
Estrogens and breast cancer: mechanisms involved in obesity-
related development, growth and progression

Priya Bhardwaj#1,2, CheukMan C. Au#1, Alberto Benito-Martin1, Heta Ladumor1,3, Sofya 
Oshchepkova1, Ruth Moges1, and Kristy A. Brown1,2,4

1.Department of Medicine, Weill Cornell Medicine, New York, USA

2.Graduate School of Medical Sciences, Weill Cornell Medicine, New York, USA

3.Weill Cornell Medicine - Qatar, Doha, Qatar

4.Department of Physiology, Monash University, Clayton, Victoria, Australia

# These authors contributed equally to this work.

Abstract

Obesity is a risk factor for estrogen receptor-positive (ER+) breast cancer after menopause. The 

pro-proliferative effects of estrogens are well characterized and there is a growing body of 

evidence to also suggest an important role in tumorigenesis. Importantly, obesity not only 

increases the risk of breast cancer, but it also increases the risk of recurrence and cancer-associated 

death. Aromatase is the rate-limiting enzyme in estrogen biosynthesis and its expression in breast 

adipose stromal cells is hypothesized to drive the growth of breast tumors and confer resistance to 

endocrine therapy in obese postmenopausal women. The molecular regulation of aromatase has 

been characterized in response to many obesity-related molecules, including inflammatory 

mediators and adipokines. This review is aimed at providing an overview of our current knowledge 

in relation to the regulation of estrogens in adipose tissue and their role in driving breast tumor 

development, growth and progression.

Graphical Abstract

Address Correspondence to: Kristy A. Brown, Ph.D., 1300 York Avenue, Room E-804, New York, NY 10065, 
kab2060@med.cornell.edu, Phone: (646) 962-2895. 

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our 
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of 
the resulting proof before it is published in its final citable form. Please note that during the production process errors may be 
discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

HHS Public Access
Author manuscript
J Steroid Biochem Mol Biol. Author manuscript; available in PMC 2020 May 01.

Published in final edited form as:
J Steroid Biochem Mol Biol. 2019 May ; 189: 161–170. doi:10.1016/j.jsbmb.2019.03.002.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



1. Sources of estrogens in pre- and postmenopausal women

Estrogens play an important role in a number of physiological processes, including 

regulating energy metabolism, stress responses, mineral balance, as well as sexual 

development [1]. In premenopausal women, estrogens are predominantly produced by the 

ovary [2]. The hypothalamus releases gonadotropin-releasing hormone (GnRH), which 

stimulates the secretion of follicle-stimulating hormone (FSH) and luteinizing hormone 

(LH). FSH stimulates the biosynthesis of estrogens in growing ovarian follicles, which then 

act on the hypothalamus to induce the production of LH. An acute rise in LH triggers 

ovulation and the development of the corpus luteum. After menopause, the ovaries produce 

negligible levels of estrogens. The importance of gonadal steroidogenesis in normal breast 

development and in the origin of breast cancer is emphasized by the fact that early 

menstruation and late menopause are linked to a higher risk of breast cancer [3]. Similarly, 

late menarche and early menopause (before the age of 40) result in a significant reduction in 

the risk of developing breast cancer [4]. It is somewhat paradoxical, therefore, that the 

majority of breast cancers occur after menopause, when circulating estrogen levels are low.

The de novo biosynthesis of sex hormones necessitates cholesterol, which is the precursor to 

all adrenal and gonadal steroid hormones [5]. The first process in steroidogenesis is the 

transport of cholesterol to the inner mitochondrial membrane by the steroidogenic acute 

regulator (StAR). Next, cholesterol is converted to pregnenolone by the cytochrome P450 

side-chain cleavage enzyme. The formation of the testosterone precursor androstenedione 

from pregnenolone is dependent on the action of 3β-HSD to produce progesterone and 

CYP17A1, which converts progesterone to androstenedione via a two-step mechanism. 

Androstenedione is then converted to testosterone by 17βHSD enzymes, and can then be 

aromatized to estradiol (17β-estradiol/E2). In postmenopausal women, however, it is 

circulating dehydroepiandrosterone sulfate (DHEA-S) from the adrenals that is the source of 

androgen for estrogen formation at peripheral sites. The local biosynthesis of estrogens 

within the breast [6, 7] and circulating levels of estrogens in blood [8, 9], believed to be a 

reflection of adipose-derived steroid production, are directly associated with driving breast 
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tumor cell proliferation [10]. The intracrinology that occurs in the breast as a result of the 

complex interaction of enzymes responsible for the activation and inactivation of steroid 

hormones has been the focus of many studies to explain the increased risk of breast cancer 

after menopause, when gonadal estrogen biosynthesis has ceased [11, 12]. Specifically, the 

breast expresses all enzymes required for the conversion of DHEA-S to E2, including steroid 

sulfatase, 3β-HSD, 17βHSD1 and aromatase [13, 14]. Of these enzymes, the best 

characterized in terms of its regulation in obesity is the enzyme involved in the rate-limiting 

step in estrogen biosynthesis, aromatase.

2. Aromatase

Cytochrome P450 aromatase (P450arom) is a microsomal enzyme that is expressed in the 

endoplasmic reticulum and catalyzes one of the final steps in estrogen biosynthesis by 

converting 19-carbon steroids (androgens, e.g. androstenedione and testosterone) to 18-

carbon steroids (estrogens, e.g. estrone and estradiol) [15]. Aromatase is found in many 

tissues, including the gonads, brain, adipose tissue, placenta, blood vessels, skin, bone and in 

breast cancer tissue [16]. Its expression in breast adipose is hypothesized to be a major 

driver of estrogen-dependent breast cancer after menopause. The aromatase (CYP19A1) 

gene is located on chromosome 15q21.2 and is approximately 123kb long with nine coding 

exons (II-X) and a 93kb regulatory region.

Eight tissue-specific promoters regulate the expression of the CYP19A1 gene yielding 

transcripts with unique 5’-untranslated regions [17]. These are promoters I.1 (placenta 

major, « 93kb), I.2a (placenta minor, « 78kb), I.4 (skin, adipose tissue and bone, « 73kb), I.7 

(endothelial cell and breast cancer, « 36kb), I.f (brain, « 33kb), I.6 (bone, « 0.7kb), I.3 

(adipose tissue and breast cancer, « 0.2kb) and II (ovary, adipose tissue, breast cancer and 

endometriosis, within 1kb) [15, 17]. In normal breast adipose tissue, low levels of aromatase 

are derived from activation of the distal promoter I.4, known to be regulated by 

glucocorticoids and class 1 cytokines, such as interleukin 6 (IL-6), interleukin 11 (IL-11), 

leukemia inhibitory factor (LIF) and oncostatin M (OSM), via the Janus kinase-1/signal 

transducer and activator of transcription 3 (JAK1/STAT3) pathway [18]. Promoter I.4 is also 

activated by the inflammatory mediator tumor necrosis factor alpha (TNFα), via the 

mitogen-activated protein (MAP) kinase-AP1 pathway [18]. However, in the breast adipose 

tissue of women with breast cancer, the majority of transcripts are derived from the 

coordinated activation of promoters I.3 and II in a cAMP-dependent manner [18, 19].

2.1 Aromatase regulation in obesity

The prevalence of obesity has been steadily rising worldwide, and there is now strong 

evidence to support a causal link between obesity and the development of many cancers, 

including breast, ovarian, renal, pancreatic, leukemia, multiple myeloma, and esophageal 

cancers [20–25]. For breast cancer, the link is strongest for postmenopausal women and for 

the development of ER+ breast cancer, suggesting an important role of estrogens in driving 

obesity-associated breast cancer growth and development [20, 24]. After menopause, 

adipose tissue is the primary source of estrogen production in the body [26–28]. 

Interestingly, BMI is found to be positively associated with tissue levels of estrogens [29, 
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30]. Therefore, as fat mass increases with increasing body weight, aromatase expression and 

consequently estrogen levels, are also elevated, an effect that is more prominent in 

postmenopausal women [31–37].

A number of studies have further explored the positive association between obesity and local 

estrogen production by highlighting specific factors dysregulated in obese adipose tissue that 

induce aromatase expression in adipose stromal cells (ASCs) (Figure 1). Following up on 

the seminal findings that proinflammatory mediators and cytokines (e.g. PGE2, TNFα, IL-1, 

IL-6, COX-2) play key roles in regulating estrogen production in ASCs [18, 19, 38–42], 

several recent mechanistic studies have provided greater insight into the regulation of 

aromatase by some of these factors in obese adipose tissue. For example, using both cell 

culture and clinical samples Wang et al. showed that p53 is a negative regulator of aromatase 

expression in ASCs and treatment with PGE2, which is elevated in obesity, inhibits p53 

resulting in elevation in aromatase [43]. PGE2 was also shown to stabilize HIF1α, leading to 

the binding and stimulation of aromatase PII [44]. More recently, Subbaramaiah et al. found 

that PGE2 downregulates SIRT1 in a human ASC cell line leading to the upregulation of 

HIF1α [45]. Further supporting the role of PGE2 in induction of aromatase, IL-6 in sera 

from obese subjects was found to induce breast cancer cell PGE2 secretion, which in turn 

induced aromatase expression in primary ASCs. This effect was nullified by both depletion 

of IL-6 from sera or treatment with celecoxib, an inhibitor of the enzyme COX-2 which 

catalyzes the conversion of arachidonic acid to PGE2 [46]. These findings provide a new 

level of complexity regarding the role of IL-6 in regulating aromatase expression in ASCs, 

as previous findings demonstrated that it can increase the activity of promoter I.4 in the 

presence of the IL-6 soluble receptor [18]. Adipokines have also been examined for their 

role in regulating aromatase.

Leptin, an adipokine increased in obesity, inhibits p53 in human breast derived ASCs, 

leading to an increase in aromatase expression [47]. This finding complemented prior work 

demonstrating that PGE2 and leptin stimulate aromatase expression by suppressing the 

activity of energy sensors LKB1/AMPK, thereby alleviating their suppressive effects on 

CREB-regulated transcriptional co-activators (CRTCs) which stimulate aromatase [48, 49]. 

Interestingly, LKB1 and AMPK are stimulated by adiponectin, an adipokine produced by 

healthy adipocytes, leading to suppression of the PII-specific expression of aromatase. This 

suggests that AMPK-activating drugs may selectively inhibit aromatase in adipose tissue, 

including breast. More recently, the orexigenic hormone ghrelin and its unacylated form, 

des-acyl ghrelin, which are reduced in obesity, were also shown to suppress PII-driven 

aromatase expression mediated via suppression of cAMP [50].

The regulation of PI.4 has also been examined in the context of obesity. Promoter I.4-

specific transcripts, present in adipose tissue, can be stimulated by inflammatory mediators, 

including IL-6, IL-11, leukemia inhibitory factor, oncostatin M, as well as TNFα [51, 52]. 

Using preclinical models and human breast tissue, the TNFα-mediated induction of 

aromatase was shown to require ERK1/2 activation, an effect that was blocked by the anti-

inflammatory cytokine IL-10 [53]. Taken together, these studies propose new mechanisms 

that explain the elevation in estrogen produced by breast adipose tissue in obese 

postmenopausal women.
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It is important to highlight that since aromatase is produced by dysfunctional breast adipose 

tissue, obesity as defined by BMI may not be the best predictor of local estrogen levels since 

it does not account for volume of body fat or quality of fat. For example, a recent study 

found that breast white adipose tissue inflammation and other systemic correlates of 

metabolic syndrome (e.g. leptin) were strongly correlated with aromatase expression and 

activity in women with a normal BMI (≤24.9 kg/m2)[54]. In a prospective study of 12,159 

postmenopausal women in Sweden, body fat % was a better predictor of breast cancer 

incidence than BMI [55]. It is possible that this discrepancy is due to body fat % being a 

superior readout of estrogen levels which are closely tied to breast cancer risk.

3. Estrogens, estrogen receptors and breast cancer

Estrogens have been shown to function predominantly by interacting with two estrogen 

receptors (ERs), ERα and ERβ [56]. Estrogen receptors are fundamental for mammary 

gland maturation and physiological events such as puberty and pregnancy. ERα is found in 

nearly 50-80% of breast cancers, and its expression correlates with better prognosis and a 

lower chance of recurrence [57, 58]. ERβ has also been detected in breast tumors, and is 

suspected to contribute to hormonal sensitivity and resistance [59, 60]. Studies show 

decreased ERβ RNA levels in invasive breast cancers in comparison with the normal 

mammary gland [60]. Although the role and mechanism through which decreased ERβ 
expression results in tumorigenesis is unknown, results from several studies suggest a 

stimulatory role of ERα and an inhibitory role of ERβ in relation to proliferation of 

estrogen-dependent cells [61, 62].

3.1 Estrogens as mutagens and effects on breast epithelium

Estrogens are a significant driver of ER+ breast cancer, with studies suggesting a role in ER

− breast cancer as well [63–65]. Neighboring the estrogen-producing ASCs are breast 

epithelial cells, which are hormone-sensitive and express the ER. Estrogens play an 

important in role in the normal development of breast epithelium by stimulating proliferation 

and ductal morphogenesis [66]. However, when exposed to high levels of estrogens such as 

in the setting of obesity, the pro-proliferative effect of these steroids may cause accumulation 

of replication errors leading to mutations and the development of breast cancer (Figure 2). 

Proliferating cells also have higher energy demands that require increased mitochondrial 

activity, which could potentially lead to an elevation in reactive oxygen species (ROS) as a 

byproduct of cellular respiration. Felty et al. found that estradiol can directly stimulate the 

production of intracellular ROS from mitochondria in several breast cancer cell lines [67].

Additionally, estrogens can be metabolized to catechols followed by further oxidation to 

semi-quinones and quinones through a process of redox cycling that produces ROS. This is 

important in the context of tumorigenesis because estrogen quinones are mutagenic and can 

interact directly with DNA to form adducts, a form of DNA damage [68–70]. Several studies 

have shown that treating normal breast epithelial cells (MCF-10A) with estrogen metabolites 

induces elevation in intracellular ROS leading to oxidative DNA damage [71–73]. By 

interacting directly with DNA, estrogen metabolites do not require the estrogen receptor to 

exert their mutagenic effects, which may explain the role of estrogen in promoting some ER
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− breast cancers. Indeed, Savage et al. found that estrogen and estrogen metabolites caused 

DNA double strand breaks (DSB) in both normal breast epithelial cells and ER− breast 

cancer cells [74]. Given the abundance of evidence for mutagenic and mitogenic effects of 

estrogens, the obesity-induced elevation in local estrogen production is likely to drive DNA 

damage in breast epithelial cells leading to a greater risk of tumorigenesis.

Interestingly, there is a growing body of literature implicating estrogens in the disruption of 

the DNA damage response (DDR) and DNA repair machinery. For example, some studies 

have indicated that ERα downregulates ATM and ATR, important initiators of the DDR [75–

77]. This is hypothesized to result in defective processing of DNA damage. The mechanisms 

by which estrogen signaling alters DDR and DNA repair has been reviewed in detail [78] 

and provides a novel theory for how estrogens promote breast cancer, i.e. not only by 

inducing DNA damage but also potentially diminishing the cell’s ability to sense and repair 

damage.

3.2 Mechanism of breast cancer growth in response to estrogen

In breast cancer, estrogens can act via genomic and non-genomic mechanisms. Genomic 

actions of ERs are associated with the regulation of estrogen-response element (ERE)-

dependent and ERE-independent gene expression [79–81]. In ERE-dependent genomic 

activation, estrogen binding to its receptor is associated with increased interaction with 

coactivator proteins in order to bind to the ERE in DNA, resulting in changes in gene 

expression that regulate growth, differentiation, apoptosis and angiogenesis [80]. However, 

estrogens can also facilitate gene transcription via pathways that do not require EREs. In 

ERE-independent genomic activation, the estrogen-ER complex can also interact with other 

DNA bound transcription factors such as Fos/Jun in order to bind to AP-1 or SP1 sites in the 

promoter regions of target genes, thereby resulting in activation of gene transcription [79, 

81].

Non-genomic effects are actions mediated via activation of ER localized closely to or at the 

plasma membrane [82–84]. Membrane-associated ER may interact with many proteins 

including adaptor proteins, G-proteins, Src, growth factor receptors (EGFR, IGFR1, HER2), 

cytoplasmic kinases (MAPKs, PI3K, AKT) as well as signaling enzymes (adenyl cyclase) 

[85–89]. The actions mediated by this mechanism are independent of gene transcriptional 

changes [85–89].

Recent findings show that non-genomic effects also involve the orphan GPCR-like protein, 

GPR30 (G protein coupled receptor 30) [90, 91]; also named GPER [92]. It has been 

reported that estrogens can act on membrane GPER in order to stimulate release EGF or 

EGF-related ligands leading to a transient activation of the EGFR, which in turn activates 

MAPK and PI3K signaling pathways [93, 94]. Interestingly, activation of GPER leads to the 

stimulation of adenylyl cyclase activity and increases in cAMP formation, which then leads 

to a marked inhibition of cell proliferation [95]. It is hypothesized that GPR30 inhibits 

MAPK activity and can also increase intracellular calcium stores, resulting in apoptosis and 

inhibition of MCF7 cell proliferation [96, 97]. Thus, GPR30 could be a novel potential target 

for ER+ breast cancers.
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There is also an important cross-talk between ER genomic and non-genomic signaling 

pathways. Estrogen binding to nuclear ER can increase transforming growth factor (TGFα) 

and amphiregulin expression. Once TGFα and amphiregulin are bound, they stimulate 

EGFR in order to activate MAPK and AKT [79, 81, 98]. Conversely, several cytokines, 

growth factors, EGFR ligands and IGF1R-related pathways activate MAPK/ERK, PI3K/

AKT, p90rsk and p38 MAPK, which lead to ER phosphorylation. The phosphorylation of 

the AF-1 serines 118,167 and threonine 311, or other domains, results in the activation of 

ER [99–103].

Both genomic and non-genomic signaling pathways of the ER play a critical role in breast 

cancer development, progression, and survival. This is due in part to the regulation of the 

anti-apoptotic gene BcI2, pro-apoptotic gene caspase and cell cycle regulator cyclin D1 

[104–106]. Additionally, estrogens increase the growth of breast tumors by increasing the 

number of G0/G1 cells entering into the cell cycle, therefore resulting in greater proliferation 

[107, 108]. Moreover, PI3K interacts with Src in order to promote S-phase entry of MCF7 

cells in the presence of estradiol [109].

3.3 Role of estrogens in breast cancer metastasis

Estrogens have also been shown to influence breast cancer progression. For example, 

estrogen treatment has been shown to cause cytoskeletal remodeling, and contribute to 

cancer cell migration and invasion in vitro [110]. As mentioned above, estrogens not only 

influence the etiology of ER+ breast tumors, but also of ER− breast cancers. In ER− breast 

cancer cells, estrogen actions on GPER1 lead to increased invasion and migration, 

promoting a prometastatic phenotype [111]. ERα splice variants have also been shown to 

mediate extra-nuclear effects of estrogens through activation of PKC signaling pathway and 

promote metastasis in ERα-positive and ERα-negative breast cancer cell lines [112]. 

Estradiol-induced proteins like G1P3 are able to rescue cells undergoing anoikis [113], 

favoring prometastatic estrogenic effects. Estradiol-induced expression of Proteinase 

Inhibitor-9 (PI-9) with inhibitory activity against Granzyme-B contributes to breast cancer 

immune escape [114]. Another estrogen contribution to metastasis is related to premetastatic 

niche formation and bone marrow derived myeloid (BMD) cells recruitment. ERα 
expression in BMDs is necessary for estrogen-mediated tumor promotion of ER− breast 

cancer [115]. Estrogens might contribute to BMD recruitment through VEGF-A and/or 

SDF1α that were previously described as downstream mediators of estradiol/ER-induced 

angiogenesis and macrophage chemotaxis, respectively. Sartorius et al. demonstrated that 

estradiol promotes brain metastasis of ER− breast cancer cells by modulating astrocyte 

function, suggesting that existing endocrine therapies may provide some clinical benefit 

towards reducing and managing brain metastases in patients with ER− breast tumors [116].

A number of epidemiological studies supports these laboratory-based studies. For example, 

endocrine therapy has been shown to decrease the risk of developing ER+ contralateral 

breast cancer [117]. Interestingly, in this study, the authors found that patients on 

antiestrogen therapy presented a higher risk of contralateral ER− breast cancer. In a 

retrospective analysis of metastatic behavior of breast cancer subtypes [118], data 

demonstrate that women with ER+ tumors are more likely to develop bone metastases and 
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have improved disease-free survival compared to women who have ER− tumors. Their study 

support a close relationship between ER+ tumors and metastasis-specific survival, a finding 

that is consistent with data from previous studies [119].

4. Endocrine therapy

ERα and progesterone receptor (PR) expression have the greatest predictive value for 

response to hormonal therapy [120]. Despite breast cancer being the most commonly 

diagnosed cancer among women, cancer-related mortality rates are declining, in part, due to 

advances in adjuvant therapy [121]. Endocrine or hormonal therapies, including aromatase 

inhibitors, have revolutionized treatment for breast cancer patients. Current endocrine 

therapy holds major therapeutic value, especially for ER+ breast cancer patients.

4.1 Tamoxifen

The initial findings by George Beatson regarding the important role estrogen plays in breast 

development have served as the basis for research, development, and discovery of tamoxifen 

in 1967 by Harper and Walpole [122, 123]. Tamoxifen is a selective ER modulator (SERM) 

used to treat estrogen-dependent breast cancer and reduce the risk of cancer recurrence in 

premenopausal and postmenopausal women [124]. This drug was approved by the food and 

drug administration (FDA) in 1998 and is known by the brand names Nolvadex and 

Soltamox. Tamoxifen is a non-steroidal antiestrogen with triphenylethylene structure [125]. 

As a prodrug, tamoxifen has little affinity for the ER. It is metabolized in the liver into an 

active metabolite, 4-hydroxytamoxifen [126] which acts as an antagonist of the ER in breast 

tissue, leading to the inhibition of binding with coactivator proteins, thereby blocking the G1 

phase of the cell cycle and preventing cell proliferation. Another tamoxifen metabolite 4-

hydroxy-N-desmethyl tamoxifen (endoxifen) is present at greater concentrations in plasma 

than 4-hydroxytamoxifen, and thus may be just as important, if not more, to the anti-

estrogenic action of tamoxifen [127, 128].

In ER-positive breast cancer, most clinical studies demonstrate that tamoxifen should be 

taken continuously for five years or ten years. According to the worldwide Adjuvant 

Tamoxifen: Longer Against Shorter (ATLAS) trial, it was suggested that patients who are 

treated with tamoxifen for ten years have reduced risk of breast cancer recurrence and 

cancer-associated death compared with patients who are treated with tamoxifen for only 5 

years [129]. Another clinical trial, the aTTom trial, showed that patients who were 

continuously treated with tamoxifen for ten years also had significantly reduced risk of 

breast cancer recurrence compared with patients who took tamoxifen for 5 years [130]. 

Although tamoxifen treatment helps to reduce the risk of cancer recurrence, side effects, 

including endometrial and uterine cancers [131, 132], loss of blood flow to parts of the brain 

and significant loss of bone mineral density in premenopausal women [125, 133], have been 

reported, thereby highlighting a need for safer alternative therapies.

4.2 Fulvestrant

Fulvestrant (ICI 164384) is a selective ER degrader (SERD). It is classified as a pure 

steroidal antiestrogen (European medicines agency, brand name Faslodex) [134]. It is a class 
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of drug that targets estrogen receptors approximately 100 times faster than tamoxifen [134] 

and immediately causes degradation of the ER in breast cancer cells which reduces their 

ability to be activated by estrogen as well as the ability of ER to be activated via estrogen-

independent mechanisms [135]. The loss of the estrogen receptor in breast cancer results in 

inhibition of breast cancer cell growth. In vitro, fulvestrant inhibits the growth of tamoxifen-

resistant ER positive MCF7 breast cancer cells [136]. In vivo, fulvestrant also inhibits 

tamoxifen-resistant and ER positive MCF7 breast cancer xenografts [137]. In clinical 

studies, a correlative downregulation of ER with increasing dose was observed in 

postmenopausal women with primary breast cancer treated with single doses of fulvestrant 

for 15-22 days before surgery [138].

The FDA has approved this drug for the treatment of hormone receptor-positive metastatic 

breast cancer. Breast cancer patients receive this therapy once a month via intramuscular 

injection [139]. However, side effects such as diarrhea, hot flushes and throat inflammation 

have been reported that can affect the quality of life of breast cancer patients [140]. It is 

recommended for use in postmenopausal women who cannot be effectively treated with 

tamoxifen or aromatase inhibitors, as fulvestrant acts independently of estrogens [141–144].

4.3 Aromatase inhibitors

Aromatase inhibitors (AIs) are a class of drugs that block the action of the aromatase 

enzyme [145] in order to reduce the amount of estrogen in the body. There are two types of 

AIs, irreversible steroidal inhibitors such as exemestane (brand name, Aromasin®) [146], 

and non-steroidal inhibitors such as anastrozole (brand name, Arimidex®) [147] and 

letrozole (brand name, Femara®) [148]. These three inhibitors were all approved by the 

FDA and most clinical studies prove that treating breast cancer with exemestane [149], 

anastrozole [150] or letrozole [151] highly reduces breast cancer recurrence compared with 

tamoxifen treatment. The levels of FSH increase as a consequence of estrogen suppression. 

For this reason, AIs are contra-indicated in premenopausal women as use can lead to the 

development of polycystic ovaries and incomplete inhibition of ovarian estrogen 

biosynthesis. AI use is also associated with well-documented side effects such as 

osteoporosis [152], joint and muscle pain [153, 154] and hot flushes [155] because of the 

whole-body inhibition of aromatase and estrogen production.

5. Endocrine resistance

While endocrine therapy has enhanced the lives of many breast cancer patients, emergence 

of resistance is inevitable with advanced breast cancer and is to be expected over time. 

Endocrine resistance in cancer cells can be divided broadly into two main categories – de 
novo and acquired resistance. Breast tumors that show no response to first line hormonal 

therapy are examples of de novo resistance. On the other hand, tumors that exhibit a 

response initially to endocrine therapy, but then later recur are examples of acquired or 

secondary resistance.

Endocrine resistance may be considered to reflect four possible mechanisms: 1) 

Pharmacological resistance; 2) Changes in expression of ERα and its co-regulators; 3) 
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Alterations in expression of cell cycle signaling molecules; 4) Alternate growth receptor 

pathways, which is especially relevant in the context of obesity.

The first possible theory for developing hormonal resistance is by means of pharmacological 

mechanisms. As previously mentioned, tamoxifen is a pro-drug that undergoes extensive 

oxidation in the liver, primarily by CYP3A and CYP2D6 [126]. However, polymorphisms in 

tamoxifen-metabolizing genes affect the efficacy of the enzymes and thus plasma 

concentrations of the active metabolites of tamoxifen. Retrospective clinical data suggests 

that women with CYP2D6 4*/4* genotype have null or reduced enzyme activity, resulting in 

higher risk of tumor relapse [156].

The second possible mechanism for developing endocrine resistance is through mutations in 

the ESR1 gene, which encodes ERα. Expression of ERα has long been used to predict 

clinical response to anti-estrogen therapy. The mutations mainly occur at two residues in the 

ligand-binding domain, which replaces tyrosine with serine or asparagine at residue 537 and 

replaces aspartic acid with glycine at residue 538 [157]. A study found a mutation rate of 

12% among 76 patients with metastatic ER+ breast cancer, and a 20% mutation rate among 

individuals with heavily pretreated disease [158]. Analysis of ESR1 mutations was 

performed on plasma samples from patients participating in the PALOMA3 and SoFEA 

studies, and a mutation rate of 25% was observed in patients with breast cancer progression 

on endocrine therapy, and an even higher mutation rate of 29% in patients who received 

prior AI therapy [159]. Similarly, a mutation rate of 39% was detected in patients with prior 

AI sensitivity. These findings suggest that although ESR1 mutations are a rare cause of 

primary endocrine resistance, the mutations arise more commonly with acquired secondary 

resistance to AI therapy [159]. Several studies have sought to clarify the role of ERβ, if any, 

in relation to response and resistance to endocrine therapy. Despite some conflicting 

evidence, it has been suggested that low levels of ERβ expression are related to tamoxifen 

resistance [59].

Additionally, overexpression of the ER co-activator AIB1 (or SRC3 or NCoA3) and down 

regulation of the co-repressor NCoR is associated with tamoxifen resistance [160–162]. 

Finally, increased levels of transcription factors such as NFkB and AP-1, which increase the 

interaction of ER with specific gene promoters, have also been linked to endocrine 

resistance [163, 164].

Endocrine resistance can also occur as a result of alterations in key cell cycle checkpoints 

[165]. The cell cycle involves a complex sequence of events through which a cell duplicates, 

and involves many regulatory proteins such as cyclin proteins, and cyclin-dependent kinases, 

oncogenes and tumor-suppressor genes, and mitotic checkpoint proteins. The balance of 

proliferative and anti-proliferative signals determines if a cell will progress from the G1 

phase to the S phase, or withdraw into the dormant phase [166]. Anti-proliferative signals 

are communicated via the retinoblastoma (Rb) tumor suppressor protein, while Rb itself is 

regulated via complexes of cyclin and cyclin-dependent kinases [167]. Cyclin-dependent 

kinase 4, in complex with cyclin D1, D2 or D3, controls the phosphorylation of Rb, which in 

turn regulates the progression of the cell from G1 to S phase [168]. By means of CDK4 

inactivation, or cyclin D1 and E1 amplification, tumor cells are able to circumvent cell cycle 
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regulation [169, 170]. Interestingly, cyclin D1 amplification is a common occurrence in 

estrogen-receptor positive breast cancers with 58% and 29% incidence rate in luminal B and 

luminal A cancers, respectively (Cancer Genome Atlas Network, 2012). Similarly, reduced 

expression of p21 and p27 (negative cell cycle regulators) and inactivation of Rb are also 

associated with poor response to hormonal therapy, especially tamoxifen [171, 172]. As a 

result, endocrine therapy and CDK4/6 inhibitors, in combination or sequentially, are now a 

viable option for the treatment of hormone receptor-positive breast cancer as a first line 

therapy and following development of resistance to endocrine therapy [173].

Another possible mechanism for developing endocrine resistance is by the means of 

enhanced autophagy, which is an intracellular process that recycles damaged or unnecessary 

organelles (macroautophagy) or proteins (microautophagy). Under conditions of 

compromised autophagy, it was noted that cytotoxic effects of 4-hydroxytamoxifen (4-OHT) 

were significantly increased [174]. Inhibition of autophagosome function stimulated a strong 

caspase-dependent cell death in the 4-OHT treated, anti-estrogen resistant cells [174, 175]. 

Thus, impaired autophagy increases sensitivity to endocrine therapy, and inhibition of the 

autophagosome may be a potential target to overcome resistance and improve efficacy of 

hormonal treatment of ER+ breast cancers.

Finally, overexpression and amplification of growth factor receptors, such as FGFR1 

(fibroblast growth factor receptor -1), IGF1R (insulin growth factor -1 receptor), HER2 

(human epidermal growth receptor -2), HER3 (human epidermal growth receptor -3), and 

EGFR (epidermal growth factor receptor) [176–179], which converge on the PI3K/Akt/

mTOR and Raf/Mek/Erk pathways, have been shown to be associated with sustained tumor 

proliferation and survival independent of estrogen [176–179]. These pathways provide 

alternative survival stimuli to the tumors, and can emerge to act as ER-independent drivers 

of tumor growth, thus conferring resistance to endocrine therapy. In addition, these pathways 

can be activated by amplification of the receptors and/or their respective ligands. 

Alternatively, deregulation of downstream signaling molecules such as an activating 

mutation in the PI3K p110 catalytic subunit or the loss of expression of PTEN tumor 

suppressor can also lead in activation of the pathways [180].

5.1 Endocrine resistance in obesity

Several studies have shown that obese women are more likely to face a poor breast cancer 

prognosis as compared to lean women, and a greater chance of breast cancer recurrence 

[181–183]. In the Anastrozole, Tamoxifen Alone or in Combination (ATAC) [150, 184, 185] 

and Australian Breast Cancer Study Group (ABCSG)[186] trials there was evidence that the 

relative benefit of anastrozole vs. tamoxifen was greatest when BMI was normal vs. 

elevated. A 2014 meta-analysis concluded that there is an association between BMI and 

outcome, and that there is increased risk of mortality in individuals with BMI over 25 kg/m2 

at diagnosis [187]. Different studies have evaluated the efficacy of AI inhibitors in 

suppressing circulating estrogen levels and its relation with BMI. Interestingly, Elliott et al. 
found that BMI and estradiol were higher in metastatic patients [188], and Lonning et al. 
showed that estrone levels positively correlate with BMI in women receiving AIs [189]. In a 

study by Sestak et al., obese women were less likely to observe benefits of AI treatment 
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despite a significant reduction in circulating estrogens [190]. Therefore, it seems that higher 

BMI may contribute to reduced efficacy of AIs.

Many circulating factors found in the serum of obese postmenopausal women can amplify 

crosstalk between nongenomic ERα signaling and PI3K/Akt/mTOR and Raf/Mek/Erk 

pathways which promotes breast cancer progression [191]. For example, cells grown in 

media supplemented with sera from obese patients have greater IGF-1R activation in 

comparison to control sera [191]. As mentioned previously, FGFR1 is a known mediator of 

endocrine therapy resistance [177, 179, 192]. The FGFR1 regulatory pathway is one of the 

pathways that shows shared activation in patients with obesity and those with resistance to 

AI therapy [193]. Phosphorylation of FGFR1 and FGFR1 ligand expression is increased 

with obesity, metabolic dysfunction, weight gain and adipocyte hypertrophy [193]. Weight 

gain leads to a positive energy balance, and in the context of obesity/metabolic dysfunction, 

promotes FGFR ligand production from adipose tissue, which may also result in the 

activation of receptors in nearby breast cancer cells to promote growth after estrogen 

deprivation [193]. Leptin has also been shown to induce cell proliferation through activation 

of MAPK signaling, and its receptors are expressed in both normal breast tissue and solid 

tumors [194]. Additionally, leptin can mimic the effects of ERα transactivation in an ER+ 

breast cancer cell line, including down-regulation of ER mRNA and protein levels and up-

regulation of the estrogen-dependent gene pS2 [195]. Since serum leptin concentrations are 

correlated with the percentage of body fat [196], obese individuals have a higher chance of 

developing endocrine resistance due to the mechanism described above. Moreover, leptin 

stimulates the expression of aromatase through enhanced binding of CREB, CRTC and AP-1 

to specific sites in the promoter region [48, 197], thus amplifying in situ production of E2 

and driving breast tumor growth.

Nevertheless, a number of studies found no association between BMI and breast cancer 

outcomes. Coscia et al. showed a reduction in plasma estrone and estradiol following 

anastrozol treatment, but no significant changes in steroid concentration in association with 

BMI [198]. Two recent studies showed no significant relationship between high BMI and the 

efficacy of two different aromatase inhibitors [199, 200]. In a cohort where more than two 

thirds of postmenopausal women receiving adjuvant letrozole therapy were obese, there was 

no association for worse outcome in the obese women compared with lean women receiving 

the same treatment [200]. Zewenghiel et al. found no statistically significant difference 

between the three BMI categories (normal weight, overweight and obesity) and time to 

progression during fulvestrant treatment in their 173 patient cohort [199]. Therefore, 

additional studies are required to determine which patient group and/or treatment may be 

impacted by BMI before altering disease management.

6. Conclusions and future directions

Obesity is now an established risk factor for breast cancer in postmenopausal women. The 

local production of estrogens in the breast adipose tissue is suspected to be a key driver of 

breast cancer development and growth, and a mediator of resistance to endocrine therapy. 

Additional factors in obesity are also important for disease development and progression, 

and a better understanding of the mechanisms at play will inform management of breast 
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cancer in an increasingly obese female population. Additional studies are also required to 

determine whether pharmacological or lifestyle interventions will reduce the risk of breast 

cancer development and progression in this obese population.
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SBMB_2019_10 Manuscript Highlights

• Obesity is linked to an increased risk of developing hormone receptor positive 

breast cancer

• Estrogens stimulate cancer development, growth and progression

• The local production of estrogen in adipose tissue drives the growth of breast 

cancer after menopause
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Figure 1: 
Molecular regulation of aromatase in obesity.
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Figure 2: 
Estrogens and tumorigenesis.
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