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Abstract
Liquid biopsies collect and analyze tumor components in body fluids, and there is an increasing interest in the in-
vestigation of liquid biopsies as a surrogate for tumor tissue in the management of both primary and secondary 
brain tumors. Herein we critically review available literature on spinal fluid and plasma circulating tumor cells 
(CTCs) and cell-free tumor (ctDNA) for diagnosis and monitoring of leptomeningeal and parenchymal brain metas-
tases. We discuss technical issues and propose several potential applications of liquid biopsies in different clinical 
settings (ie, for initial diagnosis, for assessment during treatment, and for guidance of treatment decisions). Last, 
ongoing clinical studies on CNS metastases that include liquid biopsies are summarized, and recommendations 
for future clinical studies are provided.
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Molecular characterization of tumors is fundamental to modern 
clinical oncology practice. While advanced imaging techniques 
can provide a wealth of valuable information, diagnosis of ma-
lignancy has historically relied on direct microscopic examina-
tion of surgically biopsied tissues and molecular testing of these 

surgical specimens. Due to anatomic considerations, malignan-
cies of the central nervous system (CNS) may not be amenable 
to surgical biopsy, and especially repeated biopsy. However, in 
the era of targeted therapies and molecularly driven clinical de-
cision making, this information has never been more essential: 
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In parenchymal brain metastases, temporally and spatially 
distinct malignancies from a single patient demonstrate 
clonal evolution.1 Molecular assessment of tumor tissues 
to tailor therapy at diagnosis and throughout treatment 
is therefore indispensable. Recent advances in genomic 
sequencing from cell-free fluid samples (“liquid biopsies”) 
present a potential solution when a conventional tissue bi-
opsy is not feasible.2 Liquid biopsies collect and analyze 
tumor components in body fluids, including circulating 
tumor cells (CTCs), cell-free tumor DNA (ctDNA), RNAs 
(ctRNA), and exosomes.

The CNS encompasses 2 distinct anatomic compartments: 
the densely cellular parenchyma and the cerebrospinal fluid 
(CSF)–filled leptomeningeal space (Fig. 1A). Entry into each of 
these compartments is governed by distinct barrier systems: 
the blood–brain barrier (parenchyma) and the blood–CSF bar-
rier (leptomeninges). A priori, this anatomic sequestration 
seems to limit the use of CSF-based liquid biopsy to tumors 
that interface directly with the CSF. However, these 2 com-
partments may not be as anatomically isolated as was once 
thought. Recently, perivascular (Virchow–Robin) spaces that 
communicate with CSF have been found to extend deep into 
the brain parenchyma.3 In addition, newly identified lymphatic 
vessels serving the leptomeningeal compartment4 have been 
discovered to drain into cervical lymph nodes. Together, these 
systems cooperate to provide an alternative means of commu-
nication between the leptomeningeal and parenchymal spaces 
and the systemic circulation (Fig. 1B).

The principal biological fluids relevant for the study 
of CNS malignancies include serum and CSF. Although 
blood collection may be more straightforward, CSF offers 

a number of advantages: Quiescent CSF is paucicellular 
and possesses a low background level of cell-free DNA. In 
addition, the low protein and lipid content, and minimal 
cellularity of this fluid translate to more straightforward 
processing and increased signal-to-noise ratio.5 Moreover, 
CNS tumor–derived ctDNA is poorly detectable in plasma6,7 
and CNS tumor–derived CTCs are found at much lower 
concentrations in peripheral blood than in CSF.8

In this review, the Response Assessment in Neuro-
Oncology (RANO) Leptomeningeal Metastasis and the RANO 
Brain Metastasis Working Groups have critically reviewed the 
literature on CSF and plasma CTCs and ctDNA for diagnosis 
and monitoring of CNS metastases (Fig. 2A), and propose 
potential applications in future clinical studies.

Circulating Tumor Cells

General Concepts on CSF Cytology in 
Leptomeningeal Metastases

The identification of malignant cells in the CSF represents 
an historical standard for the diagnosis of leptomeningeal 
metastases (LM). In the absence of tumor cells in the CSF, 
the diagnosis may also be based on neurological symp-
toms and typical contrast enhancement of the leptomenin-
ges on MRI of brain or spine.9–11 As a diagnostic technique, 
CSF cytology suffers from sensitivity problems, with a sen-
sitivity of 44–67% at first lumbar puncture, increasing to 
84–91% upon repeated sampling.8,12–19 Furthermore, CSF 
cytology results are not always conclusive: The presence 
of so-called suspicious or atypical cells may influence the 
sensitivity and specificity rates.20 In the last decade, new 
assays to detect and quantify CTCs have been developed. 
These include the Veridex CellSearch assay and immuno-
flow cytometry methods.14–19,21,22

Veridex CellSearch Assay

The Veridex CellSearch assay is FDA approved and was 
originally developed for detection of CTCs in blood. 
Epithelial tumor cells are immunomagnetically enriched by 
addition of anti-EpCAM (epithelial cell adhesion molecule) 
ferrofluid (Fig. 2B).23 Subsequently, the sample is immuno-
fluorescently stained with 4′6-diamidino-2-phenylindole 
(DAPI) dihydrochloride for nuclear staining; anti-CD45 
allophycoocyanin to label leukocytes; and anti-cytokeratin 
(CK) 8, 18-phycoerythrin (PE), and anti-cytokeratin 19 phy-
coerythrin (CK-PE) for epithelial tumor cell staining. CTCs 
are defined as nucleated DAPI and CK-PE positive cells 
lacking CD45 expression. Several adaptations of the tech-
nique have been proposed for the detection and quanti-
fication of tumor cells in the CSF.15,17,18,21,24 The CellSearch 
technology can also be used to detect melanoma cells in 
the CSF by using staining for proteins expressed by mel-
anoma cells such as high-molecular-weight melanoma-
associated antigen (HMW-MAA)/melanoma chondroitin 
sulfate proteoglycan (MCSP) and CD146.24 Trained opera-
tors are employed in this system to reduce interreviewer 
discordant results.25–27
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Fig. 1  Anatomic compartments in the central nervous system. (A) 
The CSF-containing leptomeninges comprise the pia and arachnoid 
and enter into perivascular spaces surrounding cortical vessels, the 
Virchow–Robin spaces. (B) Newly discovered lymphatic vessels 
along the dural sinus drain the CSF-filled leptomeninges.
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Immunoflow Cytometry Techniques

An additional method to detect CTCs in the CSF is through 
the use of immunoflow cytometry techniques with fluores-
cently labeled antibodies against membrane-bound tumor 
cell proteins, such as EpCAM for epithelial tumor cells and 
HMW-MAA/MCSP for melanoma.24,27 A  fluorescence acti-
vated cell sorting system is then employed to enumerate 
CTCs. In these assays, immunomagnetic enrichment with 
anti-EpCAM (or anti-MCSP) MicroBeads prior to flow cytom-
etry is used.17,19,28 To distinguish CTCs from leukocytes, anti-
CD45 fluorescein isothiocyanate for leukocyte labeling is 
added. In addition to these markers, some groups use anti-
CD33 to improve differentiation between monocyte/macro-
phages/granulocytes (CD45− CD33+ CD326+) and epithelial 
(tumor) cells (CD45− CD33− CD326+).28,29 Other groups use 
Hoechst 33258 and DRAQ5 for nuclear DNA staining.14,19

Current Research on CSF CTCs in 
Leptomeningeal Metastases

To date, a number of studies have employed CellSearch 
technology or immunoflow cytometry techniques to de-
tect malignant cells in CSF and diagnose LM (Table 1). The 

available studies on CTCs in the CSF of patients with LM 
have reported a sensitivity for detection of CTCs substan-
tially higher than cytology at first lumbar puncture (78–
100% vs 44–67%). Specificity of CTCs has ranged between 
84% and 100%. However, studies reporting the highest 
values have a limited sample size. A  major limitation is 
that most of the studies were performed on either breast or 
lung cancers: Thus, without direct comparison, the utility 
of CSF-CTCs among different epithelial primaries remains 
unknown. Moreover, different EpCAM-based immunoflow 
cytometry methods have been employed across the var-
ious studies.

These techniques are on the verge of full clinical imple-
mentation, although patient numbers in the studies are 
small, and the diagnosis of LM in case of negative CSF cy-
tology is always disputable. Overall, there are sufficient 
data to support adding CTC to standard workup. In general 
one CSF examination, including CTC analysis, is expected 
to be sufficient in the majority of patients with suspicion 
of LM. Fewer than 10% of patients will require additional 
lumbar puncture for diagnosis.15,19,30 Both anti-EpCAM and 
anti–HMW-MAA/MCSP assays do not provide 100% sen-
sitivity, as epithelial tumor cells can lose EpCAM expres-
sion due to epithelial to mesenchymal cell transition31 and 
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Fig. 2  Liquid biopsies. (A) Cerebrospinal fluid contains both cellular and acellular material. (B) Centrifugation isolates cells for circulating tumor 
cell (CTC) analyses. Antibodies against cancer cell surface markers conjugated with ferromagnetic particles enable isolation of cancer cells. These 
cells are further detected with fluorescently conjugated antibodies as part of the CellSearch system. Alternatively, cells may be stained with fluo-
rescently conjugated antibodies against a variety of cell surface markers and enumerated using flow cytometry. (C) Acellular material contains 
extracellular DNA (ctDNA). After isolation by ultracentrifugation, and library preparation, this DNA can be amplified and subjected to analysis of a 
single locus (PCR), or entire exomes, genes, or genomes.
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HMW-MAA/MCSP expression on melanoma cells is only 
85%.27 In light of this, CTCs can be employed as tools for 
high-sensitivity detection, but presence/absence of malig-
nancy is generally confirmed by formal cytology. Large-
scale prospective quantification of the rate of cell surface 
marker loss in epithelial malignancies and melanoma is 
needed.

Besides a higher sensitivity of CTC analysis in CSF 
compared with CSF cytology, an advantage of CTC detec-
tion is that it is quantitative, whereas CSF cytology is 
not. Currently, there are only small patient series that 
performed serial lumbar punctures with quantification 
of CTCs in CSF during treatment.21,24 The results indicate 
that CTC numbers in CSF can potentially be used to mea-
sure treatment response, but additional larger studies are 
needed to validate these findings.

It is currently unknown whether CellSearch technology 
or immunoflow cytometry is the best technique to de-
tect tumor cells in CSF. Similar sensitivity and specificity 
rates are gained with both methods, but no direct com-
parison with adequate power has been done. A drawback 
of the CellSearch technology is that it requires dedicated 

CellSearch reagents and equipment in specialized cen-
tral labs with trained operators.25,26 Benefits are that CSF 
samples can be preserved up to 96 hours in a CellSave 
collection tube before measurement and CellSearch tech-
nology is FDA approved. Furthermore, a predefined tumor 
cell gate is used, which allows fully automatic identifica-
tion and enumeration of CTCs in CSF, which could allow 
an easier and broader application of this technique. On the 
other hand, a benefit of the immunoflow cytometry assay 
for CTC detection is that standard flow cytometry equip-
ment can be used. However, immunoflow cytometry meth-
ods for CTC detection in CSF are not standardized between 
laboratories.

Beyond diagnosis of LM, new CTC detection techniques 
offer the opportunity to isolate single CTCs to enable single 
tumor cell analyses (tumor DNA, RNA, and protein). For 
example, Cordone et al32,33 showed the presence of syn-
decan-1 and MUC-1 overexpression and the putative stem 
cell markers CD15, CD24, CD44, and CD133 on CTCs in the 
CSF of breast cancer patients with LM, possibly related 
to tumor invasiveness. Two groups performed genomic 
sequencing of isolated breast cancer cells in the CSF of 

Table 1  Studies on CSF circulating tumor cells (CTCs) versus CSF cytology in LM

Study Assay N Patient Population Sensitivity  
CTC (95% CI)

Specificity  
CTC (95% CI)

Sensitivity 
Cytology  
(95% CI)

Specificity 
Cytology 
(95% CI)

Patel et al, 2011 C 5 Breast cancer with confirmed LM First pilot study on an (adapted) CellSearch technology for CSF, 
showing that CTCs in the CSF can be quantitatively detected and 
correlate with disease burden and response to chemotherapy

LeRhun et al, 
2012

C 8 Breast cancer with confirmed LM Pilot study showing the identification and quantification of CTCs in 
CSF with an adapted CellSearch technology and its promising role 
to evaluate response to therapy.

Subirá et al,b 
2012

FC 78 Clinically suspected LM and pre-
vious diagnosis of epithelial-cell 
tumors

75.5 (63.5–87.6) 96.1 (88.8–100) 65.3 (52.0–78.6) 100 (100–100)

Nayak et al, 
2013

C 51 Clinical suspicion of LM/solid 
tumors (mainly NSCLC and 
breast cancer)

100 (78.1–100) 97.2 (85.4–99.9) 66.7 (38.3–88.1) Used as gold 
standard

LeRhun et al, 
2013

C 2 Melanoma and confirmed LM Pilot study showing that with an adapted CellSearch method using 
an antibody against melanoma (HMW-MAA), melanoma cells can 
be detected in the CSF.

Lee et al, 2015 C 38 Confirmed LM or clinical suspi-
cion of LM/breast cancer

80.95 (58.1–94.4) 84.62 (54.5–97.6) 66.67 
(43.04–85.35)

Used as gold 
standard

Subirá et al,b 
2015

FC 144 Confirmed LM or clinical suspi-
cion LM, epithelial cell tumors

79.8 (NA) 84 (NA) 50 (NA) 100 (NA)

Tu et al, 2015 C 18 MRI confirmed LM/lung cancer 77.8 (52.4–93.6) 100 (47.8–100) 44.4 (21.5–69.2) Not reported

Acosta et al 
2016

FC 6a Clinical suspicion of LM, 
carcinoma

100 (NA) 100 (NA) Not reported Not reported

Milojkovic 
Kerklaan et al, 
2016

FC 29 Clinical suspicion of LM and 
negative or inconclusive MRI, 
epithelial cell tumors

100 (75–100) 100 (79–100) 61.5 (32–86) 100 (79–100)

Jiang et al, 
2017

C 21 Clinical suspicion of LM, NSCLC 95.2 (NA) 100 (NA) 57.1 (NA) Not reported

Lin et al, 2018 C 95 Clinical suspicion of LM, lung  
(n = 36), breast (n = 31), miscella-
neous (n = 28)

93 (84–100) 95 (90–100) 29 (NA) Not reported

C = CellSearch Veridex; FC = flow cytometry; NA = not available; HMW-AA/MCSP = human molecular weight–melanoma associated antigen/mela-
noma-associated chondroitin sulfate proteoglycan; a = number of samples instead of number of patients; b = study cohorts are overlapping. 
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LM patients showing mutations identical to the primary 
breast cancer as well as new mutations suggesting clonal 
diversity.33,34 A  recent study8 performed on cells isolated 
from CSF of non–small cell lung cancer (NSCLC) patients 
with epidermal growth factor receptor (EGFR) mutations 
or anaplastic lymphoma kinase rearrangements and LM 
has shown that the genetic profiles of CTCs were highly 
concordant with the molecular alterations present in the 
primary tumor (89.5%), and some clinically relevant resis-
tance mutations (EGFR T790M, methionine amplifications, 
Erb-B2 receptor tyrosine kinase 2 [ERBB2] amplifications) 
were uncovered.

Cell-Free DNA

Techniques

Cell-free tumor DNA (ctDNA) is typically collected from 
biological fluids after removal of cells with a low-speed 
centrifugation, followed by removal of cell debris and 
particulate matter with high-speed centrifugation. DNA 
is then extracted using commercially available silica-
column based kits prior to library preparation and sub-
sequent sequencing (Fig. 2C). Technically successful and 
clinically useful analyses require detection of mutations 
at low allelic frequency. For this reason, although plasma 
may contain higher concentration of cell-free DNA, this 
is typically composed of majority normal genomic DNA, 
constituting a high background signal and a technical chal-
lenge. In contrast, DNA extracted from CSF is enriched in 
ctDNA, with a relative absence of genomic DNA. Thus, it 
is possible to call somatic mutations in CSF in the face of 
lower sequence coverage. In practical terms, CSF can be 
collected and stored on ice for up to 3 hours prior to ini-
tial removal of cellular material and long-term storage at 
−80°C. Subsequent ultracentrifugation, DNA extraction, 
library preparation, and sequencing can then be under-
taken in batches. Sequencing approaches have ranged 
from digital PCR and massively parallel targeted exome 
or amplicon sequencing to whole exome sequencing, 
depending on the clinical question.

Current Research on CSF ctDNA in CNS 
Metastases

Published studies on ctDNA in CSF of CNS metastases are 
listed in Table 2.

In the case of parenchymal brain metastases (BM), tar-
geted sequencing of ctDNA from CSF may be more sensi-
tive than plasma to detect known targetable mutations.6,35 
Large-scale genomic characterization demonstrates that 
BM harbor clinically actionable mutations not found in 
matched primary tumors in more than 50% of cases.1 
Investigations are ongoing to determine whether clinically 
actionable alterations are shared by CSF and parenchy-
mal BM. In one study DNA from plasma, CSF, parenchy-
mal tumor samples, and germline DNA from 12 patients 
(6 breast cancer BM, 2 lung cancer BM, 4 glioblastomas) 
were subjected to targeted sequencing.6 Putative clini-
cally actionable drivers in the brain tumors (such as EGFR, 

PTEN, ESR1, IDH1, FGFR2, and ERBB2) were more fre-
quently detected in CSF ctDNA than in plasma. Consistent 
with these findings, Pentsova et  al36 detected clinically 
actionable mutations in the CSF of 20/32 (63%) patients 
with parenchymal brain metastases, while no mutations 
were found in 9 patients without CNS involvement by 
cancer.

Unlike parenchymal brain metastases, LM inhabit the 
anatomic compartment containing CSF: Sampling CSF 
directly samples the relevant space. While sequencing of 
cellular material from CSF yields both normal and cancer 
cell DNA, sequencing of acellular material yields cancer 
cell DNA.36 Lacking the anatomic constraints present in 
parenchymal malignancies, liquid biopsy of the CSF in lep-
tomeningeal metastasis appears highly promising. In the 
case of BRAF-mutated malignancies, ctDNA was isolated 
and sequenced in 3/3 patients with radiographic evidence 
of LM, but in 2/5 patients with only parenchymal BM.35 In 
the case of leptomeningeal metastasis from solid tumor, 
ctDNA was isolated and sequenced from 2/2 patients with 
cytology-proven leptomeningeal metastasis, superior 
to analogous analyses from plasma.37 In addition, K-ras 
mutations were detected in the CSF of 2/2 patients with 
cytology-negative LM.38 Cell-free tumor DNA was success-
fully isolated and sequenced in 100% (n = 11)39 and 92% (n 
= 28)40 of patients with LM from EGFR-mutant NSCLC. This 
was similarly successful in 75% (n = 4) of mixed population 
of LM from different primary solid tumors.36 These success-
ful exome sequencing efforts have led to further advances, 
including quantification of SHP1P2 promoter methylation 
from CSF-derived ctDNA, again demonstrating superior 
sensitivity and specificity compared with traditional cytol-
ogy in patients with LM.41 Formal studies are currently 
under way to leverage ctDNA technology to quantitatively 
describe tumor burden in the leptomeningeal space.

Technical Issues

Although these studies are promising, larger studies are 
needed to validate whether ctDNA sequencing can reliably 
capture the clinically relevant genes found in a patient’s 
CNS cancer. Many studies employ digital PCR or targeted 
sequencing of a limited number of genes, and may not 
represent the full spectrum of clinically relevant onco-
genic drivers. Moreover, copy-number changes and certain 
fusions (eg, anaplastic lymphoma kinase) are technically 
challenging and may be overlooked by standard “off the 
shelf” whole exome sequencing approaches. Finally, reli-
able detection of subclonal resistance mutations in the 
blood or CSF of patients harboring CNS disease has not 
yet been adequately addressed. As technologies and ana-
lytic capabilities improve, expanding the number of genes 
and improving the sensitivity to detect mutations and 
copy-number changes may improve the sensitivity of liq-
uid biopsies in patients with CNS tumors.42,43

We foresee that the majority of centers will not have the 
technical capacity to carry out these analyses in-house 
and samples will necessarily be transported. Issues of 
sample handling, storage, and shipment must there-
fore be addressed. Comparable to the current situation in 
tissue sequencing, there is little consensus as to how these 
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genomic data will be shared with clinicians treating the 
patients. In the research setting, genomic analyses from 
solid tumors are shared as part of cooperative alliances, or 
in the setting of public databases (eg, The Cancer Genome 
Atlas). However, datasets acquired from liquid biopsies 
from CNS malignancies are available only once published 
on an individual basis. The rarity of CNS malignancies 
demands a cooperative consensus approach to sharing 
ctDNA data in a de-identified and accessible manner. While 
specifying the organization and constraints of such an ar-
rangement is beyond the scope of this review, we do sug-
gest that making use of currently available pre-existing 
structures, such as the cBioPortal,44 will allow for wide 
dissemination of this information and rapidly increase the 
rate of discovery.

CTCs versus ctDNA

Thus far, there are a lack of studies comparing the detection 
rate and the clinical usefulness of CTCs and ctDNA in both 
plasma and CSF of patients with CNS metastases. Several 
open issues need to be clarified.45,46 It is unclear which bi-
omarker is the most accurate to capture the genetic pro-
file and represent the spatial and temporal heterogeneity 

of tumors, but it is likely that CTCs and ctDNA provide 
complementary information. For example, single sample 
of ctDNA may not provide complete information on het-
erogeneity of tumor cells in terms of mutational status. 
Conversely, the analysis of the differential phenotypes of 
CTCs could identify the mutational status of specific sub-
populations at the single cell level. Together, these data will 
allow for understanding of genomic and transcriptional 
changes over time under treatment pressure.45

Clinical Applications of Liquid Biopsies

Liquid biopsies may be useful for initial diagnosis, for 
assessment during treatment, and for guidance of thera-
peutic decisions (Table 3).

Several applications at the time of cancer diagnosis are 
attractive: CTC detection shows promise as an additional 
tool for diagnosing leptomeningeal disease when CSF cy-
tology is negative or inconclusive. A  frequent dilemma 
in neuro-oncology arises in cases of patients presenting 
with a surgically inaccessible solitary enhancing mass le-
sion on brain MRI, which can be diagnosed as either me-
tastasis from unknown primary or malignant glioma.47 In 

Table 2  Studies on cell-free DNA sequencing in plasma or CSF of CNS metastases

Study Site of CNS 
Malignancy

n Primary Biological 
Fluid 
Sampled

Sequencing 
Method

CNS Malignancy Mutation 
Detection Rate

Swinkels 
et al, 2000

LM 2 Lung adenocarcinoma CSF Mutant- 
allele- 
specific ampli-
fication (PCR)

KRAS mutation detectable 
in CSF 2/2 (100%)

De Mattos 
et al, 2015

P 12 6 breast cancer, 2 lung cancer, 4 
glioblastoma

CSF plasma Targeted 
sequencing

CNS disease only: 58% 
CSF, 0% plasma; CNS and 
non-CNS disease: 60% 
CSF, 55.5% plasma

Momtaz 
et al, 2016

P, LM 11 Patients with BRAF-mutated 
malignancies

CSF Targeted 
sequencing

BRAF mutations detected 
in CSF of 6/11 (54%)

Pentsova 
et al, 2016

P, LM 41 11 lung cancer, 11 breast cancer, 
6 melanoma, 1 bladder cancer, 2 
gastrointestinal, 2 ovarian, 1 neuro-
endocrine, 2 thyroid, 2 prostate, 2 
renal, 1 sarcoma

CSF Targeted 
sequencing

Mutations detectable in 
CSF of 20/32 (63%) patients 
with parenchymal mets 3/4 
(75%) patients with LM

Marchio 
et al, 2017

LM 2 Lung adenocarcinoma CSF plasma Targeted 
sequencing

KRAS mutations detect-
able in CSF 2/2 (100%)

Siravegna 
et al, 2017

P 1 HER 2 + breast CSF adenocarcinoma CSF plasma Digital 
droplet PCR 
whole exome 
sequencing

ERBB2 
CNYC 
TP53 
PIK3CA

Fan et al, 
2018

LM 11 EGFR-mutated NSCLC CSF Targeted 
sequencing

EGFR mutations detectable 
in CSF 11/11 (100%); muta-
tions were not concordant 
in 1/11 (9%)

Li et al, 
2018

LM 42 EGFR-mutated NSCLC CSF Targeted 
sequencing

EGFR mutations detectable 
in CSF of 92% (n = 28)

Huang 
et al, 2018

LM 1 CUP adenocarcinoma CSF Targeted 
sequencing

HER2 and MPL amplifica-
tion PIK3CA, CDKN2A and 
P53 mutations

Abbreviations:  P = parenchyma; LM = leptomeninges; PIK3CA = phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha; 
HER2 = human epidermal growth factor receptor 2; MPL = myeloproliferative leukemia; CDKN2A = cyclin-dependent kinase inhibitor 2A.
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the future, liquid biopsies (ctDNA) might represent a non-
invasive tool for differential diagnosis in such patients. 
However, feasibility of this approach in clinical practice 
may prove challenging. Sequencing by ctDNA of CSF 
could also be informative in patients with multiple BM, 
who rarely undergo a biopsy, and may harbor different 
mutations in comparison to the primary tumor.

Quantitative ctDNA and/or quantification of CTCs from 
parenchymal and LM from CSF and plasma could allow in 
both BM and LM a more precise quantification of tumor 
burden at baseline for prognostic purposes and for strati-
fication of patients in clinical trials. In this regard, several 
studies in breast cancer have shown correlations of CTCs in 
the peripheral blood with tumor burden and prognosis.48–52 
The number of CTCs at baseline and subsequent determi-
nations were reported to correlate with progression-free 
survival (PFS) and overall survival (OS) in patients with 
metastatic breast cancer.53 Moreover, the correlation with 
OS was most significant when CTCs were measured at 
cancer baseline compared with other stages of disease. 
As with breast cancer, plasma CTCs in prostate54,55 and 
colorectal54 cancer have been utilized with similar cutoff 
values. Quantitative analysis of ctDNA in plasma may also 
have diagnostic and prognostic implications. Several stud-
ies have demonstrated a high concordance between the 
mutational profile of candidate genes in matched tumor 
and plasma DNA samples in patients with breast cancer, 
colorectal cancer, or NSCLC.56–60 In metastatic breast can-
cer, increasing ctDNA levels have been associated with 
inferior survival.61,62 Beyond the potential to estimate 
tumor burden non-invasively, the concordance between 
mutations present in plasma ctDNA and tumor tissue sam-
ples is increasingly important for diagnosis and targeting 
of specific molecular subtypes of solid tumors.

Assessment of residual tumor following surgical resec-
tion of a parenchymal brain metastasis is another poten-
tial application of liquid biopsies. In this scenario, blood 

and CSF samples are collected before and after surgery, 
at the same timepoints, correlating with MRI, to account 
for dynamic alterations in the inflammation and blood–
brain barrier. Collection times must be chosen with care, as 
mechanical tumor spill in the CSF may occur within 2 or 3 
weeks postoperatively. These additional analyses may help 
to better interpret MRI findings in the perioperative period. 
The use of plasma ctDNA to evaluate residual disease fol-
lowing surgery has been already reported in 2 prospective 
colorectal cancer studies. In one, a significant and progres-
sive decrease in plasma ctDNA levels in postoperative 
days was reported.63 In the second, patients with detect-
able plasma postoperative ctDNA demonstrated a 10-fold 
risk of recurrence compared with patients with undetect-
able ctDNA.60 In the case of breast cancer, plasma ctDNA 
detection predicted relapse in early breast cancer follow-
ing surgery alone56 or neoadjuvant chemotherapy.57

Similarly, liquid biopsies might be useful to evaluate 
response in parenchymal brain metastases after local 
treatments such as radiosurgery or fractionated stereotac-
tic radiotherapy. Such information may help clinicians to 
distinguish pseudoprogression or radionecrosis from true 
tumor progression on standard MRI in both clinical trials 
and daily practice.64,65 Prospective studies evaluating the 
changes of CTCs and/or ctDNA following such treatments 
are needed, in combination with standard and advanced 
neuroimaging.

In a related fashion, liquid biopsies may be employed 
to monitor brain and LM following systemic and/or intra-
thecal treatments, and to detect response and progres-
sion earlier than MRI and CSF cytology. For instance, 
O6-methylguanine-DNA methyltransferase promoter 
methylation in serum or plasma has been shown to predict 
response to alkylating agents, such as temozolomide in 
glioblastoma64,66,67 or dacarbazine in metastatic colorectal 
cancer.67 A recent paper68 has reported that ctDNA in CSF 
reflected the clinical course in a patient with BRAF-mutated 
melanoma LM undergoing treatment with dabrafenib and 
trametinib. The mutant ctDNA fraction gradually decreased 
from 53% at the time of diagnosis to 0 at the time of clini-
cal improvement, and mutant ctDNA was again detected 
in CSF at high levels concomitantly with neurological 
deterioration.

The utility of plasma ctDNA to monitor response to tar-
geted agents and emergence of mechanisms of resistance 
has been demonstrated for patients with advanced NSCLC 
or metastatic colorectal cancer harboring EGFR muta-
tions and undergoing treatment with EGFR inhibitors69–71 
or antibody-mediated EGFR blockade.72,73 In patients with 
NSCLC, a reduction in the levels of plasma ctDNA harbor-
ing EGFR mutations was observed in 96% of patients after 
the first treatment cycle, providing an early indication of 
response to treatment, while the emergence of the resis-
tance mutation EGFR T790M was observed in ctDNA before 
clinical disease progression.70 In patients with metastatic 
colorectal cancer, acquired mechanisms of resistance 
(KRAS mutation, MET amplification) were identified in 
blood ctDNA of about one third of patients.72,73

Liquid biopsies could serve to identify drug-resistance 
mechanisms in patients whose primary tumor responded 
to targeted agents but then relapsed in the CNS. In 4 out of 
12 patients with progressive CNS disease during treatment 

Table 3  Potential clinical applications of liquid biopsy in the 
management of CNS metastases

• � Diagnosis of LM when CSF cytology is negative or 
inconclusive

• � Diagnosis of brain metastasis from unknown primary 
tumor or multiple lesions

• � Quantification of residual tumor following surgical 
resection

• � Differential diagnosis between pseudoprogression/radione-
crosis and tumor progression

• � Early indication of tumor response following cytotoxic or 
targeted agents

• � Early diagnosis of tumor relapse

• � Prediction of resistance to targeted agents

• � Monitoring of treatment of resistance mutations with spe-
cific targeted agents

• � Evaluation of prognosis (based on number of cells and mo-
lecular features)

• � Screening in patients at high risk for brain or leptomenin-
geal metastases.
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with inhibitors of oncogenic mutations, Pentsova et  al 
identified drug-resistance mutations in the CSF that were 
not present in the tissue of the primary tumor before treat-
ment.36 Three of 4 patients with an EGFR-mutated NSCLC 
receiving first- or second-generation EGFR inhibitors de-
veloped a T790M mutation (2 patients) or a KRAS G12A 
mutation (1 patient), both common causes of EGFR tyro-
sine kinase inhibitor (TKI) resistance in NSCLC.36 In a fourth 
patient with BRAF V600E mutant melanoma, the acquired 
resistance mutation NRAS G12R was found.74,75 Jiang et al8 
detected the EGFR resistance gene T790M in extracranial 
lesions in 7 of 9 patients. In contrast, this was detected in 
the CSF of only 1 of 14 patients with advanced NSCLC with 
EGFR mutations and LM. This low percentage of T790M 
mutation in the CSF may be related to an incomplete pene-
tration of the TKIs into CSF and/or a spatiotemporal hetero-
geneous distribution of T790M.76–78

Recommendations for Clinical Studies

Prospective studies to validate the clinical utility of liquid 
biopsies (both CTCs and ctDNA) in CNS metastases are 
required. Unlike primary brain tumors, the genomic land-
scapes of both extracranial and intracranial disease are 
clinically relevant in CNS metastasis. Thus, studies should 
analyze tumor genomic sequences obtained simultane-
ously from plasma and CSF, and compare these with those 
of the primary tumor and/or extracranial metastases. Of 
utmost importance will be the correlations between liq-
uid biopsies and intracranial and extracranial disease bur-
den.78 In particular liquid biopsies of plasma could better 
define activity of systemic disease, thus improving stratifi-
cation for trials focused on CNS metastases.

An advantage of liquid biopsies of plasma and CSF is the 
possibility of repeated sampling, capturing cancer’s evolu-
tionary dynamics. Clinically, this will improve monitoring 
under treatment, and evaluation of response and progres-
sion: These tools could allow a more precise definition of 
both intracranial and extracranial PFS. To meet this objec-
tive, additional studies are needed, comparing circulating 
biomarkers with neuroimaging findings and CSF cytology 
at different timepoints. With regard to parenchymal metas-
tases without overt leptomeningeal involvement, factors 
potentially influencing the sensitivity of CSF liquid biopsy 
must be clarified, such as tumor location, size/volume, and 
proximity to the subarachnoid space.

Prospective longitudinal studies should correlate liquid 
biopsy results with survival. In the case of CTCs, small 
series suggest that decreased CTC numbers in CSF dur-
ing LM treatment correlate with treatment response.21,24 
Similarly, large prospective studies are needed to deter-
mine the prognostic value of CTC enumeration in CSF 
at diagnosis. An additional, essential question to be 
addressed includes that of site of CSF sample. In mod-
ern practice, CSF may be sampled from the ventricles 
(Ommaya), cisterna magna, or lumbar cistern. The relative 
characteristics of liquid biopsies obtained from these cites 
of CSF sampling and their relationship to the radiographic 
site(s) of disease should be formally addressed.

With respect to ctDNA, 2 randomized trials of first-
generation TKIs for NSCLC investigated the clinical util-
ity of plasma ctDNA analysis (secondary endpoint) as 
a surrogate for EGFR testing of tissue. The first study79 
demonstrated comparable predictive value of blood and 
tissue molecular biomarkers for PFS and OS prediction. 
The second study80 revealed that baseline EGFR-mutation 
positive patients, who became EGFR negative in plasma 
ctDNA at the end of induction therapy, had a longer 
PFS and OS than those who remained EGFR-mutation 
positive.

Phase 0 and I  trials of CNS metastases should include 
liquid biomarker discovery to define cutoff values for both 
CTC and ctDNA to allow for further validation in phase II 
and III trials. Several observational studies and phases II–
III trials are ongoing in CNS metastases to validate liquid 
biopsy as a surrogate response marker (Table 4).

Conclusions

Applications of liquid biopsies in CNS metastases have 
continued to expand. However, most published studies are 
retrospective and comprise small, heterogeneous patient 
cohorts. Thus, optimal use of the CTCs and/or ctDNA in the 
setting of diagnosis, monitoring, and guidance of treat-
ment decisions has yet to be defined. Now, many ongoing 
clinical trials in patients with brain and LM incorporate lon-
gitudinal CSF and blood collection. An essential question 
is whether liquid biopsy–driven management will translate 
into improved patient outcomes. Ultimately, implemen-
tation of liquid biopsy approaches in clinical practice will 
occur only after well-designed and controlled studies are 
performed.
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