣ Z): = limΔt 0 P{t < T ≤ t + Δt, ε = 1 ∣ (T > t) ∪ (T ≤ t, ε ≠ 1), Z},

which may be interpreted as the hazard of the improper random variable T* = T · 𝟙{ε = 

1}+∞·· 𝟙{ε ≠ 1}, as in Fine and Gray (1999). The risk set for the subdistribution hazard is 

unconventional but interpretable with a cure model intuition, where individuals are no longer 

exposed to the event of interest after a competing risk event and therefore regarded as cured 

with regard to the event of interest. For statistical inference on F1(t|Z), cured individuals are 

included in the risk set, as is typically done in cure modeling without competing risks. The 

resulting risk set consists of those individuals who either did not experience an event of 

interest in the past or will never experience an event of interest in the future. Fine and Gray 

(1999) propose a proportional hazards regression model for the subdistribution hazard based 

on a weighted partial likelihood function. For the Fine-Gray model, estimated regression 

parameters are directly interpretable with regard to the corresponding CIF, as with 
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F1(t ∣ Z) = 1 − exp −∫ 0
t α(u ∣ Z)du , the usual one to one relationship between the hazard and 

the failure probability is obtained.

It should be emphasized that neither for the cause specific hazard, nor for the subdistribution 

hazard approach, the dependency structure between the different event types is of relevance.

The extension of the Fine-Gray model to a larger class of semiparametric regression models 

is of particular interest as the proportional hazards assumption is not valid in general, as 

exhibited in Section 5, where alternative models are shown to yield improved model fit for 

leukemic relapse. Theoretical concerns have been expressed regarding the ability to 

simultaneously model multiple CIFs using the Fine-Gray approach. For example, with two 

event types, one requires F1(t|Z) + F2(t|Z) ≤ 1 for all t and all Z, with equality at t = ∞. The 

condition may hold for finite t but not at t = ∞. By considering a general class of 

semiparametric regression models this constraint can be considerably relaxed. In Section 3, 

we propose such a general class to address potential lack of fit in practice and theoretical 

issues of model compatibility. This class includes the models of Fine (2001), Klein and 

Andersen (2005), Scheike, Zhang and Gerds (2008), and others. Unlike these earlier 

approaches which model F1(t|Z), our model directly targets the subdistribution hazard, 

accommodating time-dependent covariates in the hazard model. This modeling strategy 

permits likelihood based inferences, which have not been possible with previous approaches 

to direct competing risks regression.

In Section 2, a weighted nonparametric likelihood for competing risks data is developed 

from the cure model point of view that the contribution of individuals with a competing 

event is the probability of not having an event of interest until the endpoint of the study. The 

proposed weighted likelihood function yields a Nelson-Aalen type estimator of the 

subdistribution hazard in the absence of covariates and enables parameter estimation in 

regression models targeting the subdistribution hazard in the presence of Z, as further 

discussed in Section 3. The method is widely applicable to models for the subdistribution 

hazard, in particular to the classes of Box-Cox transformation models and logarithmic 

transformation models that include the Fine-Gray model and the proportional odds model. 

The estimators are shown to be uniformly consistent and weakly convergent to a Gaussian 

distribution. We present a sandwich variance estimator that is theoretically justified by a new 

lemma in connection to the proof of weak convergence, as provided in Section A.3.

Comprehensive simulation studies are conducted in Section 4 to assess the performance of 

the weighted NPMLEs in finite sample sizes. The bone marrow transplant data is reanalyzed 

in Section 5.

2 Competing risks analysis based on pseudo risk sets

The subdistribution hazard is related to a cure model interpretation of the competing risks 

setting, where competing risk events are assigned to the risk set in a similar way as cured 

individuals. For statistical inference about the CIF via the subdistribution hazard, an 

adjustment for cured individuals is required to account for unobserved censoring. Fine-Gray 

(1999) propose a weight function that induces the appropriate pseudo risk set. In the 
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following paragraphs we derive a Nelson-Aalen type estimator for the subdistribution hazard 

from the weighted Doob decomposition of the underlying counting process for the events of 

interest. The same Nelson-Aalen type estimator is then obtained from a pseudo likelihood 

function that reduces to the common counting process likelihood for settings without 

competing risks.

2.1 Complete data

Let Ti denote the event time and εi the failure type of the i–th individual, i = 1, …, n. All 

data is observed on a time interval [0, τ] with τ denoting the duration of the study. With Ni(t) 

= 𝟙{Ti ≤ t, εi = 1}, let N(t) = ∑i = 1
n Ni(t) denote the process counting the events of interest 

and define Yi(t) = 1 − Ni(t−). Then Y(t) = ∑i = 1
n Y i(t) is the cardinality of the risk set ℛ(t) = 

{i : (Ti ≥ t) ∪ (Ti ≤ t, εi ≠ 1)}. Notice that ℛ(t) contains those individuals who have not 

experienced any event until t or who will never experience an event of interest. It is easy to 

check that Λ(t): = ∫ 0
t α(u)Y(u)du is the compensator of N(t) with respect to the filtration 

ℱ(t) := σ{Ni(s), s ≤ t, i = 1, …, n}. From the Doob decomposition dNi(t) = Yi(t)α(t)dt + 

dMi(t) we obtain the Nelson-Aalen estimator of the cumulative subdistribution hazard, 

A(t): = ∫ 0
t {Y(u)}−1dN(u).

This estimator can also be derived from a novel likelihood function. Defining the increments 

of the cumulative subdistribution hazard by A{Ti} := A(Ti) − A(Ti−1), the contribution for 

an event of interest at Ti is P(T* ∈ (Ti−1, Ti], ε = 1) = A{Ti}S1(Ti−1), while the contribution 

for a competing risk event is P(T* ≥ τ) = S1(τ). The likelihood function therefore takes the 

form

Ln = ∏
i = 1

n
[A{Ti}S1(Ti − 1)]

𝟙{εi = 1}
· S1(τ)

𝟙{εi ≠ 1}

= ∏
i:Ti ≤ τ

[Yi(Ti)A{Ti}]
dNi(Ti) · exp −∫0

τ
Yi(u)dA(u) .

2.2 Model with administrative censoring

We consider a setting where the censoring time C is observed even for individuals with a 

previous competing risk event. Such data arises for example in administrative databases 

where all individuals are censored at a fixed calendar time with complete follow-up to that 

time point.

Let Ci denote the censoring time of the i-th individual, Xi = Ti ∧ Ci and Δi = 𝟙{Ti ≤ Ci ∧ τ}. 

The process counting the events of interest is denoted by 

Na(t) = ∑i = 1
n Ni

a(t), Ni
a(t) = ∫ 0

t 𝟙 {Ci ≥ u}dNi(u). The process Ya(t) = ∑i = 1
n Y i

a(t) with 

Y i
a(t) = 1{Ci ≥ t}Y i(t) is the cardinality of the risk set ℛa(t) = {i : (Xi ≥ t)} ∪ {i : (Xi < t,Δi = 

1, εi ≠ 1, Ci ≥ t)}. In this case Λa(t) = ∫ 0
t α(u)Ya(u)du is the compensator of Na(t) with respect 
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to 𝒜a(t) = σ{Ni
a(s), 𝟙 (Ci ≥ s), s ≤ t, i = 1, …, n} and the Nelson-Aalen estimator 

A(t) = ∫ 0
t {Ya(u)}−1

dNa(u) can be derived from the likelihood function

Ln
a = ∏

i: Xi ≤ τ
[Yi

a(Xi)An{Xi}]
dNi

a(Xi) · exp −∫0
τ
Yi

a(u)dAn(u) .

2.3 Model with independent right censoring

For the Fine-Gray approach, individuals with a competing risk event are regarded as a cure 

fraction of the risk set, as they are no longer exposed to the event of interest. This slightly 

differs from the ordinary cure model, where individuals in the cure fraction would be subject 

to independent right censoring which, per definition, cannot be observed after a competing 

risk event. To maintain the common cure model structure, Fine and Gray (1999) use inverse 

probability of censoring weighting (IPCW) technique, thereby applying the estimated weight 

wi(t) := 𝟙{Ci ≥ Ti ∧ t}· ĜC (t)/ĜC (Ti ∧ t) in place of w̃i(t) := 𝟙{Ci ≥ Ti ∧ t}· GC (t)/GC (Ti ∧ 
t), where ĜC is the product limit estimator of GC (t) = P(C > t).

A Nelson-Aalen type estimator for the subdistribution hazard can be derived from the 

weighted Doob decomposition wi(t)dNi(t) = wi(t)Yi(t)α(t)dt+wi(t)dMi(t), with

∑
i = 1

n
wi(t)Yi(t) = ∑

i = 1

n
𝟙 {Xi ≥ t} + ∑

i = 1

n
𝟙 {Xi < t, Δi = 1, εi ≠ 1} · Gc(t)/Gc(Ti)

representing the expected number of individuals in the pseudo risk set. Alternatively Ân can 

be derived from the pseudo likelihood function

Ln = ∏
i = 1

n
[A{Xi}]

Δi𝟙{εi = 1}
· ∏

ℓ: Xℓ < Xi

(1 − A{Xℓ})

× ∏
ℓ: Xℓ ≥ Xi

(1 − A{Xℓ})
Δi𝟙{εi ≠ 1} G(Xℓ)/G(Xi ∧ Xℓ)

= ∏
i = 1

n
[wi(Xi)Yi(Xi)dAn(Xi)]

ΔidNi(Xi) exp −∫0
τ
wi(u)Yi(u) dA(u) .

Our proposed likelihood function is consistent with the general likelihood function in 

Andersen et al. (1993) and it can be ascertained that the product limit estimator based on the 

estimated cumulative subdistribution hazard is equivalent to the fully efficient Aalen-

Johansen estimator, see e.g. Antolini, Biganzoli and Boracchi (2007), Zhang, Zhang and 

Fine (2009), Geskus (2011). This indicates that the weighted likelihood is a promising 

candidate for inference in semiparametric regression models, an idea which is explored in 

subsequent sections.
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3 General subdistribution hazard regression model

Fine-Gray (1999) propose a proportional hazards model for the subdistribution with an 

estimation procedure based on a weighted partial likelihood function. The method 

accommodates time-varying covariate effects on the subdistribution hazard and yields the 

usual nonparametric estimators in the absence of Z.

Various other approaches have been developed based on modeling F1(t|Z) instead of α(t|Z). 

Fine (2001) proposed a general regression model for F1(t|Z) in which the subdistribution is 

assumed to satisfy a generalized linear model after transformation, with a time-varying 

intercept. Pairwise rank estimators were utilized, again using inverse probability of 

censoring weighting. A simple method for estimation of the model based on F1(t|Z) was 

proposed by Andersen and Klein (2007). Using jackknife ideas, pseudo values may be 

employed, which enable the construction of estimating equations. While computationally 

appealing owing to its ease of implementation in standard software, the approach is ad hoc, 

requiring choices of time points at which to evaluate the pseudo-values, and its general 

theoretical properties with right censoring, including efficiency, are unclear. Scheike et al 

(2008) adapted binomial regression techniques to regression modeling of F1(t|Z), also using 

inverse probability of censoring weighting. None of the above methods adapt easily to time-

varying covariates, which are most naturally accommodated in models for the hazard 

function, as with survival data without competing risks. Moreover, these methods do not 

reduce to the usual nonparametric estimators without covariates.

3.1 Model formulation

As a general model for the cumulative subdistribution hazard we propose

A(t) = 𝒢 ∫0
t
eβTZ(s)dA0(s) ,

where β ∈ ℝd is a vector of unknown regression parameters, A0 is an unspecified increasing 

function, Z(s) is a vector of possibly time dependent covariates of bounded variation and 

is a thrice continuously differentiable and strictly increasing function with (0) = 0, ′(0) > 
0 and (∞) = ∞. Additional regularity conditions for the existence of the weighted 

NPMLE, which are considerably weaker than those in Zeng and Lin (2006), are specified in 

Section A.1. In particular, our general model entails not only the class of Box-Cox 

transformation models with link function (x) = {(1 + x)ρ − 1} /ρ for ρ ≥ 0 but also the class 

of logarithmic transformation models with link function (x) = log(1+rx)/r for r ≥ 0 (Chen, 

Jin, Ying, 2002). Important special cases of these classes are firstly the Fine-Gray model, 

which is the Box-Cox transformation model with ρ = 1 and the limiting logarithmic 

transformation model for r → 0 and secondly the proportional odds model as the 

logarithmic transformation model with r = 1 and the limiting Box-Cox transformation model 

for ρ → 0.

With independent right censoring our general model is related to the multiplicative intensity 

process
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α(t, Z)w(t)Y(t) = α0(t)w(t)Y(t)eβTZ(t)𝒢′ ∫
0

t
eβTZ(s)dA0(s) , (1)

while in the case of administrative right censoring the multiplicative intensity process

α(t, Z) 𝟙 (C > t)Y(t) = α0(t) 𝟙 (C > t)Y(t)eβTZ(t)𝒢′ ∫0
t
eβTZ(s)dA0(s)

is obtained, which yields the cumulative intensity

Λ(t) = 𝒢 ∫0
t

𝟙 (C > t)Y(t)eβTZ(s)dA0(s) ,

akin to the model proposed by Zeng and Lin (2006) for settings without competing risks.

The model incorporates time-dependent covariates into a general subdistribution hazard 

regression model, extending Fine and Gray’s (1999) formulation to the non-proportional 

hazard setting. Challenges arise for individuals with a competing event, where the covariate 

process Z(t) should be well defined for t ∈ [X, τ]. This is always the case for baseline 

covariates and for external time dependent covariates, where Z(t) can be observed after a 

competing risks event. For internal time dependent covariates, the issues are more 

complicated, as discussed in Section 6.

3.2 Weighted nonparametric maximum likelihood estimation

With independent right censoring, the observed data needed for estimation consists of iid 

samples of (X,Δ,Δε, Z(t), t ≤ (X ∧τ ) 𝟙(Δε ∈ {0, 1})+τ 𝟙(Δε ∉ {0, 1})) denoted by 

{(Xi,Δi,Δiεi, Zi(t), t ≤ (Xi ∧ τ ) · 𝟙(Δiεi ∈ {0, 1})+ τ · 𝟙(Δiεi ∉ {0, 1})), i = 1, ...., n}. Notice 

that the covariate process Zi(t) is observed on [0,Xi] for all individuals and observed on [Xi, 

τ] for those individuals with Δiεi ∉ {0, 1}. We thus obtain the weighted log-likelihood 

function under the general semiparametric regression model:

ℓ(β, A0) = ∑
i = 1

n ∫
0

τ
log e

βTZi(t)α0(t)𝒢′ ∫
0

t
e

βTZi(u)
dA0(u) 𝟙 (Ci ≥ t)Y i(t)dNi(t)

− ∫
0

τ
wi(t)Y i(t)e

βTZi(t)𝒢′ ∫
0

t
e

βTZi(u)
dA0(u) dA0(t) .

(2)

Decomposition of the weighted risk set wi(t)Y i(t) = 𝟙 (Xi ≥ t) + wi
∗(t) 𝟙 (Xi ≤ t, Δiεi ∉ {0, 1})

with a simplified weight function wi
∗(t) = 𝟙 (Ci ≥ T i)Gc(t)/Gc(T i) yields the equivalent 

representation
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ℓ(β, A0) = ∑
i = 1

n ∫
0

τ
log e

βTZi(t)α0(t)𝒢′ ∫
0

t
e

βTZi(u)
dA0(u) 𝟙 (Ci ≥ t)Y i(t)dNi(t)

− ∑
i = 1

n
𝒢 ∫

0

Xi ∧ τ

e
βTZi(t)dA0(t)

− ∑
i:Δiεi ≠ 1, Xi ≤ τ

∫
Xi

τ
wi

∗(t)e
βTZi(t)𝒢′ ∫

0

t
e

βTZi(u)
dA0(u) dA0(t) .

(3)

The cumulative baseline hazard A0 is approximated by a sequence of step functions An
0, with 

jumps at the observed events of interest. Those increments are interpretable as a finite 

dimensional parameter. Let {0 < T ̃
1 < T̃

2 < … < T̃
k(n) < τ} denote the ordered times and k(n) 

the number of the observed events of interest. Replacing A0 by An
0 we obtain a modified 

likelihood function ℓn(β, An
0) and maximization yields an estimator 

θn
∗ = (βn, An

0{T∼1}, …, An
0{T∼k(n)}), with An

0{T∼i} = An
0(T∼i) − An

0(T∼i − 1) and β̂n ∈ ℝd. An estimator 

for the parameter of interest θn = (βn, An
0(T∼1), …, An

0(T∼k(n))) is obtained by the linear 

transformation θn
T = C θn

∗ T, with C being specified in our technical report.

For (x) = x, corresponding to the proportional subdistribution hazard model, the weighted 

log-likelihood function takes the simple form

ℓ(β, A0) = ∑
i = 1

n ∫0
τ

log e
βTZi(t)α0(t) 𝟙 (Ci ≥ t)Yi(t)dNi(t) − ∫0

τ
wi(t)Yi(t)e

βTZi(t)dA0(t)

and in the same way as for the proportional hazards model without competing risks, it can be 

factorized into the Fine-Gray partial likelihood function and a second term,

Ln = ∏
i:Δiεi = 1

wi(Xi)Yi(Xi)e
βTZi(Xi)

∑ j = 1
n w j(Xi)Y j(Xi)e

βTZ j(Xi)
· ∑

j = 1

n
w j(Xi)Y j(Xi)e

βTZ j(Xi)A0{Xi} × exp

−∫0
τ
wi(u)Yi(u)e

βTZi(u)
dA0(u) .

Accordingly parameter estimates derived from the weighted log-likelihood function with 

(x) = x are identical to those derived from the Fine-Gray model.
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For administratively censored data we obtain the log-likelihood function

ℓa(β, A0)

= ∑
i = 1

n ∫
0

τ
log e

βTZi(t)α0(t)𝒢′ ∫
0

t
e

βTZi(u)
dA0(u) 𝟙 (Ci ≥ t)Y i(t)dNi(t) − 𝒢

∫
0

τ
𝟙 (Ci ≥ t)Y i(t)e

βTZi(t)dA0(t) ,

(4)

with the same structure as in Zeng and Lin (2006) for the model without competing risks. 

Because there are no estimated weights, the estimators inherit those same asymptotic 

properties. In particular efficiency is obtained, and the variance estimator simplifies to the 

empirical inverse Fisher information.

3.3 Asymptotic inference and variance estimator

Theorem 1—The estimator θn = (βn, An
0) derived from maximizing the weighted likelihood 

function is uniformly consistent.

To prove consistency we adapt arguments established by Murphy (1994), (1995) and 

developed e.g. by Parner (1998), Kosorok, Lee and Fine (2004) and by Zeng and Lin (2006), 

(2010). An additional challenge for our model are the estimated weights that require an 

application of IPCW technique. To our knowledge this issue has not previously been 

addressed in connection with nonparametric maximum likelihood estimation of parameters 

in semiparametric regression models. As in Fine and Gray (1999), we first prove consistency 

for settings with administrative censoring. It is then argued that the weighted NPMLEs for 

settings with independent right censoring are asymptotically equivalent.

Theorem 2— n(βn − β0, An − A0) converges weakly to a Gaussian process.

To establish weak convergence we apply our new Lemma 3, as stated in Section A.3, that is 

based on Theorem 3.3.1. of van der Vaart and Wellner (1996).

We consider linear functionals of the form 

n(θn − θ0)(h) = n h1
T(βn − β0) + n ∫ 0

τ h2(t)d An(t) − A0(t) , with h = (h1, h2), h2 being an 

arbitrary element in the Skorohod space [0, τ] and h1 ∈ ℝd. Defining a corresponding 

vector h̃2 ∈ ℝk(n) with h
∼

2
j = h2(T∼i), Ã0{T̃

i} = A0(T̃
i) − A0(T̃

i−1) for i = 1, …, k(n) and 

h
∼ ≡ (h1, h

∼
2
1, …, h

∼
2
k(n)), we propose the sandwich estimator

Var n(θn − θn)(h∼) = h
∼Tℐn

−1T
∑n ℐn

−1h
∼
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for the asymptotic variance of nh1
T(βn − β0) + n∑ j = 1

k(n) h
∼

2
j(An{T∼ j} − A

∼
0{T∼ j}), where ℐn is 

the observed Fisher information with respect to β and jump sizes, and 

∑n = n−1∑i = 1
n (ηi + ψ i)

⊗ 2 is the estimator for the variance of the score with respect to β 

and jump sizes, with η̂
i and ψ̂

i denoting the components of the iid decomposition as given in 

Section A.4. Analogously we obtain that a consistent estimator for the covariances is 

Cov n(θn − θ0)(h∼), n(θn − θ0)(g∼) = h
∼Tℐn

−1T
∑nℐn

−1g∼.

The sandwich estimator contains a term that reflects the additional variability resulting from 

estimating the weights. Similarly to Fine and Gray (1999), this additional variability cannot 

be ignored, even though in practice the adjusted sandwich estimator may be quite close to 

the empirical inverse Fisher information.

4 Simulation studies

Simulation studies were conducted for the Fine-Gray model and for the proportional odds 

model with sample sizes n = 50, 200 and 500. Event times were generated using the model 

formulations in Fine and Gray (1999) and in Fine (2001), with two distinct failure types. For 

each setting, 1000 samples were generated. We defined censoring times uniformly 

distributed on subsets of [0, τ]. Covariates Zi1 and Zi2 were generated independently from a 

standard normal distribution for i = 1, …, n. The subdistribution for the events of interest 

was defined by F1(t|Zi) = P(Ti ≤ t, εi = 1|Zi) = 1 − [1 − p{1 − exp(−t)}]exp(Zi1β11+Zi2β12) for 

the Fine-Gray model and by F1(t|Zi) = exp[p + log{1 − exp(−1)} + Zi1β11 + Zi2β12] (1 + exp 

[p + log{1 − exp(−t)}]+Zi1β11 +Zi2β12)−1 for the proportional odds model. The 

subdistribution for the competing risk events was in both scenarios obtained from the 

conditional distribution P(Ti ≤ t|εi = 2, Zi) being exponential distributed with rate exp(Zi1β21 

+ Zi2β22) and by taking P(εi = 2|Zi) = 1 − P(εi = 1|Zi). The parameter vector was defined as 

(p, β11, β12, β21, β22) = (0.3, 0.5,−0.5, 0.5, 0.5).

In Tables 2 and 3 we report the average deviation from the true parameter values (bias), 

empirical standard errors, the mean of the Fine-Gray sandwich estimator and of the inverse 

Fisher information, and the coverage probabilities for both variance estimators. The bias is 

generally small, the standard errors decrease at rate n with the empirical and model based 

variances in agreement, and the coverage probabilities are close to the nominal level 0.95, 

particularly with sample sizes n = 200 and 500. The solid performance of the weighted 

NPMLE with realistic sample sizes indicates that the proposed method is reliable for use in 

real applications. For the Fine-Gray model, the estimated parameters and variances were 

identical with those derived from the crr function (cmpsrk package). Interestingly, the 

performances of the proposed sandwich estimator and of the inverse Fisher information, 

which lacks theoretical justification, are rather similar for all sample sizes, with both 

approaches yielding diminished coverage with n = 50. Additional simulation studies, 

histograms and qq-plots of the parameter estimates are presented in our technical report.

For the proportional odds model, we compare in table 4 weighted NPMLEs for β1 with the 

corresponding parameter estimates derived from the regression model of the competing 
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crude failure probability, as reported in Fine (2001). Bias and variances of the weighted 

NPMLEs are smaller, with comparable coverage probabilities.

This is somewhat expected for a likelihood based procedure, which is efficient with 

complete data and with censoring complete data.

5 Bone marrow transplant dataset

A common side effect of a bone marrow transplant (bmt) as a treatment of leukemia is the 

occurrence of graft-versus-host disease (GVHD), where white blood cells from the donor 

attack cells in the patient’s body. This complication is closely related to the matching of the 

human leukocyte antigen (HLA) type between recipient and donor.

We reanalyzed bmt data of 1715 patients who received stem cells from either an HLA-

identical sibling, an HLA matched or an HLA mismatched unrelated donor. During 74 

months of follow-up, 311 patients had a relapse and 557 patients died in remission. As in 

Gerds et al. (2011), the main objective was to determine how the transplant of stem cells 

from unrelated donors would influence the risk for relapse and for death in remission, in 

comparison to having an HLA matched sibling as a donor.

We defined binary covariates “match” and “mism” indicating if the donor was HLA matched 

and unrelated or HLA mismatched and unrelated. Seven additional covariates were included 

in the analysis as displayed in Tables 5 and 6.

Weighted NPMLEs were calculated for transformation models from the logarithmic-and the 

Box-Cox class. As a simple tool for model selection we applied the Akaike criterion, by 

ranking models based on the value of the weighted log-likelihood.

As illustrated in Figure 1, the logarithmic transformation model with parameter r ≈ 5 is the 

best fitting model for relapse, while the optimal choice for death in remission is the Box-Cox 

transformation model with parameter ρ = 1.5, which is only slightly different from the Fine-

Gray model. In Tables 5 and 6 we report the estimated regression parameters for different 

link functions. Pp-plots, as displayed in our technical report, indicate that none of the models 

selected by the Akaike criterion exhibits a significant lack of fit. For the Fine-Gray model 

the estimated values were identical with the results from the crr function.

For relapse and r = 5 we can see in Table 5 that “match” is not significant while “mism” is 

significant with a negative estimated parameter value, indicating that an HLA mismatched 

and unrelated donor will decrease the risk of relapse in comparison to an HLA matched 

sibling. This was somewhat expected since GVHD might decrease the risk of relapse, if 

white blood cells from the donor attack the patients cancer cells.

For death in remission and r = 0 the covariates “match” and “mism” are both significant with 

positive estimated parameter values, as displayed in Table 6. This indicates that an HLA 

matched unrelated donor will increase the risk of dying in remission in comparison to an 

HLA matched sibling. For patients receiving stem cells from an HLA mismatched and 

unrelated donor, the increase in the risk of dying is greater.
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The magnitude of the parameter and standard error estimates in Tables 5 and 6 vary across 

models with different choices of parameter r, owing to the fact that the parameters are 

defined on different scales. The ratios of the parameter estimates and the estimated standard 

errors are, however, relatively constant across these models. As established by Kosorok, Lee 

and Fine (2004) such constancy holds under regularity conditions for misspecified models 

within classes of semiparametric regression models.

The logarithmic transformation model may be regarded as a proportional hazards frailty 

model for the CIF, in which the frailty has gamma distribution with parameter r. The 

estimated covariate effects are thus interpretable as subdistribution hazard ratios in a frailty 

regression model, where the frailty accounts for important covariates that are omitted from 

the regression model.

To illustrate the importance of model selection in prediction, we plotted in figure 2 the 

aggregated CIFs for subgroups of the 727 female patients from different regression models 

in comparison to the Aalen-Johansen estimator. The baseline hazards for the events relapse 

and death in remission were obtained by maximizing the weighted log-likelihood functions 

over the entire population.

Aggregated CIFs for both events were then obtained for the three subgroups by averaging 

the predicted probabilities across individuals in the subgroup.

For relapse it seems that the prognosis of female patients with a sibling as a donor and 

female patients with an HLA matched donor is similar. Having an HLA mismatched 

unrelated donor seems to decrease the probability of a relapse in comparison to the other two 

subgroups. For the largest subgroup of 530 female patients with an HLA matched sibling as 

a donor and for the subgroup of 37 female patients with an HLA mismatched donor, the 

CIFs from the logarithmic transformation model with r = 5 are located closest to the 

nonparametric Aalen Johansen estimator. This means that the prediction of the best model 

under AIC, r = 5, clearly improves on the Fine-Gray model. For the second group of 160 

female patients with an HLA matched donor, the performance of the prediction for the 

logarithmic transformation model is better for the first 30 months. For this subgroup no 

relapse was observed at a time later than t = 15 months.

For death in remission the plots for the three subgroups illustrate how the choice of an 

unrelated donor leads to a dramatic increase in the risk of dying in remission. For the largest 

subgroup of 530 female patients with a sibling as a donor and 129 events of interest, all 

regression models perform equally well, evidenced by good agreement with the Aalen-

Johansen estimator. For the subgroups of female patients with an HLA matched unrelated 

donor or an HLA mismatched unrelated donor, the Fine-Gray model and the Box-Cox 

transformation model with ρ = 1.5 perform similarly well and are clearly superior to the 

other preselected models. The prediction curves for both subgroups were closest to the 

Aalen-Johansen estimator.
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6 Discussion

We propose a novel weighted likelihood function and establish a general semiparametric 

regression model for the subdistribution hazard. We thereby provide a flexible likelihood 

framework for the Fine-Gray model that is extendable in several directions.

The new approach is applicable to a general class of semiparametric transformation models, 

as previously considered by Zeng and Lin (2006) for simple survival settings without 

competing events. A major point is that in cases where the proportional hazards assumption 

cannot be validated, nonproportionality may be captured via the choice of the link function. 

Alternatively, the use of interaction terms in the proportional hazards model can lead to an 

improvement with regard to the fit of the model. We present results from such a regression 

analysis with interaction terms for the bmt dataset in Section B.5.2 of our technical report. 

Difficulties in interpretation arise from the fact that covariates and the corresponding 

interaction terms have in many cases opposing directions. With our proposed general 

regression model nonproportionality can be addressed more parsimoniously and estimated 

covariate effects are immediately interpretable.

A useful feature of the weighted likelihood approach is that the Akaike criterion can easily 

be adapted as a simple tool for model selection, as we demonstrate for the bmt dataset. To 

address the overall question of fit we propose a method based on pp-plots in Section B.5.1 of 

our technical report. Another method to check the fit of the model might be to compare the 

prediction plots for different transformation models to the Aalen-Johansen estimator within 

particular subgroups of the dataset, as conducted in Section 5. Investigating other model 

selection techniques for semiparametric transformation models would be an important topic 

for further research.

Furthermore, the weighted likelihood approach enables modeling time-dependent covariate 

effects on the subdistribution hazard, as opposed to earlier work on direct regression 

modeling for competing risks, where covariate effects target the CIF.

The one-two-one correspondence between the subdistribution hazard and the CIF holds with 

either time-independent, eg, baseline covariates, or with external time-dependent covariates 

in the same way as for the survival model without competing risk (Kalbfleisch and Prentice, 

2002). External time-dependent covariates might include interactions of time-independent 

covariates and time used to capture nonproportionality or exogenous covariates. As an 

example of a nontrivial external covariate, in evaluating hospital performance, where death 

serves as a competing risk for discharge, operational characteristics of the hospital, including 

staffing factors and level of hospital utilization, change over time. The cumulative incidences 

of discharge and death may be derived from the subdistribution hazard conditionally on 

these covariates, which are observed after a patient’s event.

For internal time-dependent covariates, it is not possible to establish a direct relation 

between the subdistribution hazard and the CIF. The problem is well known even for 

survival settings without competing risks, where regression parameters for the hazard rate in 

the presence of internal time-dependent covariates are not interpretable with regard to the 

underlying distribution, see Kalbfleisch and Prentice (2002). For procedures which directly 
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model the absolute risk conditionally on time-dependent covariates instead of the 

subdistribution hazard, similar problems occur. Regression modeling of the subdistribution 

hazard with internal time-dependent covariates is a more delicate issue as covariates are not 

generally available after a competing risk event. Similar challenges arise when directly 

modeling the absolute risk of an event by a particular time point conditionally on the value 

of internal time-dependent covariates, see Klein and Andersen (2005) and Scheike, Zhang 

and Gerds (2008). The approach proposed by Beyersmann and Schumacher (2008) or 

alternative methods of extrapolation may be applied in our weighted NPMLE procedure. In 

contrast to that, modeling the cause specific hazard with internal time dependent covariates 

is straightforward. The approach, however, does not alleviate the problem of interpretability 

of the estimated regression parameters with regard to the CIF.

A heuristic approach to the subdistribution hazard modeling is elaborated in Section 2. The 

idea of modeling the subdistribution hazard from a cure model perspective leads to a hazard 

ratio interpretation which has been accepted by many practitioners, with widespread 

application in substantive biomedical papers.

To evaluate the options of either modeling the subdistribution hazard or the cause specific 

hazard, the main consideration should be the scientific objectives of a clinical trial. 

Modeling the cause-specific hazards is considered as intuitive with regard to a traditional 

risk set of individuals with no prior event. The sum of the cause specific hazards is the total 

hazard, which is directly related to the overall survival function.

An advantage of a regression models targeting either the subdistribution hazard or directly 

the CIF is that it quantifies the absolute risk of a particular event type. Lau et al (2009) 

suggest that cause specific hazard models are “better suited for studying the etiology of 

diseases, while the subdistribution hazard model has use in predicting an individual’s 

absolute risk”. Similarly, Wolbers et al (2009) suggested that subdistribution hazard methods 

are preferable when the focus is on actual risks and prognosis, which are not captured by a 

single cause specific hazard function.

With regard to the theoretical foundation of the weighted NPMLE, several new results are 

presented in Section A.2 and in our technical report. A proof for the existence of the 

weighted NPMLE and the uniform boundedness of the baseline hazard is provided that 

requires only one of the weak model assumptions M4a) or M4b), whereas Zeng and Lin’s 

model assumptions are rather restrictive. A challenge thereby is that the fundamental 

theorem of calculus cannot be routinely applied, which has previously been neglected in 

theoretical work on NPMLE.

The proposed sandwich estimator is theoretically justified by a new lemma for weighted –

estimators that may be regarded as a Wald type argument in the light of Theorem 3.3.1 of 

van der Vaart and Wellner being based on a Taylor series expansion in abstract spaces. The 

arguments for weighted NPMLEs are similar but considerably more complex than those for 

weighted parametric maximum likelihood estimators.

Finally, an extension of the weighted NPMLE to the clinically relevant setting of recurrent 

events with competing terminal events appears to be an obvious next step. Let D denote the 
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time of the competing terminal event and let N(t) denote the process counting the number of 

recurrent events before D. The marginal mean intensity, defined as λ(t) = E[dN(t)|N(s), s < 

t], has the desirable property that the usual relationship with the marginal mean is retained, 

that is E[N(t)] = ∫ 0
t λ(u)du. With a weight function defined as in Ghosh and Lin (2002) the 

general model (1) in Section 3.1 may be proposed for the marginal mean intensity. Even for 

the particular choice of the link function (x) = x, this approach does not represent a Markov 

model and, as for the Andersen Gill model, it would be suitable in cases where the 

dependency structure between the recurrent events for a particular individual can be 

mediated by time dependent covariates. A general regression model for the marginal mean 

intensity is then obtained from the modified weighted log-likelihood function. It will be of 

interest for further research to investigate a general regression model for the marginal mean 

intensity in greater depth.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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A Appendix

A.1 Model conditions

M1) The cumulative baseline A0(t) is a strictly increasing and continuously 

differentiable function and β0 lies in the interior of a compact set .
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M2) The vector of covariates Z(t) is P-almost surely of bounded variation on the 

observed interval [0, τ].

M3) The endpoint of the study τ is chosen in a way that P-almost surely there exists a 

constant δ > 0 such that P(C ≥ τ|Z) > δ and P(X ≥ τ|Z) > δ.

M4)  is a thrice continuously differentiable and strictly increasing function with 

(0) = 0, ′(0) > 0 and (∞) = ∞. In addition to that one of the following 

conditions is required:

a. ) ″(x) ≤ 0 for x > 0 or

b. ″(x) ≥ 0 for x > 0. In addition to that for any a ∈ (0,∞) and for any 

sequence (xn) ⊂ ℝ with xn → ∞ as n → ∞,

lim
n ∞ ℙ(X ≤ τ, Δε = 1)

log (axn)
𝒢(a−1xn)

+
log 𝒢′(axn)
𝒢(a−1xn)

< P(X ≥ τ) . (*)

M5) Identifiability condition: If h1 ∈ ℝd and h2 ∈ [0, τ] exist such that 

h1
TZ(t) + h2(t) = 0 P-almost surely, then h1 = 0 and h2(t) = 0 ∀t ∈ [0, τ].

M6) For any h1 ∈ ℝd and for any h2 ∈ [0, τ] exists a subset  ⊂ [0, τ] of nonzero 

Lebesgue measure such that ∀t ∈ 

h1
TZ(t) + h2(t) ≠ −

𝒢″ ∫ 0
t e

β0
TZ(u)

dA0(u)

𝒢′ ∫ 0
t e

β0
TZ(u)

dA0(u)
∫0

t
eβTZ(u)(h1

TZ(u) + h2(u))dA0(u) .

For the consistency of the weighted NPMLE, model conditions M1)-M5) and twice 

continuous differentiability of  are sufficient. Model conditions M1)-M2),M5)-M6) and 

thrice continuous differentiability of  are sufficient to obtain weak convergence. For the 

proportional hazards (Fine-Gray) model conditions M5) and M6) are equivalent. Condition 

M4a) is satisfied for example for the class of logarithmic transformation models and for the 

Box-Cox transformation models with ρ ∈ [0, 1]. M4b) holds for the Box-Cox transformation 

models with ρ > 1. It is sufficient for (*) to prove that log(axn)/ (a−1xn) → 0 and log ′
(axn)/ (a−1xn) → 0 for xn → ∞.

A.2 Consistency

We show that An
0(τ) is bounded P-almost surely, thereby ascertaining the existence of the 

weighted NPMLE. Then An
0(t) is bounded on [0, τ] uniformly P-almost surely. From Helly’s 

selection theorem it is then obtained that ∃nk ⊂ ℕ: Ank
0 →∗ A∗, for a limit A*, with * denoting 

outer almost sure convergence. With a Kullback-Leibler argument it is ascertained that every 
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subsequence (βn̂k, Ank
0 ) converges to the true parameter (β0, A0). Ân(t) is a sequence of 

monotone increasing functions, and the limit A0(t) is continuous. From this ||Ân − A0||ℓ∞[0,τ] 

→ 0 [P] and |β̂n − β0| → 0 [P] where ℓ∞[0, τ] denotes the space of bounded functions on [0, 
τ].

Existence of (β̂n, An
0) and boundedness of An

0(τ) under model condition M4a)

We define A
∼

n
0(t): = n−1∑i = 1

n Ni(t). By Jensen’s inequality it is ascertained that

n−1[ℓ(An
0, βn) − ℓ(A

∼
n
0, β0)] ≤ ℙn 𝟙 {X ≤ τ, Δε = 1}

log 𝒢 e−MAn
0(τ)

𝒢 e−MAn
0(τ)

− ℙn 𝟙 {X ≥ τ} 𝒢(e−MAn
0(τ)) + Op(1)

.

Existence of (βn̂, An
0) and boundedness of An

0(τ) under model condition M4b)

n−1[ℓ(An
0, βn) − ℓ(A

∼
n
0, β0)] ≤ ℙn 𝟙 {X ≤ τ, Δε = 1}

log 𝒢′(eMAn
0(τ))

𝒢(e−MAn
0(τ))

+
log (eMAn

0(τ))

𝒢(e−MAn
0(τ))

− ℙn 𝟙 {X ≥ τ} × 𝒢

(e−MAn
0(τ)) + Op(1) .

The conclusion in both cases is that if An
0(τ) became infinitely large, the right hand side 

would go to − ∞, which contradicts the definition of (Ân, βn̂) as a maximum likelihood 

estimator.

Competing risks setting with administrative censoring

From differentiating the discretized log-likelihood with respect to jumps sizes we obtain

An
0(t) = ∑

i: Xi ≤ t, Δiεi = 1
n · Φn

a(Xi, An
0, βn) −1 = ∫0

t
1
n ∑i = 1

n 𝟙 (Ci ≥ s)dNi(s)

∣ Φn
a(s, An

0, βn) ∣
,

with Φn
a(s, An

0, βn) as provided in our technical report. Substituting estimated parameters by 

the true model parameters we obtain
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A
∼

n
a(t) = ∫0

t
1
n ∑i = 1

n 𝟙 (Ci ≥ s)dNi(s)

∣ Φ∼n
a(s, A0, β0) ∣

,

and by Doob decomposition of the counting process Ni(t)

Φ∼n
a(s, β0, A0) = 1

n ∑
i = 1

n
𝟙 (Ci ≥ s)Yi(s)e

β0
TZi(s)

𝒢′ ∫0
s
e
β0

TZi(u)
dA0(u) + op(1) .

By the Glivenko-Cantelli theorem Φ∼n
a(s, β0, A0) converges uniformly to E[η(s, β0, A0)] with

η(s, β0, A0) ≡ 𝟙 (C ≥ s)Y(s)e
β0

TZ(s)
𝒢′ ∫0

s
Y(u)e

β0
TZ(u)

dA0(u)

and another application of Doob decomposition implies

A
∼

n
a(t) = A0(t) + n−1 ∑

i = 1

n ∫0
t 𝟙 (Ci ≥ s)dMi(s)
E [η(s, β0, A0)] + op(1) + op(1) .

By the Glivenko-Cantelli theorem A
∼

n
a(t) A0(t) for n → ∞ uniformly almost surely in t. 

Further the Glivenko-Cantelli theorem implies that Φn
a(s, An

0, βn) converges uniformly to a 

continuously differentiable function Φ*(s, A*, β*) and the limit is bounded away from zero. 

An
0(t) is absolutely continuous with respect A

∼
n
a(t) and An

0(t)/A
∼

n
a(t) converges to α*(t) = E[η(s, 

β0, A0)]/Φ*(s, A*, β*). Therefore,

An
0(t) A∗(t) = ∫0

t E [η(s, β0, A0)]
Φ∗(s, A∗, β∗) dA0(s) .

With a Kullback-Leibler argument it is then obtained that the limit A*(t) is P-almost surely 

the true baseline hazard A0(t). For the setting with administrative censoring we define the 

Kullback-Leibler distance

𝒦a(θ0, θ∗) = EFθ0
, G log

f θ0
(X)

f θ∗
(X)

Δ𝟙(ε = 1) Sθ0
(C ∧ τ)

Sθ∗
(C ∧ τ)

1 − Δ Sθ0
(C ∧ τ)

Sθ∗
(C ∧ τ)

Δ𝟙(ε ≠ 1)
,
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thereby denoting θ0 = (β0, A0) and θ* = (β*, A*) and with fθ(t) = αθ(t)Sθ(t) being the 

subdensity for the event of interest. As derived in Section B.3 this Kullback-Leibler distance 

is nonnegative. On the other hand, as θn = (βn, An
0(t)) maximizes the log-likelihood function 

it is obtained that a(θ0, θ*) ≤ 0 and thus a(θ0, θ*) = 0. It is then ascertained Section B.3 

of our technical report that the Kullback-Leibler distance takes the value zero if and only if 

β* = β0 and A* = A0. From this we conclude that β̂n → β0 P-almost surely and Ank
0 A0

uniformly P-almost surely.

Competing risks setting with independent right censoring

From maximizing the discretized likelihood function we obtain

An(t) = ∑
i: Xi ≤ t, Δiεi = 1

n · Φn(Xi, An, βn) −1 = ∫0
t

1
n ∑i = 1

n 𝟙 (Ci ≥ s)dNi(s)

∣ Φn(s, An, βn) ∣
,

with Φn(s, Ân, β̂n) as provided in our technical report. Substituting estimted parameters by 

the true model parameters we define

A
∼

n(t) = ∫0
t

1
n ∑i = 1

n 𝟙 (Ci ≥ s)dNi(s)

∣ Φ∼n(s, A0, β0) ∣
.

With an application of empirical process theory it is ascertained that 

Φ∼n(s, β0, A0) = Φ∼n
a(s, β0, A0) + op(1) and thus Ãn(t) → A0(t). By the Glivenko-Cantelli 

theorem Φn(s, β̂n, Ân) converges uniformly to a continuously differentiable function Φ*(s, 
A*, β*) with Φ*(s, A*, β*) > 0 for s ∈ [0, τ] and

An(t) A∗(t) = ∫0
t E[η(s, β0, A0)]

Φ∗(s, β∗, A∗)
dA0(s) .

A*(t) is absolutely continuous with respect to the Lebesgue measure and the Radon–

Nikodym derivative takes the form α*(t) = E[η(t, β0, A0)]/Φ*(t, β*, A*)α0(t).

We define the Kullback-Leibler distance corresponding to the weighted log-likelihood 

function as
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𝒦
w∗(θ0, θ∗)

= EFθ0
, G log

f θ0
(X)

f θ∗
(X)

Δ𝟙(ε = 1) Sθ0
(C ∧ τ)

Sθ∗
(C ∧ τ)

1 − Δ
×

exp ( − ∫ 0
τ w∼(t)dAθ0

(t))

exp ( − ∫ 0
τ w∼(t)dAθ∗

(t)

Δ𝟙(ε ≠ 1)

.

From the asymptotic equivalence of a(θ0, θ*) and w* (θ0, θ*) it can be concluded that β* 

= β0 and A* = A0.

A.3 Weak convergence

Let ℋ denote the space of elements h = (h1, h2) with h1 ∈ ℝd and h2 ∈ [0, τ]. A norm on 

ℋ is then defined by ||h||ℋ = ||h1||+||h2||v, with ||·|| denoting the Euclidean norm and ||·||v 

denoting the total variation norm. For p < ∞ we define ℋp = {h ∈ ℋ : ||h||ℋ ≤ p}. The 

parameter space is denoted by Θ = {θ = (β, A0), with β ∈ ℝd andA0 being a monotone 

increasing element of [0, τ]}. For h ∈ ℋp we define θ(h) = h1
Tβ + ∫ 0

τ h2(u)dA0(u), so that Θ 

⊂ ℓ∞(ℋp). One-dimensional submodels of the form t θt = θ + t(h1, ∫ 0
( · )h2(u)dA0(u)) are 

considered with h ∈ ℋp to define the empirical score operator

Ψn(θ, h, w) = ∂
∂t ℓn(θt, h, w)

t = 0
= ℙnψ(θ, h, w) = ℙn(ψ1(θ, h, w) + ψ2(θ, h, w)),

for a measurable function ψ(θ, h,w), where Ψn1
w (θ, h, w) = ℙnψ1(θ, h, w) is the component 

related to the derivative with regard to β and Ψn2
w (θ, h, w) = ℙnψ2(θ, h, w) is the component 

related to the derivative along the submodel for A0. The limiting version Ψ is defined by 

replacing the empirical measure ℙn by the probability measure ℘.

Weak convergence is ascertained by a new lemma for weighted –estimators, that is based 

on Theorem 3.3.1. of van der Vaart and Wellner (1996):

Lemma 3

Let the parameter set Θ be a subset of a Banach space. Let w̃(t) be a bounded deterministic 
weight function and let ŵn(t) be a sequence of bounded random weight functions with 
values in ℝ+. Let Ψn and Ψ be a linear random map and a linear deterministic map, 
respectively from Θ × ℝ+ into a Banach space such that

a) n(Ψn − Ψ)(θn, wn) − n(Ψn − Ψ)(θ0, wn) = op
∗ 1 + n‖θn − θ0‖ ,
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such that n(Ψn − Ψ)(θ0, w∼) converges to a tight limit 1 and 

n (Ψn − Ψ)(θ0, wn) − (Ψn − Ψ)(θ0, w∼)  converges to a tight limit 2, and the sequences jointly 

converge to ( 1, 2).

Let (θ, w) → Ψ(θ, w) be Fréchet-differentiable at (θ0, w̃) with a continuously invertible 

derivative Ψ
.

θ0
w∼ . If Ψ(θ0, w̃) and θ̂n satisfies Ψn(θn, wn) = op

∗(n−1/2), if Ψn(θ̂n, w̃) = Ψn(θ̂n, 

ŵn) + op(1) and if Ψn(θn̂, w̃) converges in outer probability to Ψ(θ0, w̃), then

nΨ
.

θ0
w∼ (θn − θ0) = − n (Ψn − Ψ)(θ0, w∼) + (Ψn − Ψ)(θ0, w) − (Ψn − Ψ)(θ0, w∼) + op

∗(1) (5)

and n(θn − θ0) − Ψ
.

θ0
w∼ −1

(𝒵1 + 𝒵2), with ↝ denoting weak convergence.

As our model is based on iid observations, for condition a) in the above Lemma 3 it is 

sufficient to verify the two conditions of Lemma 5 in our technical report.

By the Donsker theorem n(Ψn − Ψ)(θ0, w∼) converges in distribution to the tight random 

element 1. Also by Donsker theorem n (Ψn − Ψ)(θ0, wn) − (Ψn − Ψ)(θ0, w∼)  converges in 

distribution to a tight random element 2. Joint convergence follows from the asymptotic 

linearity of the two components marginally, combined with the fact that the composition of 

two Donsker classes is also Donsker. Per definition Ψn(θ̂n, ŵn) = 0. As argued in Parner 

(1998) from the Kullback-Leibler information being positive and by interchanging 

expectation and differentiation we obtain Ψ(θ0, w̃) = 0. Arguments for the continuous 

invertibility of Ψ̇
0 and Ψ

.
0
a under model conditions M6),M7) are provided in our technical 

report.

From Lemma 3 we obtain weak convergence of n(θn − θ0) and the covariances for the 

limiting process −Ψ
.

0
−1(𝒵1 + 𝒵2), with 1(h) = limn→∞ ℙn ψ(β̂n, Ân, h, w̃) and 2(h) = 

limn→∞ ℙn[(ψ(β̂n, Ân, h, ŵn) − ψ(β̂n, Ân, h, w̃)], are given by

𝒫 (𝒵1 + 𝒵2) Ψ
.
0
−1(g) (𝒵1 + 𝒵2) Ψ

.
0
−1(h)

for g, h ∈ ℋ (Kosorok, 2008, page 302).

A.4 Variance estimation

The middle part of the sandwich variance estimator, as proposed in section 3.3, is obtained 

from the iid decomposition of the score with ηi, n = ηi
1, …, ηi

d + k(n)  and 

ψ i, n = ψ i
1, …, ψ i

d + k(n)  defined as

Bellach et al. Page 22

J Am Stat Assoc. Author manuscript; available in PMC 2020 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



ηi, n
ℓ = Ziℓ(Xi) + ∑

j: X j ≤ Xi
Δ jε j = 1

Ziℓ(X j)e
βTZi(X j)An{X j}

𝒢″ ∫ 0
Xie

β0
TZi(u)

dAn(u)

𝒢′ ∫ 0
Xie

βTZi(u)
dAn(u)

𝟙 (Δiεi = 1)

− ∑
j: X j ≤ Xi ∧ τ

Δ jε j = 1

Ziℓ(X j)e
βTZi(X j)An{X j}𝒢′ ∫0

Xi ∧ τ
e
βTZi(u)

dAn(u)

− ∫Xi

τ
w∼i

∗(t)e
βTZi(t)Ziℓ(t)𝒢′ ∫0

t
e
βTZi(u)

dAn(u) dAn(t) 𝟙 (Δiεi = 2)

− ∫Xi

τ
w∼i

∗(t)e
βTZi(t) ∫0

t
Ziℓ(u)e

βTZi(u)
dAn(u) 𝒢″ ∫0

t
e
βTZi(u)

dAn(u) dAn(t) × 𝟙 (Δiεi = 2)

for ℓ ∈ {1, …, d} and

ηi, n
ℓ = 𝟙 (Xℓ = Xi)[An{Xℓ}]−1 + 𝟙 (Xℓ ≤ (Xi ∧ τ))e

βTZi(Xℓ)
× 𝒢″ ∫0

Xi
e
βTZi(u)

dAn(u)

𝒢′ ∫0

Xi
e
βTZi(u)

dAn(u) 𝟙 (Δiεi = 1)

− 𝟙 (Xℓ ≤ (Xi ∧ τ))e
βTZi(Xℓ)

𝒢′ ∫0

Xℓ
e
βTZi(u)

dAn(u)

− 𝟙 (Xi ≤ Xℓ) w∼i
∗(Xℓ)e

βTZi(Xℓ)
𝒢′ ∫0

Xℓ
e
βTZi(u)

dAn(u) 𝟙 (Δiεi = 2)

− e
βTZi(Xℓ)∫Xi ∧ Xℓ

τ
w∼i

∗(t)e
βTZi(t)𝒢″ ∫0

t
e
βTZi(u)

dAn(u) dAn(t) 𝟙 (Δiεi = 2)

for ℓ ∈ {d + 1, …, d + k(n)}. To calculate ψ i, n
ℓ  we apply

Gc(t)

Gc(X j)
−

Gc(t)
Gc(X j)

= −
Gc(t)

Gc(X j)
∑

i = 1

n ∫X j

t 1
∑k = 1

n 𝟙 (Xk ≥ u)
× dMi

c(u) + op(n−1/2),
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where Mi
c(t) = 𝟙 (Xi ≤ t, Δi = 0) − ∫ 0

t 𝟙 (Xi ≥ u)dAc(u) is the martingale associated with the 

censoring process and Ac(t) is the cumulative hazard of the censoring distribution. From this 

we obtain the representation

ψi, n
ℓ = ∫0

∞
qn
ℓ(u){πn(u)}−1dMi

c(u), with

qn
ℓ(u) = 1

n ∑
j:Δ jε j = 2

∫0
τ
w∼ j

∗(t) 𝟙 (X j ≤ u ≤ t)e
βTZ j(t)Z jℓ(t)𝒢′ ∫0

t
e
βTZ j(s)

dAn(s) dAn(t)

+ 1
n ∑

j:Δ jε j = 2
∫0

τ
w∼ j

∗(t) 𝟙 (X j ≤ u ≤ t)e
βTZ j(t) ∫0

t
Z jℓ(s)e

βTZ j(s)
dAn(s) × 𝒢″ ∫0

t
e
βTZ j(s)

dAn(s) dAn(t)

for ℓ ∈ {1, …, d},

qn
ℓ(u) = 1

n ∑
j:Δ jε j = 2

w∼ j
∗(Xℓ) 𝟙 (X j ≤ u ≤ Xℓ)e

βTZ j(Xℓ)
𝒢′(∫0

Xℓ
e
βTZ j(s)

dAn(s))

+ 1
n ∑

j:Δ jε j = 2
e
βTZ j(Xℓ)∫0

τ
𝟙 (Xℓ ≤ t) 𝟙 (X j ≤ u ≤ t)w∼ j

∗(t)e
βTZ j(t)𝒢″(∫0

t
e
βTZ j(s)

dAn(s))dAn(t)

for ℓ ∈ {d + 1, …, d + k(n)} and πn(u) = n−1∑ j = 1
n 𝟙 (X j ≥ u).
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Figure 1. 
Model selection with Akaike criterion for the bmt dataset. Value of the loglik in relation to 

the choice of parameter r for the logarithmic transformation models (left hand side) and of 

parameter ρ for the Box-Cox class of transformation models (right hand side). First row: 

relapse, second row: death in remission.
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Figure 2. 
Prediction plots for the bmt dataset for different subsets of the 727 female patients. For 530 

female patients the donor was an HLA matched sibling, for 160 female patients the donor 

was HLA matched and unrelated, for 37 female patients the donor was HLA mismatched 

and unrelated.
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