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Abstract

Mood disorders, including major depression, bipolar disorder, and seasonal affective disorder, are 

debilitating disorders that affect a significant portion of the global population. Individuals 

suffering from mood disorders often show significant disturbances in circadian rhythms and sleep. 

Moreover, environmental disruptions to circadian rhythms can precipitate or exacerbate mood 

symptoms in vulnerable individuals. Circadian clocks exist throughout the central nervous system 

and periphery, where they regulate a wide variety of physiological processes implicated in mood 

regulation. These processes include monoaminergic and glutamatergic transmission, 

hypothalamic-pituitary-adrenal axis function, metabolism, and immune function. While there 

seems to be a clear link between circadian rhythm disruption and mood regulation, the 

mechanisms that underlie this association remain unclear. This review will touch on the 

interactions between the circadian system and each of these processes and discuss their potential 

role in the development of mood disorders. While clinical studies are presented, much of the 

review will focus on studies in animal models, which are attempting to elucidate the molecular and 

cellular mechanisms in which circadian genes regulate mood.
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1 | INTRODUCTION

Mood disorders, such as major depression, bipolar disorder, and seasonal affective disorder, 

are highly prevalent and debilitating disorders. Circadian rhythm and sleep disturbances are 

one of the major diagnostic criteria for these disorders. Individuals with mood disorders 

display altered rhythms in activity, sleep/wake, blood pressure, and hormone secretion 

(McClung, 2007). Furthermore, many drugs used for the treatment of mood disorders shift 

or stabilize circadian rhythms, which may be important for their therapeutic efficacy 

(McClung, 2011). According to the “social zeitgeber theory” of mood disorders, stressful 

life events disrupt social routines that may lead to altered biological rhythms and increased 
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vulnerability for the development of mood disorders (Ehlers, Frank, & Kupfer, 1988). In 

support of this theory, circadian rhythm disturbances, such as jet lag or shift work, have been 

shown to precipitate or exacerbate mood symptoms (Asaoka et al., 2013; Inder, Crowe, & 

Porter, 2016; Kalmbach, Pillai, Cheng, Arnedt, & Drake, 2015). Several human genetic 

studies have implicated circadian genes in mood disorders including genome-wide 

association studies (GWAS), which take into account the entire clock gene network (Etain, 

Milhiet, Bellivier, & Leboyer, 2011; McCarthy & Welsh, 2012). Reduced amplitude in 

circadian gene expression is found in fibroblast cultures taken from subjects with bipolar 

disorder compared to controls (Yang, Van Dongen, Wang, Berrettini, & Bucan, 2009). 

Moreover, a study in human postmortem brain found that subjects with major depressive 

disorder (MDD) have much weaker 24-hr rhythms in gene expression compared to healthy 

controls in a number of mood-associated brain regions, including the dorsolateral prefrontal 

cortex, hippocampus, nucleus accumbens, and amygdala (Li et al., 2013). These changes 

suggest shifts in peak timing and disruptions in phase relationships in clock-regulated genes 

across multiple regions of the brain. Thus, it has been hypothesized that abnormalities in the 

circadian system may play a role in the development and maintenance of mood disorders.

The master circadian clock resides in the suprachias- matic nucleus (SCN) of the 

hypothalamus and coordinates rhythms throughout the brain and the periphery. The SCN is 

composed of self-sustaining oscillators that are entrained to the external environment 

through both photic and non- photic cues, also known as zeitgebers. Circadian rhythms in 

individual cells throughout the SCN and the rest of the body are generated by a molecular 

clock composed of multiple transcriptional-translational feedback loops. Within the core 

molecular clock, the transcription factor Circadian Locomotor Output Cycles Kaput 

(CLOCK) or the homologous protein Neuronal PAS Domain Protein 2 (NPAS2) 

heterodimerize with the transcription factor Brain and Muscle Arnt-like Protein 1 (BMAL1) 

and bind to enhancer box (E-box) sequences to activate the transcription of Period (Per1, 
Per2, and Per3) and Cryptochrome (Cry1 and Cry2) genes. PER and CRY are translated in 

the cytoplasm, where they dimerize and shuttle back into the nucleus to inhibit their own 

transcription, forming a negative feedback loop that cycles every 24 hr. CLOCK/BMAL1 

also regulate the expression of the nuclear hormone receptors, Rev-erbα and Rorα, which 

repress or activate Bmal1 transcription, respectively, to form an auxiliary feedback loop that 

stabilizes the core loop.

Circadian rhythms in the brain are incredibly important for maximizing energy efficiency 

and neuronal health. The brain requires a large amount of energy to function on a daily 

basis. In fact, the brain uses approximately 20% of the energy of the entire body and it needs 

to do so in an efficient manner (Du et al., 2008). During wake, neurons are actively firing in 

response to activity and environmental stimuli, creating the buildup of reactive oxygen 

species (ROS) and other by-products (Albrecht & Ripperger, 2018; Musiek & Holtzman, 

2016). During sleep, antioxidants remove excess ROS and misfolded and aggregated 

proteins are cleared via a glymphatic system (Musiek et al., 2013; Xie et al., 2013). 

Disruptions to the timing and duration of sleep and wake will disrupt these processes. In 

fact, a recent study found that even one night of sleep deprivation can result in accumulation 

of amyloid-β (one of the proteins that accumulates in the brain in Alzheimer’s disease) in 

human brain (Shokri-Kojori et al., 2018). Moreover, the antiphasic circadian activity patterns 
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between astrocyte support cells (which are involved in antioxidant responses and provide an 

energy supply to neurons) and neurons, is key to optimal neuronal function. In the rodent 

SCN for example, glial cells become active during circadian nighttime, suppressing the 

activity of neurons, and neurons are active during the circadian day (Brancaccio, Patton, 

Chesham, Maywood, & Hastings, 2017). Thus, optimal brain function depends upon 

consistent sleep/wake timing and synchronization across various cell types in the brain.

A number of hypotheses have been proposed to explain the underlying mechanisms by 

which circadian rhythms may influence mood (McClung, 2011, 2013). Mood disorders are 

highly heterogenous and are thought to develop due to a combination of various factors. 

Mood episodes and symptoms can be frequent (daily or weekly symptoms or monthly 

episodes) or can be separated by many years. Some people have a seasonal pattern of 

episodes, while others do not. In addition, depression can involve too little sleep or too much 

sleep, too much eating, or starvation. Bipolar disorder includes not only depressive episodes, 

but episodes of mania and periods of euthymia or “stabilized mood” in between. Thus, a 

wide range of physiological processes have been implicated in mood regulation, including 

monoamine signaling, glutama- tergic transmission, hypothalamic-pituitary-adrenal (HPA) 

axis function, metabolic peptide signaling, microbiome, neuroinflammation, and 

mitochondrial function. The circadian system has been shown to interact with each of these 

systems. Here, we highlight these interactions and discuss their potential role in mood 

disorders.

2 | MONOAMINE SIGNALING

Alterations in monoamine (i.e., serotonin, dopamine, and norepinephrine) neurotransmitter 

systems have been observed in mood disorders, such as MDD (Meyer, 2008). Furthermore, 

antidepressants, antipsychotics, and mood-stabilizing drugs used in the treatment of these 

disorders all affect monoam- inergic signaling. Serotonin, dopamine, and norepinephrine 

show circadian rhythms in expression and release (McClung, 2007). Furthermore, the 

receptors and enzymes involved in the synthesis of these monoamines show rhythmic 

expression (McClung, 2007). On a circuit level, these rhythms arise, in part, due to indirect 

projections from the SCN to brain regions responsible for the synthesis of these 

neurotransmitters, including the dorsal raphe (serotonin), ventral tegmental area (VTA; 

dopamine), and locos coeruleus (norepinephrine; Parekh & McClung, 2015).

Studies from our laboratory using the Clock∆19 mouse have revealed an important role for 

the dopamine system in the circadian regulation of mood and reward. Clock∆19 mice 

contain a single base mutation in the Clock gene, which leads to a loss of exon 19 and a 

protein with dominate-negative function (King et al., 1997). The phenotype of the Clock∆19 

mice consists of circadian and metabolic abnormalities, as well as a manic-like phenotype 

(Kristensen, Nierenberg, & Ostergaard, 2018; Logan & McClung, 2016). While no animal 

model will ever fully recapitulate the complex phenotypes that characterize bipolar disorder, 

and in particular the phenomenon of mood cycling, Clock∆19 mice display primarily 

manic-1 ike behavior during the day and euthymia-like behavior at night, which at least 

suggests some sort of spontaneous cycling behavior in these animals (McClung et al., 2005; 

Roybal et al., 2007; Sidor et al., 2015). This manic-like phenotype consists of enhanced 
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hyperactivity and reward-r elated behaviors, as well as a reduction in anxiety- and 

depressive-l ike behaviors, and the majority of these behaviors can be reversed with lithium, 

a first-line treatment for bipolar disorder (Arey et al., 2014; McClung et al., 2005; Roybal et 

al., 2007; Sidor et al., 2015). Many studies have established that the VTA is a primary site of 

action for the manic-like phenotype of the ClockA19 mouse (Coque et al., 2011; McClung 

et al., 2005; Sidor et al., 2015). The manic-like phenotype coincides with daytime increases 

in VTA dopamine neuron activity, tyrosine hydroxylase (TH) expression, and dopamine 

synthesis in the VTA (Logan et al., 2018; Sidor et al., 2015). Notably, the manic-like 

phenotype can be reversed by daytime-specific administration of a TH inhibitor. Moreover, 

chronic stimulation of VTA dopamine neurons through optogenetics recapitulates the manic-

like phenotype (Sidor et al., 2015). Interestingly, site-specific knockdown of Clock in the 

VTA results in a mixed manic/depressive state, with hyperactivity and decreased anxiety-like 

behavior, but also an increase in depressive-like behavior (Mukherjee et al., 2010).

Other studies have investigated the molecular mechanisms underlying the manic-like 

phenotype of the Clock∆19 mouse and have found that CLOCK negatively regulates TH 
expression by binding to E-box sequences at promoter regions of the gene (Figure 1; Sidor 

et al., 2015). The expression of TH is also regulated by cAMP response element-binding 

protein (CREB)-mediated binding to CRE sites in the TH promoter (Lazaroff, Patankar, 

Yoon, & Chikaraishi, 1995; Piech-Dumas & Tank, 1999). A recent study from our 

laboratory demonstrated that CLOCK activity is sensitive to cellular redox state and 

represses CREB-induced TH transcription through diurnal interactions with the histone and 

protein deacetylase, Sirtuin 1 (SIRT1), at the TH promoter (Logan et al., 2018). This 

repression of CREB-induced TH transcription is eliminated in Clock∆19 mice, resulting in 

increased TH expression during the day, during which the mice exhibit manic-like behavior. 

Interestingly, cocaine exposure abolishes SIRT1 rhythms in the VTA and pharmacological 

activation of SIRT1 reduces both dopamine signaling and cocaine-conditioned place 

preference in Clock ∆19 mice, suggesting a role for this mechanism in reward and addiction 

(Logan et al., 2018). Other clock genes, such as REV-ERBα, also play an important role in 

mood regulation. A study by Chung et al. (2014) showed that Rev-erbα knockout mice 

display a hyperdopa- minergic state that is accompanied by manic-like behavior. Similar 

effects were induced through pharmacological inhibition of REV-ERBα in the ventral 

midbrain. Furthermore, they demonstrated that TH expression is directly repressed by REV-

ERBα, providing a mechanism through which this effect may occur (Chung et al., 2014). 

Taken together, these data strongly implicate VTA dopaminergic activity in the circadian 

regulation of mood and reward.

In addition to the dopamine system, several studies have implicated a role for serotonin in 

the circadian regulation of mood and reward. The circadian and serotonergic systems are 

reciprocally connected and likely interact to influence mood regulation (Ciarleglio, Resuehr, 

& McMahon, 2011). Studies have shown serotonin manipulation can influence circadian 

rhythms in both the SCN and locomotor activity (Vadnie & McClung, 2017). For example, 

SSRIs have been shown to phase advance SCN neural activity, as well as locomotor activity 

(Cuesta, Clesse, Pevet, & Challet, 2009; Cuesta, Mendoza, Clesse, Pevet, & Challet, 2008; 

Prosser, Lee, & Wehner, 2006; Sprouse, Braselton, & Reynolds, 2006), which could play a 

role in improving rhythm disturbances observed in mood disorders. Interestingly, the 
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influence of circadian and monoaminergic systems on mood has also been demonstrated 

through manipulations of the melatonin system. Melatonin is a hormone produced by the 

pineal gland that plays an important role in sleep regulation. The antidepressant effects of 

the drug, agomelatine, are mediated through its interactions with both melatonin receptors 

and serotonin 5-HT2C receptors (Guardiola-Lemaitre et al., 2014). Agomelatine is a 

melatonin receptor agonist and 5-HT2c antagonist and has been shown to modulate 

monoaminergic neuronal activity (Chenu, El Mansari, & Blier, 2013). Furthermore, 

melatonin MT1 receptor knockout mice show increased depressive-like behavior, which is 

reversed by chronic treatment with the tricyclic antidepressant desipra- mine (Comai, 

Ochoa-Sanchez, Dominguez-Lopez, Bambico, & Gobbi, 2015). Another study demonstrated 

the anxiolytic effects of agomelatine after social defeat require an intact SCN (Tuma, 

Strubbe, Mocaer, & Koolhaas, 2005). Furthermore, serotonergic signaling in the amygdala 

can modulate the anti-depressant actions of melatonin (Micale, Arezzi, Rampello, & Drago, 

2006). These studies highlight a role for the interaction of circadian and monoamine systems 

in regulating mood.

Lastly, norepinephrine may also be involved in the circadian regulation of mood. A study by 

Ben-Hamo et al. (2016) found that rats exposed to a short light-dark cycle (22 hr) showed 

desynchronized oscillations in the SCN and a depressive phenotype during the active phase 

(Ben-Hamo et al., 2016). These changes are paralleled by increased norepinephrine and 

dopamine levels and serotonin turnover in the prefron- tal cortex (PFC; Ben-Hamo et al., 

2016). These changes may be stress-induced, as norepinephrine and dopamine release are 

enhanced in the PFC in response to stress (Di Chiara, Loddo, & Tanda, 1999; Finlay, 

Zigmond, & Abercrombie, 1995). Interestingly, deletion of Bmal1 in the cerebral cortex 

induces depressive-l ike behavior in the tail suspension test and a reduction in cortical 

norepinephrine levels, suggesting cortical clock regulation of mood may involve 

norepinephrine function (Bering, Carstensen, Wortwein, Weikop, & Rath, 2018). Lastly, 

studies have shown that constant darkness can induce a depressive-like state and apoptosis of 

monoaminergic neurons, particularly noradrenergic neurons in the locos coeruleus, and these 

effects are reversed with the norepinephrine reuptake inhibitor, desipramine (Gonzalez & 

Aston-Jones, 2008).

Together, these studies reveal a role for monoamine- related neuronal activity in the 

circadian regulation of mood. A more thorough understanding of the mechanisms 

underlying this relationship may lead to novel therapeutic targets for the treatment of mood 

disorders, as well as the circadian rhythm alterations associated with these disorders.

3 | GLUTAMATERGIC TRANSMISSION

The discovery that ketamine, a glutamate NMDA receptor channel blocker, can produce 

rapid antidepressant effects has generated a great deal of interest in the role of glutamatergic 

transmission in mood regulation (Duman, 2018). As opposed to most antidepressant 

medications which require weeks to months before there are therapeutic effects, a single, 

subanesthetic dose of ketamine can produce an antidepressant response within hours that can 

last for up to a week (Zarate et al., 2006). The exact mechanisms by which ketamine 

produces these effects are still unclear; however, it seems likely that at least initially 
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ketamine increases glutamatergic transmission in the mPFC, hippocampus, and other regions 

of the brain. This increase in glutamatergic transmission is potentially mediated through 

blockage of NMDA receptors on GABA interneurons that normally inhibit this transmission 

(Duman, 2018). Another recent study found that ketamine blocks NMDA receptors in the 

lateral habenula, leading to a reduction in burst firing normally driven by NMDA receptor 

activity (Yang et al., 2018). Since the lateral habenula is involved in inhibiting 

monoaminergic reward circuitry, this reduction in burst firing results in activation of 

dopamine and serotonin neurons, potentially leading to the rapid (but perhaps not sustained) 

antidepressant response. Interestingly, studies over the last 30 years have found that one 

night of sleep deprivation (SD) can also produce similar rapid antidepressant effects in about 

50% of subjects (Borbely & Wirz-Justice, 1982; Wu & Bunney, 1990), leading people to 

question whether these rapid antidepressant effects of keta- mine and SD share common 

mechanisms of action, and if they involve the modulation of the molecular clock. In cell 

culture (NG108–15 neuronal cells), ketamine can inhibit CLOCK:BMAL1-mediated 

transcriptional activation and this is attenuated by treatment with a GSK3β antagonist 

(Bellet, Vawter, Bunney, Bunney, & Sassone-Corsi, 2011). This suggests that ketamine alters 

CLOCK:BMAL1 function perhaps via activation of GSK3β, a key modulator of the 

molecular clock. Another study from the same group treated mice with either ketamine or 

SD and subjected the mice to the forced swim test, a measure of antidepressant efficacy. 

They then took tissue samples from the anterior cingulate cortex and compared the 

transcriptional response between treatments. They found 64 genes which were commonly 

altered by both treatments (representing 5% of genes changed by ketamine and 11% of 

genes changed by SD, p < 0.001), including a number of downregulated circadian genes, 

such as Per2, Npas4, Rorb, Dbp, and Ciart. The authors speculate that both ketamine and SD 

alter common molecular clock components, resulting in changes in neuronal plasticity and 

an antidepressant effect (Orozco-Solis et al., 2017). The longer lasting antidepressant effects 

of ketamine (up to 2 weeks) involve activation of mTOR signaling pathways, brain-derived 

neurotrophic factor (BDNF) release, and changes in dendritic spines (Autry et al., 2011; Li 

et al., 2010). These changes may occur primarily during sleep following ketamine treatment. 

A study of 30 subjects with treatment-resistant depression found a positive correlation 

between the baseline delta sleep ratio (SWA(NREM1)/SWA(NREM2)) the night before 

keta- mine treatment and the response to ketamine the following day, suggesting that a low 

baseline delta sleep ratio, indicative of deficient production of slow wave sleep, may be a 

predictor of ketamine response (Duncan, Selter, Brutsche, Sarasso, & Zarate, 2013). 

Moreover, following ketamine treatment, there was an increase in slow wave activity in the 

first non-REM sleep episode, along with increased plasma BDNF (Duncan, Sarasso, et al., 

2013). Furthermore, the response included an increase in high amplitude waves during early 

sleep, along with an increase in slow wave slope, suggesting increased synaptic strength. 

Changes in BDNF were proportional to changes in EEG measures and these changes were 

only found in subjects who experienced an antidepressant response to ketamine. These data 

suggest that ketamine is modulating synaptic connections during the first sleep episode 

following treatment, and that this first sleep episode may be crucial to the sustained 

antidepressant response.
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Changes in sleep/wake activity rhythms can also be predictive of a response to ketamine. In 

a study of 51 subjects with treatment-r esistant depression, activity rhythms were measured 

using actigraphy (Duncan, Slonena, et al., 2017). The study found that those who would go 

on to respond to ket- amine had lower central value (mesor) and earlier acrophase measures 

at baseline. They also showed advanced timing on day 1 after ketamine and importantly, 

increased rhythm amplitude on day 3. In contrast, ketamine non-responders had a lower 

mesor and blunted amplitude in response to ketamine on day 1. These findings are exciting 

in that they demonstrate an association between the clinical response to ketamine and sleep/

wake rhythms along with a potential modulation of the internal circadian system. They show 

not only that treatment response can be predicted by certain diurnal patterns of activity, but 

also that ketamine may produce lasting effects in these individuals, at least in part, through 

amplification of diurnal rhythms. It is also worth noting that depression can be the result of 

many different factors, disrupted circadian rhythms being only one of them, and thus other 

types of treatments may be more advantageous for those individuals without these particular 

circadian phenotypes, while ketamine may be therapeutic only for a particular population 

with these specific circadian phenotypes. Interestingly, both lithium and valproic acid 

(mood-stabilizing medications) also increase molecular rhythm amplitude in fibroblast 

cultures and this effect may underlie their ability to stabilize rhythms and prevent the 

precipitation of mood episodes (Johansson, Brask, Owe-Larsson, Hetta, & Lundkvist, 2011; 

Li, Lu, Beesley, Loudon, & Meng, 2012). While we know that glutamatergic activity in the 

SCN is involved in setting the central clock, future studies are needed to determine if and 

how ketamine impacts the central clock in the SCN, as well as molecular clocks in other 

brain regions. With this knowledge, we may be able to use additional chronotherapies, like 

bright light therapy, to extend and sustain therapeutic effects of ketamine or SD (Duncan, 

Ballard, & Zarate, 2017).

4 | HPA AXIS

The neuroendocrine component of the stress response is mediated by the HPA axis. In 

response to stress, corticotropin- releasing factor (CRF) is released from neurons in the 

paraventricular nucleus of the hypothalamus (PVN) into the hypophyseal portal system, 

where it travels to the anterior pituitary and stimulates the release of adrenocorticotropic 

hormone (ACTH) into the circulation. ACTH stimulates the release of glucocorticoids 

(corticosterone or cortisol) from the adrenal gland, which then mediates the stress response. 

Glucocorticoids inhibit the HPA axis through negative feedback at the PVN and anterior 

pituitary. HPA axis and glucocorticoid dysregulation has been implicated in mood disorders, 

such as depression (Pariante & Lightman, 2008). Hypercortisolism is often observed in 

patients with depression (Hinkelmann et al., 2012; Linkowski et al., 1987; Rubin, Poland, 

Lesser, Winston, & Blodgett, 1987). However, atypical depression, a subtype of major 

depression characterized by symptoms such as lethargy, fatigue, hyperphagia, and weight 

gain, is associated with lower levels of cortisol (Gold & Chrousos, 2002). Furthermore, in 

depressed patients with increased cortisol levels, antidepressant treatment has been shown to 

return cortisol to control levels (Hinkelmann et al., 2012; Linkowski et al., 1987).

The HPA axis is under circadian control by the SCN (Moore & Eichler, 1972). 

Glucocorticoids show robust circadian rhythms in expression, with peak levels occurring at 
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the beginning of the active phase. This temporal rhythmicity is controlled by diurnal 

variations in CRF and ACTH activity, as well as a peripheral clock in the adrenal glands 

(Ishida et al., 2005; Nader, Chrousos, & Kino, 2010; Oster et al., 2006; Son, Chung, & Kim, 

2011). In addition, molecular clock proteins interact with the glucocorticoid receptor (GR) 

to produce diurnal variations in its expression and sensitivity. For example, CRY proteins 

interact with the GR to rhythmically repress its transcriptional activity (Lamia et al., 2011). 

The CLOCK/BMAL1 complex also modulates the circadian sensitivity of GR through 

CLOCK-mediated acetylation (Charmandari et al., 2011; Kino & Chrousos, 2011; Nader, 

Chrousos, & Kino, 2009). The function of GR is also modulated through interactions with 

other clock proteins, such as REV-ERBa (Okabe et al., 2016) and CHRONO, a novel 

circadian protein that negatively regulates the molecular clock and interacts with GR to 

decrease its transcription activity (Anafi et al., 2014; Goriki et al., 2014). Notably, the 

interaction between the circadian system and the HPA axis is reciprocal, as glucocorticoids 

provide feedback on the clock by binding to glucocorticoid response elements and altering 

the transcription of circadian clock genes, such as Per1 and Per2, allowing for 

synchronization of peripheral clocks and extra- SCN brain clocks (Koch, Leinweber, 

Drengberg, Blaum, & Oster, 2017; Oster et al., 2017; Spencer, Chun, Hartsock, & Woodruff, 

2018).

A number of studies suggest the circadian system interacts with the stress system to 

influence mood regulation (Landgraf, McCarthy, & Welsh, 2014). Circadian clock 

regulation of HPA axis function has been demonstrated through studies utilizing genetic 

mouse models containing mutations in circadian clock genes. For example, Bmal1 mutant 

mice show reduced glucocorticoid levels, adrenal sensitivity to ACTH, and a downregulation 

in gene expression related to cholesterol synthesis in adrenal cells (Leliavski, Shostak, 

Husse, & Oster, 2014). These mice also show an attenuation in stress-induced glucocorticoid 

levels and reduced depressive- like behavior in the forced swim test (Leliavski et al., 2014). 

Mutations in Clock, Cry, and Per are also associated with alterations in glucocorticoid levels 

and rhythmicity (Becker- Krail & McClung, 2016; Koch et al., 2017). The relationship 

between the circadian and stress system is bidirectional, with stress also affecting function of 

the molecular clock. For example, stress increases Per1 expression in the brain and 

peripheral tissues (Al-Safadi, Branchaud, Rutherford, & Amir, 2015; Al-Safadi et al., 2014; 

Takahashi et al., 2001, 2013; Yamamoto et al., 2005). In addition, Per2 rhythms are 

stimulated by glucocorticoids and these rhythms are altered in the bed nucleus of the stria 

terminalis and the amygdala following inactivation of the GR (Segall, Milet, Tronche, & 

Amir, 2009; So, Bernal, Pillsbury, Yamamoto, & Feldman, 2009). A study from our 

laboratory explored the effects of unpredictable chronic mild stress, a rodent model of 

depression, on Per2 rhythms in the mouse brain using Per2 lucifer-ase reporter (Per2::luc) 
mice (Logan et al., 2015). Chronic stress decreased rhythm amplitude in the SCN and 

increased rhythm amplitude in the nucleus accumbens (NAc), with these changes directly 

correlating to depressive-like behavior (Logan et al., 2015). These changes in amplitude may 

be due to differences in GR expression, as the NAc expresses high levels of GR and the SCN 

is largely absent of GR expression (Balsalobre et al., 2000; Barik et al., 2010; Der-Avakian 

et al., 2006). A study by Landgraf et al. (2016) investigated the role of the circadian clock in 

the SCN in regulating mood. The authors found that site-specific knockdown of Bmal1 in 

Ketchesin et al. Page 8

Eur J Neurosci. Author manuscript; available in PMC 2020 May 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the SCN of Per2::luc mice significantly suppressed Per2 rhythms and induced depressive- 

and anxiety-l ike behavior, demonstrating a causal role for SCN rhythms in mood regulation. 

The authors speculate that disruption of the central clock may affect mood through 

downstream systems that are more directly involved in mood regulation. In support of this, 

they find that disrupting rhythms in the SCN altered HPA axis function, as the mice 

displayed altered corticosterone rhythms and an attenuated stress-induced corticosterone 

response (Landgraf et al., 2016). Of note, the mood-related findings from this study contrast 

with the study described above by Leliavski et al. (2014), in which Bmall mutant mice 

showed a reduction in depressive-rike behavior. However, these discrepancies may be 

explained, in part, by the method of Bmall knockdown. Landgraf et al. (2016) site-

specifically knocked down Bmall in the SCN, whereas Leliavski et al. (2014) used mutant 

mice that lack Bmall in both the brain and periphery.

A variety of studies have utilized inappropriate light exposure and extreme photoperiod 

changes to investigate the interaction of stress and circadian systems in mood regulation. For 

example, inappropriate light exposure (i.e., light at night) is associated with increased 

corticosterone levels in rodents (Koch et al., 2017). In addition, short photoperiods induce 

anxiety- and depressive-like behavior in diurnal rodents, which are reduced after bright light 

treatment (Ashkenazy, Einat, & Kronfeld-Schor, 2009a,b; Einat, Kronfeld-Schor, & Eilam, 

2006). A study by Dulcis, Jamshidi, Leutgeb, and Spitzer (2013) found that long-day (i.e., 

short-active) photoperiods elevate corticosterone levels and enhance anxiety- and depressive-

like behaviors in nocturnal rats, while short-day (i.e., long-active) photoperiods produce the 

opposite effect. Interestingly, photoperiod changes caused individual interneurons in the 

PVN to switch between dopamine and somatostatin expression, with increased switching 

from somatostatin to dopamine for short-day periods and dopamine to somatostatin for long-

day periods. Moreover, ablation of dopamine neurons in the PVN produced anxiety- and 

depressive-like behavior, which was rescued through short-day photoperiod induction of 

new dopaminergic neurons (Dulcis et al., 2013). The authors also revealed that somatostatin 

(SST2/4) and dopamine (D2) receptors colocalize with CRF in the hypothalamus and 

observed an increase in CRF and corticosterone levels in the cerebrospinal fluid and plasma, 

respectively, following long-day photoperiod. This may represent a potential mechanism by 

which long-day photoperiod induces depressive- and anxiety-like behavior in mice (Dulcis 

et al., 2013). While the PVN receives direct input from the SCN, the mechanisms by which 

the central clock may regulate neurotransmitter switching remain to be determined.

A study by Young et al. (2018) utilized similar short-day and long-day photoperiod changes 

in mice to model season- induced switching between mood states. The authors found that a 

short-day (i.e., long-active) period induced a manic state, while a long-day (i.e., short-active) 

period induced a depressive state, consistent with season-induced switching between mood 

states observed in patients with bipolar disorder (Wang & Chen, 2013; Young & Dulcis, 

2015). Interestingly, similar to the Dulcis et al. (2013) study, switches in mood states were 

correlated with neurotransmitter switching from dopamine to somatostatin in the PVN. Mice 

with a reduction in dopamine transporter (DAT) expression showed exacerbated manic and 

depressive-like states in response to their respective photoperiods, revealing an important 

role for dopamine function in season-induced switching between mood states (Young et al., 

2018). Together, these studies suggest that the interaction of circadian and stress systems is 
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important for regulation of mood. However, it is worth noting that studies from the Hattar 

laboratory have identified specific projections from the intrinsically photosensitive retinal 

ganglion cells (ipRGCs) and the perihabenular nucleus that may potentially mediate the 

depression-inducing effects of aberrant light cycles independent from the central clock in the 

SCN (Fernandez et al., 2018; LeGates et al., 2012). Thus, future studies will be necessary to 

determine the exact role of these interactions in the development of mood disorders.

5 | METABOLIC PEPTIDES

Mood disorders and metabolic disorders show a high rate of comorbidity (Amare, Schubert, 

Klingler-Hoffmann, CohenWoods, & Baune, 2017; Mansur, Brietzke, & McIntyre, 2015; 

Milaneschi, Simmons, van Rossum, & Penninx, 2018). For example, depression is highly 

comorbid with obesity, and the relationship between the two is bidirectional (Milaneschi et 

al., 2018). This association is particularly strong among obese individuals with an adverse 

metabolic profile, including dyslipidemia or insulin resistance (Jokela, Hamer, Singh-

Manoux, Batty, & Kivimaki, 2014). Recent evidence indicates environmental and genetic 

disruptions of circadian rhythms may play a role in the link between metabolic and mood 

disorders (Barandas, Landgraf, McCarthy, & Welsh, 2015). Peripheral tissues, including the 

liver, pancreas, and gut, express local self-sustaining clocks that regulate metabolic function. 

Moreover, peptides and hormones that regulate metabolism and feeding, such as leptin, 

ghrelin, orexin, and cholecystokinin (CCK), display circadian rhythms in expression (Feillet, 

2010; Schade et al., 1993; Turek et al., 2005).

Food intake is largely regulated by the hormones leptin and ghrelin, which are released from 

the adipose tissue and gut, respectively. These hormones act within the arcuate nucleus of 

the hypothalamus to regulate food intake and energy homeostasis. Ghrelin is released from 

the gut in response to hunger and stimulates food intake, while leptin is released from 

adipose tissue and reduces feeding (Sobrino Crespo, Perianes Cachero, Puebla Jimenez, 

Barrios, & Arilla Ferreiro, 2014). Both leptin and ghrelin show circadian rhythms in 

expression, and their levels in the plasma are sensitive to food availability (Feillet, 2010). In 

addition to their role in obesity (Cui, Lopez, & Rahmouni, 2017), ghrelin and leptin have 

been implicated in the regulation of mood and reward (Lu, 2007; Milaneschi et al., 2018; 

Morris, Voon, & Leggio, 2018; Spencer, Emmerzaal, Kozicz, & Andrews, 2015). A number 

of rodent studies have revealed an antidepressant effect of leptin, with the hippocampus 

being a primary site of action (Garza, Guo, Zhang, & Lu, 2012; Lu, Kim, Frazer, & Zhang, 

2006; Yamada et al., 2011). Furthermore, global and site-specific (i.e., hippocampus and 

cortex) knockout of the leptin receptor induces depressive-like behavior (Guo, Huang, 

Garza, Chua, & Lu, 2013; Guo et al., 2012; Liu et al., 2017; Sharma, Elased, Garrett, & 

Lucot, 2010). In humans, high levels of leptin are associated with atypical depression, with 

the association being more robust for increased adiposity, appetite, and weight (Milaneschi, 

Lamers, Bot, Drent, & Penninx, 2017). These data implicate a role for leptin dysregulation 

in the comorbidity between obesity and depression. However, the exact role of ghrelin in 

mood regulation is a little less clear, as some studies show that ghrelin produces anxiety-like 

behavior, while others show anxiolytic and antidepressant effects (Morris et al., 2018; 

Spencer et al., 2015; Wittekind & Kluge, 2015). Ghrelin and leptin may modulate mood 

through their interaction with the HPA axis (Barandas et al., 2015; Morris et al., 2018; 
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Roubos, Dahmen, Kozicz, & Xu, 2012; Spencer et al., 2015). Furthermore, chronic restraint 

stress disrupts diurnal rhythms in leptin expression (de Oliveira et al., 2014). Given their 

important role in mood and metabolism, circadian disruptions in leptin and ghrelin 

expression may have an impact on mood regulation and its relationship to obesity.

Ghrelin and leptin also interact with orexin neurons in the lateral hypothalamus, which 

promote arousal and feeding when activated by ghrelin and induce sleep when inhibited by 

leptin (Adamantidis & de Lecea, 2008). Orexin is a peptide that simulates food intake and is 

known for its role in regulating arousal, energy, as well as mood and reward. Orexin also 

plays a role in the stress response and the interactions between these systems are 

bidirectional (Blasiak, Gundlach, Hess, & Lewandowski, 2017; Grafe & Bhatnagar, 2018; 

James, Campbell, & Dayas, 2017). Interestingly, orexin modulation of the stress response is 

mediated by leptin through leptin-sensitive neurons in the lateral hypothalamus, suggesting 

an interaction between these two systems in the stress response (Bonnavion, Jackson, Carter, 

& de Lecea, 2015). Depression is linked to both hyperactivity and hypoactivity of the orexin 

system (Nollet & Leman, 2013). In addition, individuals with depression display altered 

rhythms in activity, sleep/wake, body temperature, and hormone secretion (Germain & 

Kupfer, 2008; McClung, 2007; Souetre et al., 1989). Interestingly, depressed subjects also 

exhibit a reduction in diurnal rhythms of orexin expression (Salomon et al., 2003). Circadian 

rhythms of orexin expression are regulated by the SCN (Blasiak et al., 2017). Furthermore, 

Clock mutant mice show a decrease in orexin expression, as well as a loss of rhythmicity 

(Turek et al., 2005). These mice also lose circadian rhythmicity in other peptides, such as 

ghrelin and cocaine- and amphetamine-regulated transcript (Turek et al., 2005). Moreover, 

microarray analysis of VTA tissue from Clock∆19 mice identified altered transcription of a 

number of genes involved in dopaminergic transmission (McClung et al., 2005). One of the 

genes significantly downregulated was Cck, a peptide that shows robust circadian rhythms in 

expression in the brain and plays a role in feeding and regulation of mood and anxiety-

related behavior (Arey et al., 2014; McClung et al., 2005; Schade et al., 1993; Weber, 

Lauterburg, Tobler, & Burgunder, 2004). CCK is a direct transcriptional target of CLOCK in 

the VTA and Cck levels are decreased in this region in Clock∆19 mice (Arey et al., 2014; 

McClung et al., 2005). Furthermore, site-specific knockdown of Cck in the VTA of wild-

type mice produces a manic-like phenotype similar to the Clock∆19 mice. Chronic lithium 

treatment increases Cck levels in Clock∆19 mice, which is necessary for the therapeutic 

actions of the drug in this mouse model (Arey et al., 2014). These data suggest a critical role 

for CCK in the manic-like phenotype of the Clock∆19 mice. Interestingly, Clock mutant 

mice become obese on a high-fat diet and develop a metabolic syndrome (Turek et al., 

2005). Moreover, mutations in other clock genes, such as PER and CRY, also produce both 

metabolic and mood phenotypes, further demonstrating the important role of the core 

circadian clock in regulating both metabolism and mood (Barandas et al., 2015). Future 

studies are necessary for a more comprehensive understanding of the molecular mechanisms 

that underlie this relationship.

6 | MICROBIOME

A high comorbidity exists between gastrointestinal disorders and stress-related psychiatric 

disorders. For example, over 50% of patients with irritable bowel syndrome have depression 
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or anxiety (Kelly et al., 2015; Kennedy, Cryan, Dinan, & Clarke, 2014). This comorbidity 

highlights a potentially important role of the gut-brain axis in mood regulation. The 

microbiome is a key component of the gut-brain axis, which comprises the microbiota-gut-

brain axis, a bidirectional pathway that influences metabolism, behavior, and mood 

(Cussotto, Sandhu, Dinan, & Cryan, 2018; Dinan & Cryan, 2017; Kelly et al., 2015; Rogers 

et al., 2016). The mammalian microbiome consists of trillions of bacteria that reside in the 

intestine of the host. Recent evidence suggests the gut microbiome may play a role in mood 

regulation and stress-related psychiatric disorders, such as depression. For example, germ-

free mice show alterations in the stress response and exhibit alterations in monoaminergic 

signaling in limbic brain regions (Cussotto et al., 2018; Rogers et al., 2016). Interestingly, 

prebiotics and probiotics, which stimulate the growth of healthy bacteria in the gut, can 

produce anxiolytic effects and normalization of the HPA axis in response to stress (Cussotto 

et al., 2018). Alterations in gut microbiome composition and diversity have been observed in 

patients with MDD (Jiang et al., 2015; Kelly et al., 2016; Lin et al., 2017; Zheng et al., 

2016). Notably, a study by Zheng et al. (2016) showed that fecal transplantation of samples 

from patients with MDD into germ-free mice resulted in depressive-like behavior in the 

recipient mouse compared to those that received transplants from healthy controls. Mice that 

received transplants from depressed patients also displayed alterations in microbial gene 

expression and fecal and serum metabolites related to carbohydrate and amino acid 

metabolism, suggesting that alterations in host metabolism may be a potential mechanism by 

which the microbiome influences mood (Zheng et al., 2016). A similar fecal transplant study 

was performed by Kelly et al. (2016), but instead of using germ- free mice, rats treated with 

a cocktail of antibiotics were utilized. These microbiota-deficient rats that received a fecal 

transplantation from patients with MDD showed depressive-and anxiety-like behaviors, as 

well as alterations in tryptophan metabolism, which could influence serotonin production 

(Kelly et al., 2016). Taken together, these data suggest a potential role for the microbiome in 

the development of depressive-like behavior.

Several recent studies have demonstrated a significant interaction between circadian rhythms 

and the gut microbiome. A study by Thaiss et al. (2014) showed the intestinal microbiota in 

rodents and humans displays diurnal rhythms in abundance and metabolic function that are 

highly regulated by feeding rhythms. Furthermore, diurnal oscillations in microbial 

localization and metabolite production regulate circadian activity in host metabolism, 

including systemic metabolite oscillations and transcriptional oscillations in peripheral 

tissues (Thaiss et al., 2016). Microbiota rhythmicity is also sensitive to circadian disruptions 

in the host. For example, mice exposed to a jet lag paradigm exhibit a disruption in 

microbiota rhythmicity and metabolic alterations, such as glucose intolerance and obesity 

(Thaiss et al., 2014). Fecal transplantation of microbiota from jet-lagged mice and humans 

into germ-free mice recapitulated these metabolic deficits, demonstrating a role for the gut 

microbiota in the metabolic disturbances observed after circadian disruption (Thaiss et al., 

2014). Microbiome alterations in response to host circadian disruption may be influenced by 

diet, as mice undergoing weekly light-dark reversals showed alterations in the gut 

microbiome composition that were dependent on being fed a high-fat or high-sugar diet 

(Voigt et al., 2014). Furthermore, a high-fat diet disrupts diurnal oscillations in microbiota 

composition and metabolite production, which may alter hepatic circadian rhythms in the 
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host (Leone et al., 2015). Similarly, diet-induced obesity disrupts diurnal variations in 

microbial composition, which is partially restored by time-restricted feeding (Zarrinpar, 

Chaix, Yooseph, & Panda, 2014). Together, these studies demonstrate an important role for 

diet in the relationship between circadian rhythms and the microbiome. The role of the host 

central clock in regulating microbial rhythms has also been demonstrated in genetic mouse 

models with mutations in circadian clock genes (Voigt, Forsyth, Green, Engen, & 

Keshavarzian, 2016). For example, microbiota rhythmicity is disrupted in mice with 

mutations in Per1/2 (Thaiss et al., 2014) and Bmal1 (Liang, Bushman, & FitzGerald, 2015). 

Studies using the ClockΔ19 mice have found a reduction in microbial diversity compared to 

wild-type mice (Voigt, Summa, et al., 2016) and intestinal barrier dysfunction (i.e., increased 

hyperpermeability) that is worsened by alcohol intake (Summa et al., 2013). Alterations in 

intestinal barrier integrity can lead to gut leakiness and increase systemic inflammation, 

which may increase the risk for psychiatric diseases (Bauer & Teixeira, 2018).

There are a variety of proposed mechanisms by which the microbiome may influence brain 

function, including the vagus nerve, enteric nervous system, microbiota metabolite 

production, the neuroendocrine system, immune signaling, and inflammation (Cussotto et 

al., 2018). Increased levels of lipopolysaccharide from gram-negative enterobacteria have 

been observed in the serum of patients with MDD (Maes, Kubera, & Leunis, 2008). This 

translocation may result in systemic inflammation, which has been observed in patients with 

mood disorders (Bauer & Teixeira, 2018). Metabolites produced by the microbiome also 

influence metabolism, behavior, and perhaps mood. Short-chain fatty acids, such as butyrate, 

acetate, and propionate, are common metabolic byproducts released by gut microbiota and 

have been shown to alter host immune responses, metabolism, and neurotransmitter 

synthesis (Cussotto et al., 2018; Rogers et al., 2016). Gut bacteria also produce a wide 

variety of neurotransmitters, including GABA, dopamine, norepinephrine, serotonin, and 

acetylcholine (Cussotto et al., 2018). However, it is currently unknown what effect these 

microbial-derived neurotransmitters might have (if any) on brain function, as many of these 

neurotransmitters are not able to cross the blood-brain barrier. Nevertheless, microbial-

derived neurotransmitter precursors could play a role in mood regulation. For example, 

tryptophan is produced by gut microbiota and may influence mood through altering 

serotonin production. Interestingly, germfree mice have increased plasma tryptophan and 

hippocampal 5-HT levels (Clarke et al., 2013). Lastly, a recent study found that the 

ketogenic diet, a known treatment for intractable epilepsy in children, alters the intestinal 

microbiota and these changes are necessary and sufficient for seizure protection in mice 

(Olson et al., 2018). Ketogenic diet- and microbiota-dependent seizure protection was 

correlated with reductions in peripheral gamma-glutamyl amino acids and increases in 

hippocampal GABA/glutamate ratios, suggesting that the gut microbiome may modulate 

seizure susceptibility in response to diet through alterations in host metabolism (Olson et al., 

2018). Together, the studies described above suggest a role for the microbiome in both 

metabolism and mood regulation and highlight a need for future studies to investigate how 

the circadian system may be important for this connection.
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7 | NEUROINFLAMMATION

In recent years, there has been a great deal of interest in the potential role of inflammation 

and the production of pro-inflammatory cytokines in the pathophysiology of depression. 

Major depression is common in patients suffering from chronic inflammatory conditions 

(Menard, Pfau, Hodes, & Russo, 2017). Subsets of MDD patients also have higher levels of 

both pro-inflammatory cytokines and circulating leukocytes. Chronic stress can increase 

pro-inflammatory cytokines, and nuclear factor kappa-light-chain-enhancer of activated B 

cells (NFκB) signaling in the periphery and CNS, as well as microglial activation in the 

brain (Frank, Baratta, Sprunger, Watkins, & Maier, 2007; Pace et al., 2006). Furthermore, 

when cytokines produced from macrophages are given to healthy subjects, they induce 

depressive-like symptoms (Smith, 1991). Cytokines, like interleukin-1β, can alter 

monoamine levels by increasing metabolism of norepinephrine and 5-HT, and increase the 

production of CRF in the hypothalamus, activating the HPA stress axis (Takahashi, Flanigan, 

McEwen, & Russo, 2018). These mechanisms may contribute to the regulation of mood in 

people with increased cytokine production. Moreover, anti-inflammatory treatments can be 

beneficial in certain people with increased levels of inflammatory cytokines and depression-

related symptoms (Kopschina Feltes et al., 2017).

Even modest circadian rhythm and sleep disruption can result in elevated levels of pro-

inflammatory cytokines in humans and exaggerated responses to a lipopolysaccharide (LPS) 

challenge in mice (Castanon-Cervantes et al., 2010; Fonken, Weil, & Nelson, 2013; 

Vgontzas et al., 2004). In turn, LPS can induce phase delays in free-running hamsters and 

alter the response to light in the SCN of mice (Marpegan, Bekinschtein, Costas, & 

Golombek, 2005; Palomba & Bentivoglio, 2008). LPS treatment can also transiently alter 

expression of clock genes, like Per1 and Per2, in the hypothalamus and liver (Okada et al., 

2008; Takahashi et al., 2001). Inflammatory cytokines can decrease the frequency of 

excitatory and inhibitory currents in the SCN and ablate the circadian rhythm of spontaneous 

activity in the SCN, reducing frequency to nadir levels across the 24-hr cycle (Lundkvist, 

Hill, & Kristensson, 2002). This is similar to what is reported with aging, suggesting that the 

effects of age on SCN function could be mediated by increased levels of inflammatory 

cytokines in the brain (Nygard, Hill, Wikstrom, & Kristensson, 2005; Watanabe, Shibata, & 

Watanabe, 1995). Circadian genes are expressed rhythmically in peripheral immune cells, 

including macrophages and natural killer (NK) cells (Arjona & Sarkar, 2005, 2006; Hayashi, 

Shimba, & Tezuka, 2007; Kusanagi et al., 2004). Mice with a mutation in Per2 lose the well-

defined circadian pattern of resistance to an LPS challenge that is normally seen in mice, and 

they are more resistant to LPS-induced mortality (Liu et al., 2006). These mice are deficient 

in the production of IFN-γ and IL-10 by NK cells, which suggests that PER2 is involved in 

the production of certain cytokines following an immune challenge (Liu et al., 2006).

Nuclear factor kappa-light-chain-enhancer of activated B cells signaling plays a central role 

in the cellular response to stress, inflammation, and immunity. Importantly, CLOCK is 

found in protein complexes with the transcription factor, p65, a member of the NFκB family 

(Spengler et al., 2012). In the absence of BMAL1, CLOCK can upregulate NFκB-mediated 

transcription and the immune response is reduced in cells derived from Clock-deficient mice 

(Spengler et al., 2012). Moreover, hCLOCK is induced by insults like hypoxia and activates 
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inflammatory responses through its interactions with the NFκB pathway (Tang et al., 2017). 

Thus, there is a bidirectional relationship between immune stimulation and the clock such 

that inflammation can alter circadian rhythms, and the circadian clock helps to regulate 

immune responses. Future studies are needed to determine how these immune factors impact 

mood and to what extent genetic or environmental changes to circadian rhythms influence 

inflammatory responses.

8 | MITOCHONDRIAL FUNCTION

Mitochondria are the primary energy-producing organelles in cells. Neurons in the brain 

require high levels of energy to function. In fact, the brain, with its high aerobic activity, 

requires approximately 20 times more energy than the rest of the body by weight and a 

cortical neuron consumes 4.7 billion ATP molecules per second in a resting human brain 

(Kety, 1950; Zhu et al., 2012). In addition, a by-product of energy production by 

mitochondria is the creation of reactive oxygen species (ROS), which can have toxic effects 

if not properly cleared by antioxidants. This makes the brain highly vulnerable to changes in 

mitochondrial function or antioxidant production. Indeed, several studies have linked 

mitochondrial dysfunction to psychiatric disorders including bipolar disorder, schizophrenia, 

and major depression (Allen, Romay-Tallon, Brymer, Caruncho, & Kalynchuk, 2018; Clay, 

Sillivan, & Konradi, 2011; Manji et al., 2012; Marazziti et al., 2011). In turn, patients with 

mitochondrial diseases often display symptoms which are characteristic of psychiatric 

disorders.

Mitochondrial morphology including fusion and fission, as well as the formation of new 

mitochondria, is dependent on a functional molecular clock (de Goede, Wefers, Brombacher, 

Schrauwen, & Kalsbeek, 2018). For example, both Bmal1 KO and ClockΔ19 mutant mice 

have reduced muscle mitochondrial volume and respiratory function and altered levels of 

pgc1a and pgc1b, key genes involved in mitochondrial biogenesis (Andrews et al., 2010). 

While mitochondrial mass and content do not seem to change over the light/dark cycle, 

mitochondrial respiration and fusion and fission processes do display diurnal rhythms (de 

Goede et al., 2018). Some of these diurnal differences are due to changes in activity and 

food consumption at different times of day, but the molecular clock also seems to play a 

role. Indeed, the molecular clock regulates a large number of genes that are involved in 

mitochondrial function and the antioxidant response (Panda et al., 2002). One important link 

between circadian regulation of transcription in the nucleus and the mitochondrial redox 

system involves the NAD+-dependent deacetylase, SIRT1 (Figure 2). SIRT1 becomes active 

in the presence of NAD+, thus it is responsive to the NAD+/NADH ratio indicative of the 

cellular redox state. Activated SIRT1 can bind to CLOCK and deacetylate BMAL1 and 

PER2, altering circadian transcription (Asher et al., 2008; Nakahata et al., 2008). In turn, 

CLOCK and BMAL1 regulate the production of NAMPT, part of the NAD+ salvage 

pathway, resulting in a feedback loop of SIRT1- CLOCK-BMAL1 interaction (Nakahata, 

Sahar, Astarita, Kaluzova, & Sassone-Corsi, 2009; Ramsey et al., 2009). SIRT3 is also an 

important, NAD+-dependent, regulator of mitochondrial function and a recent study found 

diurnal rhythms in acetylation of SIRT3 protein targets in mouse liver (Mauvoisin et al., 

2017). In addition to redox regulation, the molecular clock is involved in the antioxidant 

response. Studies in the mouse lung find that the nuclear factor erythroid-derived 2-like 2 
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(NRF2)/glutathione-mediated antioxidant pathway is under direct control of the molecular 

clock (Pekovic-Vaughan et al., 2014). NRF2 is controlled by CLOCK directly through E-

box binding, resulting in rhythmic expression of NRF2, as well as its transcriptional target 

genes which are involved in glutathione redox homeostasis. ClockΔ19 mice have reduced 

levels of both NRF2 and glutathione and associated oxidative damage (Pekovic-Vaughan et 

al., 2014). It is likely that CLOCK is also regulating these pathways in the brain, though this 

has yet to be determined experimentally.

Another prominent way in which circadian rhythms might contribute to the antioxidant 

response is through production of melatonin (Figure 2). Many studies have found that 

melatonin acts as a potent antioxidant. In fact, this appears to be its original function, as it 

was discovered to be involved in the antioxidant response in bacteria, which evolved several 

billion years ago (Manchester, Poeggeler, Alvares, Ogden, & Reiter, 1995; Tan et al., 2010). 

More recent studies have discovered that melatonin is present at high concentrations in 

mitochondria due to both internal transport by PEPT1/2 and direct synthesis within the 

mitochondria (Reiter et al., 2018; Suofu et al., 2017). Moreover, melatonin type 1 receptors 

(MT1), the associated G protein, and β-arrestins are all expressed on and within neuronal 

mitochondria (Suofu et al., 2017). Melatonin synthesized in the mitochondria is released by 

the organelle where it then binds and activates MT1 receptor-associated signal transduction 

cascades, which inhibit stress-mediated cytochrome c release and caspase activation, 

protecting the cell from programed cell death (Suofu et al., 2017). While melatonin 

produced by the pineal gland is strongly controlled by diurnal SCN activity and light 

exposure, it is unclear whether melatonin production or signaling within the mitochondria is 

also under circadian control. Suofu et al. (2017) examined levels of the rate limiting enzyme 

in melatonin synthesis, (AANAT), in brain non-synaptosomal mitochondria at 2:00 a.m. and 

2:00 p.m. and found that in contrast to pineal tissue, there was no fluctuation in 

mitochondrial AANAT at these two timepoints. Thus, it is possible that only melatonin, 

which is transported into mitochondria, displays such diurnal variations and would be 

altered by disrupted environmental rhythms. Future studies are needed to determine the 

exact role of melatonin signaling within mitochondria and how disruptions to this system 

may contribute to psychiatric disorders.

9 | CONCLUSIONS

Our knowledge of the circadian clock and its potential role in mood regulation has expanded 

over the recent years. The circadian clock interacts reciprocally with multiple systems and 

processes in the central nervous system and periphery, including monoaminergic and 

glutamatergic transmission, HPA axis function, metabolism, and immune function (Figure 

3). Given the diversity of processes regulated by the circadian clock, it is likely that 

circadian rhythm disruption may alter mood through multiple systems. However, despite the 

progress that has been made over the years, some questions remain regarding the exact 

mechanisms by which circadian rhythms influence mood. Future studies using animal 

models will be necessary to clarify the causative roles that circadian rhythms play in mood 

regulation in each of the systems described above. Additional genetic studies will also 

further elucidate the roles that individual circadian clock genes in central and peripheral 

tissues play in mood regulation. Ultimately, a better understanding of the molecular 
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mechanisms underlying the interactions between circadian rhythms and mood may lead to 

the development of novel therapeutic targets for the treatment of mood disorders and the 

circadian rhythm disturbances associated with these conditions.
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Abbreviations:

5-HT 5-hydroxytryptamine

AANAT aralkylamine N-acetyltransferase

ACTH adrenocorticotropic hormone

ATP adenosine triphosphate

BDNF brain-derived neurotrophic factor

BMAL1 Brain and Muscle Arnt-like Protein 1

CCK cholecystokinin

CHRONO chlP-derived repressor of network oscillator

CLOCK Circadian Locomotor Output Cycles Kaput

CNS central nervous system

CREB cAMP response element-binding protein

CRF corticotropin-releasing factor

CRY cryptochrome

DA dopamine

DAT dopamine transporter

E-box enhancer box

EEG electroencephalography

GABA γ-aminobutyric acid

GLUT glutamate

GR glucocorticoid receptor

Ketchesin et al. Page 17

Eur J Neurosci. Author manuscript; available in PMC 2020 May 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



GSK glycogen synthase kinase

GWAS genome-wide association studies

HPA hypothalamic-pituitary-adrenal

IFN interferon

IL interleukin

ipRGC intrinsically photosensitive retinal ganglion cells

LPS lipopolysaccharide

MAOA monoamine oxidase A

MDD major depressive disorder

MT1 melatonin type 1 receptor

MT melatonin

NAc nucleus accumbens

NAD nicotinamide adenine dinucleotide

NAMPT nicotinamide phosphoribosyltransferase

NE norepinephrine

NFκB nuclear factor kappa-light-chain-enhancer of activated B cells

NK natural killer

NMDA N-methyl-D-aspartate

NPAS2 Neuronal PAS Domain Protein 2

NREM non-rapid eye movement

NRF2 nuclear factor erythroid-derived 2-like 2

PER period

PFC prefrontal cortex

PVN paraventricular nucleus of the hypothalamus

ROS reactive oxygen species

SCN suprachiasmatic nucleus

SD sleep deprivation

SIRT Sirtuin

SST somatostatin
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SWA slow-wave activity

TH tyrosine hydroxylase

TTFL transciptional-translational feedback loop

VTA ventral tegmental area
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FIGURE 1. 
Clock genes regulate components of dopaminergic transmission within the ventral tegmental 

area (VTA)-nucleus accumbens (NAc) circuitry. Components of the dopamine synapse 

involved in the synthesis, uptake, and degradation of dopamine show circadian rhythms in 

expression or activity. These rhythmic components include tyrosine hydroxylase (TH), 

monoamine oxidase A (MAOA), dopamine transporter (DAT), and dopamine receptors type 

1 (D1R), type 2 (D2R), and type 3 (D3R). Tyrosine hydroxylase transcription is activated by 

cAMP response element-binding protein (CREB)-mediated binding to CRE sites in the TH 

promoter. The CLOCK/BMAL1 complex interacts with the histone and protein deacetylase, 

Sirtuin 1 (SIRT1), to repress CREB-induced TH transcription in a diurnal-dependent 

manner. There are also circadian rhythms in various neurotransmitters and neuropeptides, 
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including dopamine (DA), glutamate (GLUT), γ-aminobutyric acid (GABA), and 

cholecystokinin (CCK)
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FIGURE 2. 
Interactions between the circadian clock and peroxiredoxin cycle. The transcription factors 

CLOCK, NPAS2, and BMAL1 make up the positive arm of the transcriptional-translational 

feedback loop (TTFL) and control the expression of period (PER) and cryptochrome (CRY). 

PER and CRY make up the negative arm of the TTFL and inhibit the activity of CLOCK/

BMAL1, forming a negative feedback loop. CLOCK(NPAS2)/BMAL1 controls the 

expression of various output genes (including Nrf2, Nqo1, and Aldh2), which influences 

ROS accumulation in the peroxiredoxin cycle. Sirtuin 1 (SIRT1), an NAD+-dependent 

histone and protein deacetylase, regulates the activity of the CLOCK/BMAL1 complex. 

Interestingly, melatonin (MT) acts as an antioxidant to inhibit ROS. Melatonin enters the 

mitochondria through MT transporters and is also synthesized within the mitochondria. 

Melatonin can also bind to MT receptors on the mitochondria to inhibit cytochrome c 

release, which may be protective against cell death
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FIGURE 3. 
The circadian system interacts reciprocally with a variety of physiological processes and 

systems that are involved in mood regulation. These processes include monoamine and 

glutamatergic signaling, HPA axis function, immune response, metabolism, and 

microbiome. Both environmental and genetic disruptions to circadian rhythms may produce 

alterations in these systems that ultimately affect mood. SCN, suprachiasmatic nucleus; 5-

HT, serotonin; DA, dopamine; NE, norepinephrine; GLUT, glutamate
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