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Abstract

Daily rhythms are generated by the circadian timekeeping system, which is orchestrated by the 

master circadian clock in the suprachiasmatic nucleus (SCN) of mammals. Circadian timekeeping 

is endogenous and does not require exposure to external cues during development. Nevertheless, 

the circadian system is not fully formed at birth in many mammalian species and it is important to 

understand how SCN development can affect the function of the circadian system in adulthood. 

The purpose of the current review is to discuss the ontogeny of cellular and circuit function in the 

SCN, with a focus on work performed in model rodent species (i.e., mouse, rat, hamster). 

Particular emphasis is placed on the spatial and temporal patterns of SCN development that may 

contribute to the function of the master clock during adulthood. Additional work aimed at 

decoding the mechanisms that guide circadian development is expected to provide a solid 

foundation upon which to better understand the sources and factors contributing to aberrant 

maturation of clock function.

Graphical Abstract

Daily rhythms are generated by the circadian timekeeping system, which is orchestrated by the 

master circadian clock in the suprachiasmatic nucleus (SCN) of mammals. The SCN is a neural 

network of cellular clocks that interact with one another to determine the emergent properties of 

the system. Like other important neural circuits, the development of the SCN network is a gradual 

process that spans both embryonic and postnatal ages. This review discusses SCN development at 

the cellular and circuit levels, with a focus on work performed in model rodent species (i.e., 

mouse, rat, hamster). Particular emphasis is placed on the spatial and temporal patterns of SCN 

development that may contribute to clock function in adulthood.
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I. Introduction

The circadian system generates daily rhythms that anticipate changes in the environment 

caused by the Earth’s rotation (Pittendrigh, 1960; Hut & Beersma, 2011). The master 

circadian clock in mammals is located in the suprachiasmatic nucleus (SCN) of the anterior 

hypothalamus (Weaver, 1998), which receives photic cues and provides daily signals to 

downstream tissues to coordinate the timing of overt rhythms (Figure 1A, (Mohawk et al., 

2012)). Daily rhythms are endogenously generated and not “learned” through exposure to 

external cues. Nevertheless, evidence from a variety of mammalian species suggests that the 

circadian system undergoes postnatal maturation much like the rest of the brain. Human 

newborns start to display daily rhythms gradually over the first few months of life, with 

body temperature rhythms developing in the first week after birth, sleep:wake rhythms 

emerging in the first 1-2 months, and hormone rhythms appearing around 3 months of age 

(Kleitman & Engelmann, 1953; Price et al., 1983; Kennaway et al., 1996; McGraw et al., 

1999; Rivkees, 2007). Further, circadian development can be affected by perinatal 

environmental conditions, which can influence health outcomes. For instance, 24/7 lighting 

in Neonatal Intensive Care Units decreases weight gain in babies born prematurely, increases 

latency to discharge from the hospital, and delays the timing of sleep:wake rhythm 

consolidation (Mann et al., 1986; Brandon et al., 2002; Vasquez-Ruiz et al., 2014). In 

addition, season of birth is associated with individual differences in chronotype (Mongrain et 

al., 2006; Natale & Di Milia, 2011), which can increase the risk of developing metabolic and 

mood disorders in adulthood (Erren et al., 2012; Tonetti et al., 2012; Merikanto et al., 2013; 

Yu et al., 2015). These studies indicate that the circadian system is sensitive during the 

perinatal period, and underscore the importance of understanding how development of the 

circadian system affects its operation in adulthood. In this review, we describe SCN 

development, with a focus on work performed in model rodent species (i.e., mouse, rat, 

hamster). Particular emphasis is placed on the spatial and temporal patterns of SCN 

development at the cellular and network level that may contribute to the function of the 

master clock during adulthood.

In adulthood, the SCN is a network of cellular clocks that display daily rhythms in cellular 

physiology, including metabolism, electrical activity, gene/protein expression, and peptide 
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release (Hastings et al., 2018). Circadian rhythms are generated at the cellular level by self-

sustained transcriptional-translational feedback loops that regulate daily expression of clock 

genes and their protein products (Figure 1B, Takahashi, 2017). Briefly, the transcription 

factors CLOCK and BMAL1 dimerize to activate expression of Period (Per1, Per2) and 

Cryptochrome (Cry1, Cry2) genes, which are translated into protein products that repress 

their own transcription. This core feedback loop is interlocked with other transcriptional 

loops that stabilize and augment circadian function (Figure 1B, Takahashi, 2017). This 

molecular clock operates in a heterogeneous population of SCN cells that communicate with 

one another to function as a unit. A majority of SCN neurons express the transmitter GABA, 

but they can be classified into subclasses based on neuropeptide expression (Moore & Speh, 

1993; Abrahamson & Moore, 2001). Classic models organize the SCN into two 

complementary compartments, known as the shell and the core, which are often 

distinguished using arginine vasopressin (AVP) in the SCN shell and vasoactive intestinal 

polypeptide (VIP) in the SCN core (Figure 1C, Moore et al., 2002; Antle et al., 2003). In 

general, this organizational scheme is consistent across many mammalian species, although 

it is a simplified model (Morin, 2007). In addition to neurochemical differences, SCN 

neurons in the shell and core regions differ in clock function and photic responses (Antle et 

al., 2003; Hastings et al., 2018), which may be established during network development 

under the guidance of cell-intrinsic and/or cell-extrinsic factors. Development of the 

circadian system has been covered in several excellent reviews published recently (Sumova 

et al., 2012; Landgraf et al., 2014; Bedont & Blackshaw, 2015), and the current review seeks 

to provide an update on recent progress made in this area (Figure 1D, see also Honma 

review, same issue).

II. SCN Cellular Development

The SCN is located within the ventral subdivision of the anterior hypothalamus. Similar to 

other parts of the brain, cellular development in the hypothalamus proceeds along several 

stages including proliferation and differentiation. Initial stages of cellular development in the 

rodent hypothalamus are largely completed during gestation, but latter stages can continue 

after birth. Embryonic age in rodents is defined typically by the presence of a vaginal plug 

on the morning after fertilization, which is labeled embryonic day 0.5 (E0.5) or embryonic 

day 1 (E1) depending on the conventions adopted by the laboratory. Because rodent models 

differ in the duration of gestation (i.e., mouse: 20 days, rat: 21-23 days, and hamster: 16 

days), species differences in the timing and patterning of SCN development are considered 

below.

A. Hypothalamic Development

The progenitor cells that give rise to hypothalamus are located in the matrix layer 

surrounding the third ventricle (Bedont & Blackshaw, 2015). Hypothalamic development 

generally follows an outside-in pattern where neurons born early are displaced outward by 

neurons born later (Ifft, 1972; Shimada & Nakamura, 1973; Altman & Bayer, 1978), 

although this model may not apply to all hypothalamic regions (Markakis & Swanson, 1997; 

Padilla et al., 2010). In general, the anatomy and development of the hypothalamus is fairly 

well conserved across vertebrate species (Ware et al., 2014; Xie & Dorsky, 2017). Further, 

Carmona-Alcocer et al. Page 3

Eur J Neurosci. Author manuscript; available in PMC 2020 May 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the timing of hypothalamic neurogenesis is fairly consistent across rodent species when 

embryonic age is normalized to the duration of the gestational period (GP). For instance, 

hypothalamic neurogenesis occurs in mice between E10-E16 (50-80% GP) and in rats 

between E11-E19 (50-85% GP).

During early stages of development, signals secreted by the ventral floor plate pattern the 

hypothalamus into discrete regions (Bedont & Blackshaw, 2015). Sonic hedgehog (encoded 

by Shh) is a lipid-linked polypeptide signal released from the ventral floor plate that is 

necessary for induction of the hypothalamus and drives Shh expression in the anterior 

hypothalamus. In mice, Shh is expressed by the anterior hypothalamus between E8.5-E10.5 

(Alvarez-Bolado et al., 2012). Deletion of Shh from the basal hypothalamus eliminates 

expression of early genetic markers of the ventral anterior hypothalamus (Shimogori et al., 

2010), including members of the LIM homeobox family (Lhx). In addition to SHH, the 

ventral floor plate releases other secreted factors that contribute to hypothalamic patterning, 

such as modulators of Wingless/Integrated (WNT) signaling (Rowitch & Kriegstein, 2010; 

Bedont & Blackshaw, 2015). These morphogenic cues can modulate several important 

processes during hypothalamic induction, including neurogenesis, differentiation and axon 

guidance.

During neurogenesis, the ventral anterior hypothalamus expresses a variety of genetic 

markers, including Lhx2, Retinal and anterior neural fold homeobox (Rax), Forkhead 
domain 1 (Foxd1), and NK2 homeobox 2 (Nkx2.2). The expression of these early markers is 

transient, starting before the onset of neurogenesis and ending with its conclusion 

(Shimogori et al., 2010; Bedont & Blackshaw, 2015; Newman et al., 2018). For example, 

Rax is expressed in the ventral hypothalamus of the mouse between E10.5-E14.5 (Pak et al., 

2014). Deletion of Rax prior to E8.5 disrupts patterning of the mediobasal hypothalamus 

(Orquera et al., 2016), but later deletion causes aberrant rewiring in a specific progenitor 

pool (Lu et al., 2013). These observations suggest that early genetic markers are critical for 

the patterning of the hypothalamus and play more specific roles during later stages by 

affecting differentiation. Key events regulated by early genetic programs include the 

activation of additional transcription factors, such as Ventral anterior homeobox 1 (Vax1), 

Six homeobox 3 (Six3), and Six6 (Hallonet et al., 1999; Jean et al., 1999; Li et al., 2002; 

Lagutin et al., 2003), which are often retained after differentiation to maintain cell-type 

specificity. The SCN is similar to other regions of the hypothalamus in its early expression 

of many of the genes described above, and the influence of these genetic programs on SCN 

development is discussed in the following sections.

B. SCN Neurogenesis

The bulk of SCN neurogenesis occurs over a 3-4 day interval corresponding to 60-80% GP 

in mice, rats, and hamsters (Altman & Bayer, 1978; Davis et al., 1990; Kabrita & Davis, 

2008). In the mouse, SCN neurogenesis occurs during E11.5-15.5 (58-78% GP), with a peak 

at E13.5 (Shimada & Nakamura, 1973; Kabrita & Davis, 2008). Similarly, SCN 

neurogenesis occurs between E13.5-E17 (58-75% GP) in rats (Ifft, 1972; Altman & Bayer, 

1978), and between E9.5-E13.5 (60-84% GP) in hamsters (Crossland & Uchwat, 1982; 
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Davis et al., 1990). Following the interval of neurogenesis, the SCN is clearly defined as a 

cluster of densely packed neurons with small soma (Moore & Bernstein, 1989).

Prior to SCN neurogenesis, Lhx2, Rax, Foxd1, and Nkx2.2 are expressed in the mouse 

hypothalamus, but these markers are absent after SCN neurogenesis is complete at E16 

(Shimogori et al., 2010; Vandunk et al., 2011; Ferran et al., 2015). As in other hypothalamic 

regions, morphogen signaling is thought to influence SCN neurogenesis and development. 

Consistent with this idea, the WNT receptor Frizzled 5 (Fzd5) is detected at E10.5-13.5 

specifically in cells that lack postmitotic markers (Vandunk et al., 2011). To our knowledge, 

the contribution of Fzd5 to SCN development has not been examined directly, but represents 

an interesting area for future work given its role in other circuits of the brain (Liu et al., 

2008; Sarin et al., 2018). In addition, members of the Fibroblast growth factor (Fgf) family 

are expressed in the ventral anterior hypothalamus of the mouse at E11.5 (Ferran et al., 

2015). Loss of Fgf signaling has been shown to reduce VIP expression and SCN volume at 

P0 (Miller et al., 2016), but consequences for circadian behavior after birth have not been 

explored.

The spatial patterning of neurogenesis across the ventrodorsal axis is consistent across 

rodent species, with SCN neurons in the ventral core of the network having an earlier 

birthdate than their counterparts in the dorsal shell (Altman & Bayer, 1978; Davis et al., 

1990; Kabrita & Davis, 2008). In the mouse, SCN core neurons are born first (peak at E12, 

60%GP), and SCN shell neurons are born at a later age (peak at E13.5, 68% GP) 

corresponding to the peak of proliferation in AVP neurons at E14 (Okamura et al., 1983; 

Kabrita & Davis, 2008). Similar ventral-to-dorsal patterning occurs in rats and hamsters 

(Altman & Bayer, 1978; Davis et al., 1990). The neurogenesis of specific types of SCN 

neurons has been examined most extensively in the hamster (Antle et al., 2005b). At E10.5-

E11.5 (66-72% GP), neurogenesis occurs in SCN core neurons that later express VIP, 

Gastrin-Releasing Peptide (GRP), Substance P, or Calbindin. In contrast, genesis of AVP 

neurons occurs over a wider timeframe that extends into later embryonic ages (peak E10.5-

E12.5, 66-78% GP). It has been suggested that SCN core and shell neurons derive from 

distinct progenitor pools in the neuroepithelium (Altman & Bayer, 1986), but the precise 

mechanisms that regulate cell-type differences in the timing of SCN neurogenesis are not 

well understood. On one hand, it is possible that cell fate is determined by intrinsic programs 

operating in neuronal precursors derived from distinct pools of progenitor cells. Another 

possibility is that extrinsic cues present in the microenvironment determine the maturation of 

SCN neurons proliferating at different times from the same progenitor pool. Which of these 

two models is most accurate for SCN development remains an open question, but both 

intrinsic and extrinsic factors have been shown to influence differentiation of GABA neurons 

in other brain regions (Quattrocolo et al., 2017).

There is also a spatial gradient of neurogenesis across the anteroposterior SCN, where the 

duration of neurogenesis is longer and ends later in the anterior SCN (Altman & Bayer, 

1986; Davis et al., 1990; Kabrita & Davis, 2008). These studies indicate that SCN shell 

neurons are produced in at least two neurogenic waves, with those in the middle-posterior 

regions generated before those in the anterior pole. A similar posterior-to-anterior patterning 

of the SCN shell has been detected in mouse, hamster, and rat SCN (Altman & Bayer, 1986; 
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Davis et al., 1990; Antle et al., 2005b; Kabrita & Davis, 2008), although the opposite 

gradient was reported initially in the rat (Altman & Bayer, 1978). In addition, work suggests 

that there may be sex- and/or hormonally driven differences in the timing of neurogenesis 

across this axis (Abizaid et al., 2004). Anteroposterior patterning of SCN neurogenesis is of 

potential interest because photoperiodic encoding occurs along this axis in adulthood 

(Hazlerigg et al., 2005; Inagaki et al., 2007). Thus, developmental patterning along the 

anteroposterior axis may influence photoperiodic modulation of behavior and physiology 

later in life.

The large majority of SCN neurogenesis is complete during gestation, but the number of 

SCN neurons increases by 50% over the first 2-5 days after birth (Muller & Torrealba, 1998; 

Ahern et al., 2013). Consistent with these findings, a low rate of cytogenesis in the rat SCN 

has been observed in the first week after birth (Seress, 1985). Further, neurogenesis has been 

noted to occur in the anterior SCN during puberty and adulthood in female rats using 5-

bromo-2’-deoxyuridine (BrdU) to label proliferating neurons (Mohr et al., 2017), suggesting 

that the SCN may be an additional neurogenic niche in hypothalamus of adult mammals 

(Yoo & Blackshaw, 2018). Although BrdU can produce false positives (Duque & Rakic, 

2011), inhibiting cell proliferation decreases adult SCN neurogenesis and delays the timing 

of the luteinizing surge (Mohr et al., 2017). Because reproductive rhythms are regulated by 

the SCN (Williams & Kriegsfeld, 2012), this raises the possibility that SCN neurons 

proliferating during adulthood may integrate into clock circuits to influence circadian 

function. The potential for adult SCN neurogenesis is especially interesting given the unique 

transcriptional profile displayed by adult SCN neurons, including low levels of NeuN-

immunoreactivity (Morin et al., 2011) and continued expression of genes more commonly 

detected in pluripotent progenitor cells (Sato et al., 2011; Vandunk et al., 2011; Saaltink et 

al., 2012; Hoefflin & Carter, 2014; Brown et al., 2017; Beligala et al., 2018). Given this 

pattern of results, it would be interesting to test the potential role of these factors in the adult 

SCN and whether their expression is modulated by environmental factors that influence 

clock function (e.g., light).

C. Early Stages of SCN Differentiation

Early differentiation requires transcriptional changes that serve to restrict pluripotency and 

specify cell fate (Achim et al., 2014). One of the most well studied pathways contributing to 

this process involves Notch signaling (Ware et al., 2014). Notch signaling maintains 

progenitor cell pools and activates self-renewal genes, such as Hairy enhancer of split (Hes), 

which is a class E basic helix-loop-helix (bHLH) transcription factor that inhibits 

differentiation by suppressing the expression of pro-neuronal genes. Inactivation of Notch 

signaling antagonizes factors related to progenitor cell identity (e.g., Soxb1), causes exit 

from the cell cycle, and leads to up-regulation of pro-neuronal bHLH transcription factors in 

neuronal precursors. One such pro-neuronal factor is Achaete-Scute Family bHLH 
Transcription Factor 1 (Ascl1, also known as Mash1), which is expressed in precursors of 

hypothalamic GABA neurons between E11.5-13.5 (Allen Brain Atlas). Among its many 

gene targets, Ascl1 activates expression of Distal-less homeobox 1 (Dlx) and Dlx2 (Poitras 

et al., 2007; Castro et al., 2011), which are selector genes important for GABA neuron 

development (Pla et al., 2017). Dlx2 is expressed in the developing SCN of the mouse 
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between E11.5-E14.5 (Vandunk et al., 2011), which is consistent with GABA synthesis in 

adult SCN neurons (Moore & Speh, 1993; Abrahamson & Moore, 2001).

During early stages of differentiation, the SCN expresses several genetic markers also found 

in other hypothalamic nuclei. As mentioned earlier, Lhx2, Rax, Foxd1, and Nkx2.2 are 

absent after the completion of SCN neurogenesis at E16 (Shimogori et al., 2010; Vandunk et 

al., 2011; Ferran et al., 2015). Despite being temporally restricted in expression, these genes 

activate genetic programs important for later stages of SCN development. For instance, 

Foxd1 is broadly expressed in the developing hypothalamus at E11.5, but loss of Foxd1 
function causes developmental defects in the anterior hypothalamus that appear after Foxd1 
levels have declined (Newman et al., 2018). SCN development is severely disrupted in 

Foxd1 deficient mice, with reduced expression of many genetic markers, loss of nuclear 

organization, and agenesis by P0.5 (Newman et al., 2018). The exact mechanisms by which 

the loss of Foxd1 leads to delayed defects in SCN development are unknown, and 

consequences for clock function are difficult to assess because Foxd1 deficient mice die 

within 24 h after birth (Hatini et al., 1996; Newman et al., 2018). But Foxd1 deficient mice 

display reduced expression of Vax1 and Six3 at E12.5 (Newman et al., 2018), indicating that 

early genetic programming is disrupted. Vax1, Six3, and Six6 are expressed diffusely across 

the ventral anterior hypothalamus in mice from E11.5-14.5, but the expression of these 

genes becomes more restricted to the SCN region by E15.5-16.5 (Shimogori et al., 2010; 

Vandunk et al., 2011; Ferran et al., 2015; Newman et al., 2018). Consistent with 

developmental defects evident in Foxd1 deficient mice, loss of Vax1, Six3 or Six6 disrupts 

SCN differentiation and circadian-control of behavior later in life (Vandunk et al., 2011; 

Clark et al., 2013; Hoffmann et al., 2016). Collectively, this work establishes that early 

hypothalamic markers are necessary for normal SCN development, likely by controlling the 

activation of genetic programs important for its later specification and maintenance.

The first selective SCN marker in the mouse is Lhx1, which is expressed throughout the 

SCN at E11.5 and becomes restricted to the central SCN by P0 (Vandunk et al., 2011). 

Earlier transcriptional activators are necessary for Lhx1 expression because loss of Lhx2, 

Foxd1, or Six3 will disrupt its normal patterning during SCN development (Vandunk et al., 

2011; Roy et al., 2013; Newman et al., 2018). Lhx1 directly activates transcription of Vip 
(Hatori et al., 2014), and Lhx1 binding occurs at many other genes with enriched SCN 

expression (Bedont et al., 2014). In line with this, loss of Lhx1 in the ventral anterior 

hypothalamus reduces SCN levels of several neuropeptides known to be important regulators 

of master clock function, such as Vip, Avp, Prokineticin 2 (Prok2), and Grp (Bedont et al., 

2014; Hatori et al., 2014). In addition, Lhx1 deficient mice display a 40% loss of SCN 

neurons by P4 due to increased cell death over the first few days after birth (Bedont et al., 

2014). Consistent with reduced neuronal complement and neuropeptide expression, loss of 

Lhx1 disrupts SCN molecular and electrical rhythms by attenuating phase coherence among 

SCN neurons (Bedont et al., 2014; Hatori et al., 2014). Lastly, Lhx1 deficient mice display 

pronounced changes in circadian behavior, with loss of daily rhythms under free-running 

conditions, altered responses to photic stimuli, and changes in sleep (Bedont et al., 2014; 

Hatori et al., 2014; Bedont et al., 2017). Collectively, these studies reveal that the early 

activation of Lhx1 is critical for the proper development of the SCN network, and that its 
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loss results in a failure to maintain terminal differentiation and prevent death of SCN 

neurons after birth.

A number of late genetic markers are expressed at E13.5 or later, including Zinc finger 
homeobox 3 (Zfhx3), POU Class 2 homeobox (Pou2f2, also known as Oct2), and the clock 

genes RAR-related orphan receptor a (Rora) and Rorb (Allen Brain Atlas, Rivkees et al., 

1992; Vandunk et al., 2011). Recent work has revealed that Zfhx3 regulates the expression 

of Vip and other SCN transcripts, the period of free-running rhythms, and the function of the 

sleep homeostat (Parsons et al., 2015; Balzani et al., 2016). However, effects of the Zfhx3 
mutation do not require its expression during development (Wilcox et al., 2017), indicating 

that Zfhx3 acts to regulate SCN function in adulthood by activating transcription at AT 

motifs (Parsons et al., 2015). Lastly, the clock genes Rora and Rorb are late stage markers of 

SCN development. Rora is expressed in the ventral SCN starting at E14.5, throughout the 

SCN at E17.5, and in a pattern more restricted to the SCN shell by P21 (Vandunk et al., 

2011; Newman et al., 2018). Appropriate expression of Rora/b depends on earlier 

transcriptional programs, including Foxd1 and Six3 (Vandunk et al., 2011; Newman et al., 

2018). But loss of Rora itself does not disrupt terminal differentiation of VIP or AVP 

neurons in the SCN (Vandunk et al., 2011), consistent with the later timing of Rora 
expression relative to other genetic markers. In contrast, a loss of function mutation in the 

Clock gene reduces the postnatal expression of VIP and AVP (Herzog et al., 2000). This is 

quite interesting given that CLOCK and BMAL are members of the bHLH class C 

transcription factor family (Takahashi, 2017), and clock gene expression has been implicated 

in the control of neurogenesis and differentiation in neurogenic zones of the adult brain 

(Borgs et al., 2009; Bouchard-Cannon et al., 2013). For instance, adult Per2 and Bmal1 
knockout mice display an increased number of newly born and undifferentiated cells in 

neurogenic zones (Borgs et al., 2009; Bouchard-Cannon et al., 2013). In addition, 

neurospheres and stem cells cultured in vitro develop molecular rhythms after neuronal 

differentiation (Yagita et al., 2010; Malik et al., 2015), which is abrogated upon cellular 

reprogramming back into pluripotent cells (Yagita et al., 2010). Further, loss of Clock 
function adversely affects maturation of neocortical circuits (Kobayashi et al., 2015). 

Collectively, this work suggests that the molecular clock can regulate cellular differentiation 

and circuit formation, but it is also possible that clock genes contribute to this process 

through non-circadian related mechanisms. It remains unknown whether the onset of 

molecular clock function gates SCN development and/or maturation beyond its role in 

cellular timekeeping.

At E16, SCN progenitors and post-mitotic neuronal precursors display distinct 

transcriptional profiles (Shimogori et al., 2010). Many genes important for SCN 

differentiation are maintained after birth (Vandunk et al., 2011; Brown et al., 2017), and 

expression of Six3, Six6, Lhx1, and Rora fluctuates in a rhythmic manner under either 

entrained or constant conditions (Vandunk et al., 2011; Clark et al., 2013; Hatori et al., 

2014). One of the final stages of terminal differentiation is the adoption of a specific 

subclass fate, typically defined by neuropeptide expression in SCN neurons (Moore & Speh, 

1993; Abrahamson & Moore, 2001; Southey et al., 2014). The timing of GABA and 

neuropeptide expression will be discussed in a later section because intercellular signaling 

among SCN neurons is essential for cohesive clock function at the tissue level.

Carmona-Alcocer et al. Page 8

Eur J Neurosci. Author manuscript; available in PMC 2020 May 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



D. Process Elongation and Synaptogenesis

Newly differentiated neurons undergo elongation of axonal and dendritic processes, 

ultimately culminating in the genesis of synapses (Tretter & Moss, 2008; Robichaux & 

Cowan, 2014). These two interrelated stages are orchestrated by a variety of mechanisms 

(e.g., signaling gradients, contact receptors, cell adhesion molecules), which prompt 

reorganization of the cytoskeletal proteins actin and tubulin in developing neurons. It has 

been estimated that the adult rat SCN contains at least 10 × 107 synapses (Guldner, 1976; 

Moore & Bernstein, 1989), and that many of these connections arise from neurons located 

within the nucleus itself (van den Pol, 1980; van den Pol & Tsujimoto, 1985). To our 

knowledge, this developmental stage has not been examined in the mouse, but there are a 

handful of anatomical studies investigating synaptogenesis in the rat or hamster SCN (Lenn 

et al., 1977; Moore & Bernstein, 1989; Laemle et al., 1991; Speh & Moore, 1993). These 

studies suggest that there is a progressive increase in the number and complexity of synapses 

over the early postnatal period, with two intervals of rapid growth corresponding to a large 

increase in synapse diversity from P0-P6 and a rapid increase in synapse number from P6-

P10 (Lenn et al., 1977; Moore & Bernstein, 1989).

At E19, SCN neurons in the rat are surrounded by sparse neuropil containing dendritic 

growth cones and occasional bundles of unmyelinated axons (Moore & Bernstein, 1989). 

The neuropil and primary dendrites have matured by P6 (Moore & Bernstein, 1989), 

although further increases in complexity have been noted after P14 (Lenn et al., 1977) 

possibly due to glial maturation (Munekawa et al., 2000). From P2-P6, the diversity of 

synapses increases, with the appearance of symmetrical, asymmetrical, and intermediate 

synapses containing clear and/or dense core vesicles abutting dendritic processes that are 

variable in size (Lenn et al., 1977). However, at P6, less than 50% of axon terminals and less 

than 30% of synapses are present compared to the adult rat SCN (Moore & Bernstein, 1989). 

During this early postnatal interval, 80% of dissociated SCN neurons collected from 1-3 day 

old rats will develop spontaneous inhibitory currents within 4 days in vitro (Welsh et al., 

1995). These electrical responses may be supported either by a low percentage of synapses 

or could be driven by non-synaptic release of GABA (Demarque et al., 2002). By P10, the 

complement of axon terminals reaches adult levels and the number of synapses has risen to 

70% (Moore & Bernstein, 1989). The remaining synapses may develop in a third wave 

between P21-P35 (Lenn et al., 1977). Similarly, synaptogenesis in the hamster SCN occurs 

from E16-P4, but has not been investigated as extensively as in the rat (Speh & Moore, 

1993).

It is not clear what mechanisms drive process elongation and synaptogenesis in the 

developing SCN (Tretter & Moss, 2008; Robichaux & Cowan, 2014). Cell adhesion 

molecules have been implicated in the process of establishing synaptic connections, but 

whether these systems direct formation and/or maintenance of SCN circuits remains unclear. 

In the rat SCN, expression of the cell adhesion molecules NCAM and L1 increases between 

P7-P14 (Yamada et al., 2003). Interestingly, disrupting the function of polysialylated NCAM 

or L1 in adulthood can impair behavioral rhythms of rats and mice free-running under 

constant conditions (Yamada et al., 1999; Shen et al., 2001). Further, loss of NCAM-180 

increases the number of VIP neurons in the mouse SCN by 2-3 fold, thus raising the 
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possibility that polysialylated NCAM regulates signaling mechanisms important for SCN 

function. These studies suggest that cell adhesion molecules regulate SCN development and 

influence cellular interactions in adulthood either directly or indirectly by changing circuit 

architecture. In addition, gap junctions have been implicated in the development of chemical 

synapses in other neural systems (Hormuzdi et al., 2004), and SCN cells can be linked by 

gap junctions (Welsh & Reppert, 1996; Colwell, 2000; Long et al., 2005). Connexin36 is a 

subunit of gap junctions specifically expressed in neurons, and it has been shown that 

inhibiting the function of gap junctions eliminates electrical coupling among SCN neurons 

and deleting connexin36 decreases the amplitude of daily rhythms in behavior (Long et al., 

2005; Wang et al., 2014). However, recent work reveals that loss of connexin-36 in adult 

mice does not impair circadian function at the behavioral or molecular levels (Diemer et al., 

2017). Collectively, these results suggest that signaling through connexin36-expression gap 

junctions modulates short-term electrical coupling among SCN neurons, but this mechanism 

is not necessary for long-term synchronization among SCN neurons at the level of the 

molecular clock. Overall, much remains unknown about SCN synaptogenesis, but recent 

advances in imaging and genetic approaches may provide deeper insight into how these 

important circuits are constructed and stabilized.

E. Neuronal Loss

It has been estimated that approximately 50% of neurons produced in the vertebrate brain 

are lost during development due to a variety of mechanisms (Fricker et al., 2018). The 

activation of caspase and pro-apoptotic members of the Bcl-2 family is a common cause of 

cell loss during the post-mitotic phase of development, which overlaps with synaptogenesis. 

Both cell-intrinsic programs and cellular interactions can activate apoptotic pathways during 

this time. A large number of SCN neurons is lost during the perinatal period, but the 

mechanisms that activate apoptotic programs in SCN neurons are unclear. In hamsters, there 

is a 40% decline in neuronal number over P3-P6 that reduces SCN volume to that typical of 

adults (Muller & Torrealba, 1998). A similar pattern of developmental cell loss is observed 

in the mouse SCN (peak P3-P5) using caspase-3 activation (Ahern et al., 2013) or DNA 

fragmentation as a marker of cell death (Bedont et al., 2014). The timing and patterning of 

SCN cell death is comparable to other hypothalamic nuclei (e.g., paraventricular nucleus, 

ventromedial nucleus), suggesting that this is a general process in this region (Ahern et al., 

2013). Although the most precipitous cell death occurs in the mouse SCN by P7, an 

additional 20% cells are lost by adulthood (Bedont et al., 2014). Early genetic programs 

influence perinatal cell loss because Lhx1 deletion causes an additional 40% reduction in the 

number of SCN neurons between P0-4 (Bedont et al., 2014). Cell loss in the Lhx1 mutant is 

preceded by reduced peptide expression, suggesting that cell survival is dependent on 

terminal differentiation. However, it is unknown if specific types of SCN neurons are lost 

during normal cell death and whether the function of the network changes due to their 

failure to integrate into the circuit.

F. Glial Development

Throughout the central nervous system, glia are generated after the period of neurogenesis 

(Rowitch & Kriegstein, 2010). This temporal sequence is thought to reflect that radial glia 

produce different classes of progenitor pools at early versus late stages of development, with 
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early pools of progenitors producing neurons and later pools producing glia (Tabata, 2015). 

Earlier-born neural cells influence gliogenesis by releasing extrinsic signals, such as 

cytokines and Notch ligands (Rowitch & Kriegstein, 2010). Lastly, macroglia can be divided 

into three distinct types: protoplasmic astrocytes (Aldhl1+, GFAP+ or GFAP-), fibrous 

astrocytes (AldhL1+, GFAP++), and oligodendrocytes (MBP+, PLP+, APC+), which may 

be generated from common or independent progenitor pools (Rowitch & Kriegstein, 2010).

SCN astrocytes have been detected in adult mice, rats, and hamsters using either GFAP or 

Aldh1L1 expression as markers (Guldner, 1983; Morin et al., 1989; Brancaccio et al., 2017; 

Tso et al., 2017). Morphological analyses indicate that the rat SCN contains both 

protoplasmic and fibrous astrocytes that can make appositions onto VIP+ neurons and AVP+ 

neurons (Tamada et al., 1998). Much like neurons, astrocytes can display daily rhythms in 

cellular physiology, including those in structural protein expression (Gerics et al., 2006; 

Lindley et al., 2008), morphological arrangements (Becquet et al., 2008), metabolic function 

(Womac et al., 2009; Burkeen et al., 2011) and clock gene/protein levels (Prolo et al., 2005; 

Cheng et al., 2009; Duhart et al., 2013; Tso et al., 2017). Recent work indicates that SCN 

astrocytes can influence GABA and glutamate signaling in the SCN (Barca-Mayo et al., 

2017; Brancaccio et al., 2017), and that SCN astrocytes affect SCN function in vitro 
(Brancaccio et al., 2017; Tso et al., 2017). Further supporting a glial role in clock function, 

modulating the molecular clock specifically in astrocytes will alter the period of circadian 

rhythms under constant conditions (Barca-Mayo et al., 2017; Tso et al., 2017). Lastly, 

anatomical and functional evidence suggests that SCN astrocytes may influence photic 

resetting (Lavaille & Serviere, 1995; Tamada et al., 1998; Moriya et al., 2000; Lavialle et al., 

2001; Girardet et al., 2010), but deficits in photic responses have not been reported in recent 

studies genetically manipulating the astrocyte clock.

Although there is a growing appreciation that astrocytes contribute to clock function, the 

development of SCN glia is not well understood. Most studies have used structural markers 

to track the development of glia in the SCN. For example, vimentin expression (a marker of 

radial glia) is high in the SCN prior to birth, but decreases markedly from P3-P6 in hamsters 

and rats (Botchkina & Morin, 1995; Munekawa et al., 2000). This likely reflects loss of 

radial glial progenitors, and its timing is consistent with the postnatal period of cell death in 

the hamster (Muller & Torrealba, 1998). In both species, there is a postnatal increase in 

GFAP+ processes that complements the decreasing expression of vimentin. In the hamster 

SCN, GFAP is first expressed at E15, but large numbers of GFAP+ processes are not 

detected until P0 (Botchkina & Morin, 1995). From P3-P10, the number of GFAP+ 

astrocytes increases further, with expansion continuing into adulthood. Similar development 

of GFAP expression occurs in the rat SCN, with GFAP expression first evident at E20 and 

postnatal expansion of GFAP+ processes (Munekawa et al., 2000). Interestingly, this latter 

study found that GFAP expression appeared in the core and shell SCN at different ages. 

Specifically, GFAP+ processes first appeared in the ventral SCN and increased from P3-4, 

but GFAP+ processes did not appear in the dorsal SCN until P12. From P20-P25, GFAP+ 

increased in both ventral and dorsal SCN, but this process can be affected by changes in 

light input (Munekawa et al., 2000; Yamazaki et al., 2002; Ikeda et al., 2003; Cambras et al., 

2005). Collectively, these studies suggest that different pools of SCN astrocytes developing 

at discrete postnatal stages are sensitive to changes in the perinatal environment. Going 
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forward, deeper insight into SCN macroglia can be gained from fate mapping studies that 

track astrocyte lineage and transcriptional programming (Rowitch & Kriegstein, 2010; 

Tabata, 2015). A greater understanding of SCN gliogenesis may allow for more precise ways 

to manipulate SCN macroglia and their progenitors at critical stages of development.

III. SCN Network Development

SCN neurons coordinate their cellular rhythms at the population level (Hastings et al., 2018), 

and thus the appearance of tissue-level rhythms can be used to infer when SCN circuits have 

matured. The molecular clock generates circadian rhythms at the cellular level, and 

intercellular interactions among SCN neurons synchronize, amplify, and stabilize these 

cellular rhythms (Herzog et al., 2004). In addition, interactions among SCN neurons 

generate spatiotemporal gradients in electrical and molecular activity at the network level, 

which can be adjusted to encode environmental conditions (Meijer et al., 2010; Evans & 

Gorman, 2016). These emergent properties reflect intercellular communication, and 

numerous chemical signals are produced in the SCN that may modulate network function 

via synaptic and/or non-synaptic signaling (Castel et al., 1996; Yamaguchi et al., 2003; 

Deery et al., 2009; Maywood et al., 2011). Specification of neurochemical identity is an 

important step in terminal differentiation, but postnatal changes in chemical signals are not 

uncommon. Thus, the role of these chemical signals may vary over development in ways 

that have important consequences for network maturation (see also Honma review, same 

issue). In this section, we review the ontogeny of SCN rhythms and the development of the 

specific chemical signals that are best understood at this time.

A. Development of the SCN Clock

A long-standing question in the field is when the SCN first starts to function as clock. Daily 

fluctuations in metabolic and electrical activity have been detected during late fetal 

development in rats using a variety of in vivo and acute ex vivo methods. Metabolic rhythms 

in the rat SCN manifest at E19, with high daytime levels of glucose utilization as in 

adulthood (Reppert & Schwartz, 1983; 1984; Shibata et al., 1987). Further, SCN slices from 

fetal rats display higher daytime firing as early as E22 when measured with an ex vivo 
between-group sampling method (Shibata & Moore, 1987). In this study, daytime firing was 

low and irregular at E22, but from P1-P14 gradually adopted more adult-like properties (i.e., 

increase in regular firing, mean firing rate, and rhythm amplitude). Collectively, these 

studies reveal that daily rhythms in cellular physiology are expressed prior to birth, which is 

an age when few synapses are present in the rat SCN (Lenn et al., 1977; Moore & Bernstein, 

1989). Further, changes in SCN electrical rhythms after birth indicate that additional 

maturation of the circuit occurs during the postnatal period of synaptic elaboration and 

diversification.

Daily rhythms of in vivo clock gene expression also appear during late gestation, although 

clock genes can become rhythmic at different ages. As mentioned earlier, Rora is first 

expressed in the mouse at E13.5 and is found throughout the SCN by E17.5 in this species 

(Vandunk et al., 2011), which is consistent with high constitutive expression of its target 

Bmal1 at E18 (Ansari et al., 2009). By E18, Per1 and PER1 are rhythmically expressed in 
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mouse SCN (Shimomura et al., 2001; Ohta et al., 2003; Ansari et al., 2009), suggesting that 

the core molecular loop is functional prior to birth. Studies disagree on whether Per2 and 

PER2 start to cycle before or after birth (Shimomura et al., 2001; Ohta et al., 2003; Ansari et 

al., 2009; Huang et al., 2010), which may reflect differences in methods or strain/sex of mice 

used. The last of the core clock components to oscillate appears to be Cry and CRY, with 

clear daily rhythms only emerging after P2 (Ansari et al., 2009; Huang et al., 2010). This 

dovetails with work indicating that Cry genes are not required for SCN rhythms until 1-2 

weeks after birth (Ono et al., 2013; 2016; see also Honma review, same issue). Similar 

staging of molecular rhythms is observed in rats and hamsters, with high early expression of 

Bmal1 and maturation of molecular rhythms spanning into postnatal life (Sladek et al., 2004; 

Li & Davis, 2005; Kovacikova et al., 2006; Houdek & Sumova, 2014). In studies where both 

positive and negative clock genes are included, it appears that Per1/2 and Bmal1 oscillate out 

of phase in vivo when they are both rhythmically expressed (Sladek et al., 2004; Li & Davis, 

2005; Kovacikova et al., 2006; Houdek & Sumova, 2014). Interestingly, a recent study found 

that Rev-erbα is one of the earliest clock genes to oscillate at E19 in the rat SCN (Houdek & 

Sumova, 2014). Given that Rev-erbα (also known as Nr1d1) negatively regulates Bmal1 
expression by competing with Rora (Takahashi, 2017), this suggests that the rhythmic 

regulation of Bmal1 may be one of the earliest events in the development of the molecular 

clock. Another consistent pattern across studies and species is that age-related changes in the 

amplitude and/or phasing of clock gene rhythms manifest in a gene-specific manner, which 

may reflect further maturation of the molecular clock and/or the influence of external factors 

(e.g., parturition, light).

Another important question is when the SCN is able to sustain rhythms without maternal 

influence. This issue has been addressed by examining SCN rhythms over time in culture, 

which also allows one to study the emergent properties of the network at the cellular and 

population levels. Pioneering studies employing this approach have demonstrated that SCN 

neurons collected from P2-P20 mice can sustain electrical and molecular rhythms in vitro 
(Yamaguchi et al., 2003; Maywood et al., 2006; Ohta et al., 2006; Enoki et al., 2012; 

Maywood et al., 2013). Recent developmental studies using this ex vivo technique have 

revealed that SCN molecular rhythms are expressed by E15.5 in mice (Wreschnig et al., 

2014; Landgraf et al., 2015; Carmona-Alcocer et al., 2018) and by E20 in rats (Nishide et 

al., 2014). Similar to the development of SCN electrical rhythms, the strength and precision 

of molecular rhythms continues to increase with age. Real-time imaging of molecular 

rhythms revealed that only 10% of SCN neurons oscillate at E14.5, but 70% are able to 

oscillate with high precision by E15.5 (Carmona-Alcocer et al., 2018). Competence of SCN 

rhythmicity at this age is consistent with work demonstrating that rhythms in SCN-lesioned 

adults can be restored 90% of time by SCN transplants collected from E14-15 fetuses 

(Kaufman & Menaker, 1993; Romero et al., 1993). Further, SCN neurons appear capable of 

forming a cohesive network early in development because period synchrony is evident at 

E15.5 and the spatiotemporal gradient emerges by P2 (Carmona-Alcocer et al., 2018). 

Interestingly, phase relationships among different clock genes may also mature late in 

development because dual real-time reporters indicate the relative phasing of Bmal1 and 

Per1 rhythms is less stable at P7 compared to adulthood (Ono et al., 2017). Collectively, this 

work indicates that the maturation of the SCN clock occurs in stages, with early 
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development of oscillator capacity but later development of network properties. Delayed 

network development is consistent with findings that the SCN is sensitive to perturbation 

early in development (Nishide et al., 2008; Wreschnig et al., 2014; Landgraf et al., 2015), 

which may reflect lack of robustness (Herzog & Huckfeldt, 2003; Buhr et al., 2010). Further, 

period synchronization at E15.5 does not require GABA or VIP signaling (Wreschnig et al., 

2014; Carmona-Alcocer et al., 2018), indicating that novel signaling mechanisms operate 

early in development (see also Honma review, same issue).

B. Development of Specific Chemical Signals

1. GABA (γ-Aminobutyric Acid)—GABA is the main neurotransmitter produced by 

SCN neurons (Moore & Speh, 1993; Abrahamson & Moore, 2001), and it is expressed in 

different peptidergic classes (Francois-Bellan et al., 1990; Castel & Morris, 2000). Synthesis 

of GABA is controlled by glutamic acid decarboxylase (GAD), and the adult SCN expresses 

both the GAD65 and GAD67 isoforms (O’Hara et al., 1995; Huhman et al., 1996; Castel & 

Morris, 2000). Synaptic release of GABA requires packaging by the vesicular GABA 

transporter VGAT, (encoded by Slc32a1), which is a general marker for GABA neurons 

(Chen et al., 2017). Lastly, cellular responses to GABA are mediated by GABAA and 

GABAB receptors. The GABAA receptor is a heteropentameric ligand-gated ion channel 

permeable to chloride and bicarbonate, with synaptic or extra-synaptic GABAA receptors 

that differ in subunit composition and functional properties (Albers et al., 2017). In the SCN, 

many GABA responses are driven by GABAA receptor signaling (Jiang et al., 1997; Strecker 

et al., 1997; Liu & Reppert, 2000), but the Gαi/o coupled GABAB receptor is also expressed 

(Gribkoff et al., 2003; Belenky et al., 2008).

GABA signaling modulates properties of the SCN network and photic responses in 

adulthood (reviewed in Albers et al., 2017), but surprisingly little is known about its 

development in the SCN. During brain development, GABA signaling regulates the 

formation of neural circuits by influencing cellular proliferation, neuronal differentiation, 

dendritic outgrowth, synapse formation, and circuit refinement (Akerman & Cline, 2007). In 

many developing networks, GABA is the first transmitter to become functional, but this 

signaling mechanism can operate differently in the perinatal versus adult brain. For instance, 

GABA can be released as a paracrine signal prior to synaptogenesis, which is facilitated by 

low transporter activity in perinatal rats and mice (Demarque et al., 2002). In the rat 

hypothalamus, GABA is expressed in neuronal soma, dendritic growth cones, and growing 

axons as early as E15 (van den Pol, 1997). Consistent with this embryonic window of 

GABA expression, Gad1 has been detected in the ventral anterior hypothalamus as early as 

E16 (Shimogori et al., 2010), and it is likely that the SCN displays postnatal increases in 

GAD expression similar to that reported for other hypothalamic regions (Puymirat et al., 

1982; Popp et al., 2009). Further, Vgat can be detected at low levels in the SCN at E18.5 

(Allen Brain Atlas), which is consistent with the timing of Vgat expression in the 

mediobasal hypothalamus (Kobayashi et al., 2017). After birth, there is a large increase in 

SCN Vgat expression over the postnatal period of synaptogenesis (Allen Brain Atlas). In 

general, very little is known about the developmental patterning of GABA receptors in the 

SCN, however, the postnatal presence of GABAA receptors can be inferred from functional 

responses to their pharmacological manipulation (Kawahara et al., 1993; Welsh et al., 1995; 
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Ikeda et al., 2003a). Further, other hypothalamic regions display postnatal swapping of 

GABAA receptor subunits (Fritschy et al., 1994; Davis et al., 2000), but GABAA subunits 

have been examined in the adult SCN only (Gao et al., 1995; O’Hara et al., 1995; Walton et 

al., 2017).

One interesting feature of GABA responses during development is that there is a postnatal 

switch from depolarization to hyperpolarization (Ben-Ari et al., 2012). In the rat 

hypothalamus, the developmental switch in GABA responses has been estimated to occur 

from P4-P10 (Obrietan & van den Pol, 1995), but studies tracking developmental changes in 

SCN responses to GABA are scarce. In one study, application of GABA was found to 

increase [Ca+2]i in 46% of dissociated SCN neurons collected from E18 rats and cultured for 

4 days (Obrietan & van den Pol, 1995). Similarly, application of the GABAA receptor 

antagonist bicuculline after 6 days in culture depressed [Ca+2]i in 50% of these SCN 

neurons, suggesting that basal [Ca+2]i is elevated by GABA released from perinatal SCN 

neurons. By 18 days in culture, however, GABA increased [Ca+2]i in only 13% of SCN 

neurons. Although dispersed cell cultures may not fully recapitulate the in vivo state, another 

study has examined [Ca+2]i responses in SCN slices collected from mice at discrete 

postnatal ages (Ikeda et al., 2003a). Overall, this study demonstrates that GABAA receptor 

activation increases [Ca+2]i in 60-65% of P6-7 SCN neurons, but this is reduced to 26-40% 

by P9-P10. Further, the P9-P10 SCN displays a daily rhythm in the [Ca+2]i response to 

GABAA receptor activation that is not present at P6-P7 (Ikeda et al., 2003a). These results 

suggest that at least a subset of SCN neurons develop phase-dependent responses to GABAA 

activation, but it is unknown if this process is influenced by maturation of the molecular 

clock, cell-type specific programming, the stabilization of intra-network connections, and/or 

the arrival of afferent inputs. The factors that regulate this developmental process in the SCN 

are especially intriguing given that excitatory GABA responses are reported in the adult 

SCN (reviewed in (Albers et al., 2017)) and GABA signaling remains plastic in the adult 

SCN (Farajnia et al., 2014; Myung et al., 2015). Thus, it is interesting to consider how this 

developmental process may sculpt GABA responses of adult SCN subclasses and their 

capacity for plasticity later in life.

2. VIP (Vasoactive Intestinal Polypeptide)—VIP is a member of the secretin family 

and binds to VPAC1/2 receptors with high affinity (Couvineau & Laburthe, 2011). In the 

SCN, VIP acts through the VPAC2 receptor, which is expressed by a majority of SCN 

neurons in the mouse (King et al., 2003; Kallo et al., 2004). When applied to the SCN, VIP 

and VPAC2 agonists modulate membrane potential, firing rate, [Ca+2]i, and GABA signaling 

(Reed et al., 2002; Itri & Colwell, 2003; Irwin & Allen, 2010; Kudo et al., 2013). Further, 

VIP signaling can alter electrical and molecular rhythms in the SCN, which requires 

activation of PKA, MAPK and PLC signaling pathways (Nielsen et al., 2002; Meyer-

Spasche & Piggins, 2004; An et al., 2011). Loss of VIP signaling will hyperpolarize SCN 

neurons, decrease the number capable of sustaining circadian rhythms, and compromise 

synchronization among those that remain oscillating (Aton et al., 2005; Brown et al., 2005; 

Maywood et al., 2006; Brown et al., 2007). The importance of VIP is further illustrated by 

the wide range of circadian phenotypes displayed by mice deficient in VIP signaling, 

including low-amplitude, short period under free-running conditions, increased incidence of 
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arrhythmia under constant darkness, accelerated recovery from simulated jetlag, deficits in 

photoperiodic encoding, and altered responses to constant light (Harmar et al., 2002; 

Colwell et al., 2003; Aton et al., 2005; Bechtold et al., 2008; Lucassen et al., 2012; An et al., 

2013; Loh et al., 2014; Hughes et al., 2015). Collectively, these studies indicate that VIP 

signaling is required to sustain normal SCN function in adulthood and suggest that insight 

into its functional role may be gained by examining developmental changes in VIP 

expression.

The onset of Vip expression occurs early in SCN development for many rodent species. In 

mice, Vip expression occurs by E18.5, which corresponds to 93% GP (Vandunk et al., 2011), 

which is 3.5 days after the end of neurogenesis in the SCN core in this species (Kabrita & 

Davis, 2008). This is followed by expression of VPAC2 at P0 and VIP at P2 (Carmona-

Alcocer et al., 2018), with further increases in VIP expression between P6-P30 (Herzog et 

al., 2000). Rats display similar developmental patterns, with the onset of Vip and VIP 

expression by E18 (79% GP), increased expression at P0, and two postnatal waves of 

increased expression between P5-P10 and P10-P20 (Laemle, 1988; Ban et al., 1997; Houdek 

& Sumova, 2014). In addition, hamsters display VIP by E13-E14 (80-88% GP) with 

postnatal increases in expression (Romero & Silver, 1990; Botchkina & Morin, 1995). In all 

three rodent species, there is postnatal expansion of VIP processes, with a dense plexus 

formed by P30 in mice (Herzog et al., 2000), by P20 in rats (Ban et al., 1997), and by P10 in 

hamsters (Botchkina & Morin, 1995). Interestingly, VIP signaling does not appear to be 

required for SCN synchrony at E15.5 (Wreschnig et al., 2014; Carmona-Alcocer et al., 

2018), suggesting that other signaling mechanisms support network function at this age. The 

loss of VIP signaling reduces the expression of other SCN neuropeptides in adulthood, such 

as Avp and Prok2 (Harmar, 2003; Bedont et al., 2014), which could reflect loss of SCN 

synchrony during adulthood or a developmental deficit in network maturation. With this in 

mind, it may be interesting to examine whether levels of these other neuropeptides are 

rescued by treatments that restore intercellular synchrony in VIP deficient SCN (Aton et al., 

2005; Maywood et al., 2006; Brown et al., 2007; Hughes et al., 2015).

The spatial patterning of postnatal changes in VIP expression has been investigated in both 

mice and rats, with development in both species characterized by VIP expression expanding 

into the middle and posterior SCN. In the rat, there are also medial-lateral differences in the 

timing of Vip expression, with two spatially distinct clusters of VIP neurons that differ in 

daily VIP expression and molecular responses to light (Ban et al., 1997; Kawamoto et al., 

2003). This suggests that there may be two subsets of VIP neurons that differ in the timing 

of maturation and function within the network. Interestingly, recent work has revealed that 

VIP neurons in mice can be divided into two subsets based on electrical firing (i.e., tonic 

versus irregular), and that rapid entrainment can be achieved in vitro or in vivo by driving 

high frequency firing from VIP neurons with optogenetic stimulation (Mazuski et al., 2018). 

Collectively, these data suggest the VIP neurons can be divided into at least two subclasses, 

which may differ in transcriptional programming, cellular physiology, and functional roles.

In addition to the developmental increase in VIP levels, there is an age-related change in the 

daily rhythm of VIP expression. A daily rhythm in Vip expression is observed in rats as soon 

as this transcript is detected at E19, but the phasing and amplitude of the rhythm is altered 
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by E21 (Houdek & Sumova, 2014). Changes also occur at postnatal ages, with an inversion 

of the Vip rhythm under free-running conditions between P10 and P20 (Ban et al., 1997) and 

a reduction in the amplitude of the VIP rhythm under entrained conditions between P4 and 

P20 (Isobe & Muramatsu, 1995). During this early postnatal window, VIP can be released 

rhythmically from organotypic SCN slices collected from P5-P6 rats (Shinohara et al., 1995; 

Nakamura et al., 2001). But in adult rats, the endogenous rhythm of Vip and VIP expression 

under constant darkness is lost (Shinohara et al., 1993; Ban et al., 1997), suggesting that 

mechanisms engaged later in life alter the circadian regulation of this peptide. The 

neurobiological bases and functional implications of these developmental changes are 

unknown.

3. AVP (Arginine Vasopressin)—Recent work indicates that signaling by AVP 

neurons regulates SCN function in ways beyond its role as an output to downstream tissues 

(Kalsbeek et al., 2010). The SCN expresses transcripts for the AVP receptors, V1a and V1b 
(Bedont et al., 2018), and inhibition of AVP signaling modulates SCN rhythms in vitro by 

affecting the period and phase relationships of SCN neurons (Edwards et al., 2016; Bedont 

et al., 2018). In vivo, deletion of V1a/b receptors accelerates behavioral and molecular 

recovery from simulated jetlag, which is mimicked by injections of V1A and V1B 

antagonists into the SCN (Yamaguchi et al., 2013). Further, manipulation of the molecular 

clock specifically in AVP neurons can drive changes in behavioral and SCN rhythms (Mieda 

et al., 2015; Mieda et al., 2016). Evidence indicates that the role of AVP signaling varies 

over SCN development (Ono et al., 2016), suggesting that age-related changes in AVP 

expression influence maturation of the master clock network.

SCN expression of Avp occurs at a later embryonic age relative to other hypothalamic 

nuclei. In the mouse, Avp is first detected in the SON at E14, in the PVN at E16, and in the 

SCN at E18 (Hyodo et al., 1992; Jing et al., 1998; Vandunk et al., 2011). The staging of Avp 
expression across these three structures corresponds with regional differences in the timing 

of neurogenesis for AVP neurons (Okamura et al., 1983). In addition, the onset of Avp 
expression in the SCN may be gated by maturation of the molecular clock since this 

transcript is a first order clock-controlled gene (Jin et al., 1999). In the mouse SCN, AVP 

expression is evident by P3-P6, and there is a large postnatal increase in AVP production 

where adult levels are achieved by P20 (Hyodo et al., 1992; Herzog et al., 2000). Similar 

developmental patterns of Avp and AVP expression have been reported in both rats and 

hamsters (de Vries et al., 1981; Reppert & Uhl, 1987; Delville et al., 1994; Houdek & 

Sumova, 2014). In rats, Avp is expressed rhythmically as soon as the transcript is detected 

(Reppert & Uhl, 1987; Houdek & Sumova, 2014), but there are subsequent changes in the 

time of peak transcription from E19-E21 (Houdek & Sumova, 2014) and peak protein 

expression from P0-P20 (Isobe & Muramatsu, 1995).

Comparison of AVP and VIP specification may speak to whether different peptidergic 

classes of SCN neurons are similar in the staging of critical developmental events. 

Transcripts of both peptides are expressed by E19 in the mouse and rat SCN (Vandunk et al., 

2011; Houdek & Sumova, 2014). In the mouse SCN, the Avp transcript appears 

approximately 2 days after the end of neurogenesis in AVP neurons (Okamura et al., 1983), 

whereas Vip expression occurs within 3-4 days after the end of neurogenesis in the SCN 

Carmona-Alcocer et al. Page 17

Eur J Neurosci. Author manuscript; available in PMC 2020 May 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



core (Kabrita & Davis, 2008; Vandunk et al., 2011). This suggests that there may be a longer 

interval to VIP production, but the precise time of neurogenesis in VIP neurons has only 

been identified in the hamster (Antle et al., 2005b). Similarly, the two transcripts differ in 

how their rhythms change with age. Rhythmic expression of both transcripts in the rat SCN 

occurs within 1-2 days after detection, but the phasing and amplitude for both is altered over 

subsequent days (Houdek & Sumova, 2014). Interestingly, both the Avp and Vip rhythms 

shift by approximately 6 h over E19-E21, but Avp amplitude increases and Vip amplitude 

decreases. Both peptides appear early in postnatal development, with detectable levels of 

VIP at P2 (Carmona-Alcocer et al., 2018) and AVP by P3-P6 (Herzog et al., 2000). Over the 

subsequent 1-3 weeks, both proteins display a marked increase in expression together with 

changes in the phasing and/or amplitude of daily expression patterns. These perinatal 

changes in transcript/protein could occur at the single-cell level or could be influenced by 

new sets of neurons that have expression later in life. Detailed investigations comparing the 

timing of specification and maturation of different neuronal subclasses in the same species 

may provide insight into potential factors regulating developmental staging in different types 

of SCN neurons.

4. Other Signaling Peptides—Two additional neuropeptides expressed in the SCN 

core are gastrin-releasing peptide (GRP) and Substance P, both of which are involved in 

photic responses. GRP is produced in mice, rats, and hamsters (LeSauter et al., 2002; 

Karatsoreos et al., 2006; Guillaumond et al., 2007), but Substance P expression is more 

variable across rodent species (Shibata et al., 1992; Silver et al., 1999; LeSauter et al., 2002). 

Further, the spatial location of receptors for each neuropeptide appears different, with the 

GRP receptor (the Gq-coupled Bombesin 2 receptor, BB2) most densely expressed in the 

SCN shell (Aida et al., 2002), and the Substance P receptor (NK-1) largely confined to the 

SCN core (Piggins et al., 2001). Likewise, there is functional evidence that these two 

neuropeptides have different roles in photic processing. Exogenous application of either 

GRP or Substance P can mimic the resetting actions of light, but only GRP elicits light-like 

responses during both early and late subjective night (Shibata et al., 1992; Albers et al., 

1995; McArthur et al., 2000; Aida et al., 2002; LeSauter et al., 2002; Antle et al., 2005a; 

Piggins et al., 2005; Gamble et al., 2007; Sterniczuk et al., 2010; Kallingal & Mintz, 2014). 

In addition, GRP is rhythmically expressed in a species- and/or age-dependent manner 

(Shinohara et al., 1993; Okamura & Ibata, 1994; Isobe & Muramatsu, 1995; McArthur et al., 

2000; Karatsoreos et al., 2006; Francl et al., 2010), but levels of Substance P do not appear 

to fluctuate (Otori et al., 1993).

VIP, GRP, and Substance P are all SCN core peptides that contribute to photic processing, 

but there are differences in their developmental patterning. In the hamster, VIP, GRP, and 

Substance P neurons are generated at a similar embryonic age (Antle et al., 2005b), but the 

timing of neuropeptide expression differs (Romero & Silver, 1990; Botchkina & Morin, 

1995; Antle et al., 2005b). Expression of GRP and Substance P occurs between P8-P10 in 

the hamster SCN, whereas VIP is produced much earlier at E13-E14 (as discussed in above 

section). Likewise, a developmental delay between VIP and GRP expression occurs in the 

mouse SCN (VIP: P2, GRP: P7; Drouyer et al., 2010; Carmona-Alcocer et al., 2018), and 

the rat SCN (VIP: E18-E19, GRP & Substance P: by P4-P5; Takatsuji et al., 1991; Isobe & 

Carmona-Alcocer et al. Page 18

Eur J Neurosci. Author manuscript; available in PMC 2020 May 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Muramatsu, 1995; Ban et al., 1997). The stark difference in the timing of VIP and GRP is 

surprising given their parallels in the adult SCN. Like VIP neurons, GRP neurons in the 

mature SCN are retino-recipient (Tanaka et al., 1997; Karatsoreos et al., 2004; Drouyer et 

al., 2010; Lokshin et al., 2015; Fernandez et al., 2016) and display light-induced increases in 

firing rate, immediate early gene expression, and neuropeptide release (Earnest et al., 1993; 

Romijn et al., 1996; Guillaumond et al., 2007; Francl et al., 2010; Gamble et al., 2011; 

Lesauter et al., 2011). In addition, potential interactions between GRP and VIP are 

illustrated by their co-expression in a subset of SCN neurons (Okamura et al., 1986; Romijn 

et al., 1998) and synergistic responses to GRP and VIP co-administration (Albers et al., 

1991; Albers et al., 1995; Chan et al., 2016). Further, BB2 signaling can synchronize SCN 

neurons in the absence of VIP signaling (Brown et al., 2005; Maywood et al., 2011). But 

unlike VIP, there is no evidence that GRP is required for SCN timekeeping because BB2-

deficient mice exhibit deficits in photic responses but otherwise normal rhythms in behavior 

and SCN function (Aida et al., 2002). Thus, it is tempting to speculate that the later 

emergence of GRP expression during development is related to its more specific role in adult 

SCN function.

5. Other Cellular Markers—A subset of SCN neurons express the calcium binding 

proteins, Calbindin and Calretinin, which are intracellular calcium buffers that play a role in 

calcium sensing and/or transport (Schmidt, 2012; Schwaller, 2014). Calbindin can be used as 

a cell-type marker, although this buffer is often co-expressed with other core peptides such 

as VIP, GRP, and Substance P (LeSauter et al., 2002; Drouyer et al., 2010). In adulthood, 

expression of each calcium buffer can fluctuate over the 24 h day, with higher Calbindin 

expression during the night (Arvanitogiannis et al., 2000; LeSauter et al., 2009) and higher 

Calretinin expression during the day (Arvanitogiannis et al., 2000; Moore, 2016). In the 

adult SCN, the expression of Calbindin and Calretinin varies among rodent species. The 

hamster displays both Calbindin and Calretinin in the SCN core, with dense expression of 

Calbindin in a compact subnucleus (Silver et al., 1996; Marshall et al., 2000; Antle et al., 

2005). In the adult rat, Calbindin is expressed in the SCN core as well (Arvanitogiannis et 

al., 2000), but Calretinin is expressed in the SCN shell (Marshall et al., 2000). Lastly, 

Calbindin is diffusely expressed in the adult mouse SCN, and Calretinin is more 

concentrated in the SCN core (Silver et al., 1999). Despite species differences in Calbindin 

expression in adulthood, work conducted to date suggests an important role for this calcium 

buffer in daily timekeeping in both hamsters and mice. In the hamster, Calbindin-expressing 

SCN neurons influence daily timekeeping and photic responses (LeSauter & Silver, 1999; 

Antle et al., 2003; Hamada et al., 2003), and micro-lesions targeting this specific SCN 

subpopulation has been shown to eliminate overt rhythms (Kriegsfeld et al., 2004). 

Similarly, Calbindin−/− mice exhibit deficits in photic entrainment together with low 

amplitude rhythms or arrhythmia under constant darkness (Kriegsfeld et al., 2008), which 

suggests a role for this calcium buffer in regulating the function of the developing and/or 

mature SCN.

To our knowledge, development of calcium buffers has been examined only in postnatal 

hamsters and mice. In the hamster SCN, Calbindin-expressing neurons are generated during 

a similar embryonic window as other SCN core neurons (Antle et al., 2005b), and Calbindin 
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is present at birth with postnatal increases in expression until adult levels are achieved at P15 

(Antle et al., 2005b). The developing mouse SCN also displays postnatal changes in 

Calbindin expression, but levels decrease with age in this species and the spatial pattern 

becomes more diffuse (Ikeda & Allen, 2003; Kriegsfeld et al., 2008). From P3-P16, high 

levels of Calbindin are localized to a central subregion of the mouse SCN core, but this 

region-specific pattern is lost by adulthood (Silver et al., 1999; Ikeda & Allen, 2003; 

Kriegsfeld et al., 2008). Further, it has been reported that Calretinin levels increase from P9-

P20 (Ikeda & Allen, 2003), suggesting a developmental switch in calcium buffers in the 

SCN that is opposite to that observed in newborn granule cells of the hippocampus (Todkar 

et al., 2012). It has been proposed that Calbindin and Calretinin protect neurons against 

excitotoxicity and apoptotic cell death due to their capacity for “fast” calcium buffering 

properties (D’Orlando et al., 2001; D’Orlando et al., 2002; Choi et al., 2008). In this light, it 

is interesting to note that the developmental period of high Calbindin expression in the 

mouse SCN overlaps with the interval of depolarizing responses to GABA (Obrietan & van 

den Pol, 1995; Ikeda et al., 2003a), maturation of retinal inputs (Sekaran et al., 2005; 

McNeill et al., 2011), and cell loss in this species (Ahern et al., 2013; Bedont et al., 2014). 

Of note, Calbindin−/− mice display a normal complement of VIP neurons, but a decrease in 

the number of AVP-immunoreactive neurons (Kriegsfeld et al., 2008). Circadian deficits in 

Calbindin−/− mice relate to the loss of this calcium buffer during a critical period of SCN 

development (Kriegsfeld et al., 2008), but the precise mechanisms remain unclear.

IV. Conclusions

The development of the SCN network is a gradual process that spans both embryonic and 

postnatal ages (Figure 1D). Recent work using real-time reporters of molecular rhythms 

dovetails with classic studies to support the idea that SCN neurons display the capacity for 

circadian timekeeping soon after the close of neurogenesis. Nevertheless, postnatal 

maturation of SCN circuits occurs at both the molecular and network levels. At the 

molecular level, this is best exemplified by evidence indicating that clock genes are 

expressed and become rhythmic at different developmental stages. At the network level, 

postnatal maturation of the SCN includes the progressive introduction, elaboration, and 

rewiring of signaling mechanisms that support master clock function in adulthood. In many 

respects, the precise mechanisms guiding the development of SCN cells and circuits are not 

well understood, but the current gaps in understanding provide promising avenues for future 

research.

Genetic programming and intercellular signaling guide SCN development, but there is still 

much to learn about the relative contribution and interplay of these two factors. For instance, 

to what extent do intrinsic genetic programs and intercellular signaling interact to guide 

induction and refinement of the SCN network? Do SCN cells communicate with one another 

to influence their mutual development? For example, SCN neurons that mature early in 

development might produce signals (e.g., GABA, VIP) that could set the stage for the later 

specification of other cells in a homo- or heterotypic manner. In other regions of the 

hypothalamus, neuropeptides can influence proliferation, differentiation, and synaptic wiring 

(Bakos et al., 2016). Thus, it is possible that SCN neuropeptides play a similar role during 

the development of master clock circuits. In addition, it would be interesting to examine 
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what cues and factors regulate neurite elongation, synaptogenesis, cell survival, and neuronal 

loss in the developing SCN. This may provide new insights into whether SCN circuits are 

rearranged and modified after they are initially established. Recent advances in genetic 

labeling of specific pools of post-mitotic neurons may aid in pursuing the answers to some 

of these questions.

Another issue that warrants further examination is whether the timing of key developmental 

checkpoints is generic to all SCN neurons or whether there are cell-type specific programs at 

play. Some support for the latter model derives from evidence that the onset of neuropeptide 

expression can differ markedly among classes of SCN neurons that appear to be generated 

during a similar embryonic window. For example, neurons that will produce VIP, GRP, 

Substance P, and Calbindin are born at a similar embryonic age in the hamster SCN, but the 

onset of neuropeptide expression appears to vary substantially among these subclasses. 

Although it is difficult to precisely pinpoint the exact age at which peptides are produced 

due to developmental changes in levels or rhythms of expression, it is tempting to speculate 

based on this evidence that the timing of differentiation and specification varies among 

distinct classes of SCN neurons. Might there be other phenotypic checkpoints that differ 

among SCN subclasses, such as the maturation of molecular clock function, neurite 

elongation, or receptor expression? If subclasses of SCN neurons do mature in a cell-type 

specific manner, it would be of interest to determine what extent these programs are guided 

by cell-intrinsic and/or cell-extrinsic factors.

Given evidence that perinatal photic conditions can influence circadian function in both 

humans and animal models, a key area for future research is to investigate the basis of this 

effect. Although this review has focused on developmental events within the SCN itself, 

there is mounting evidence that maturation of the SCN network is influenced by signals 

from the eye. Light is transmitted to the SCN by the retinohypothalamic tract (RHT), which 

is formed by axons from intrinsically photosensitive retinal ganglion cells (ipRGCs) that 

express the photopigment melanopsin and relay signals from the rod and cone 

photoreceptors (Van Gelder & Buhr, 2016). Neurogenesis of ipRGCs occurs during E11-E19 

in the mouse (McNeill et al., 2011), with the expression of melanopsin by E11-E15 in the 

mouse retina (Tarttelin et al., 2003; McNeill et al., 2011) and by E18 in the rat retina 

(Fahrenkrug et al., 2004). The first RHT terminals innervate the rat and mouse SCN by P0 

(Speh & Moore, 1993; McNeill et al., 2011), and by this age ipRGCs in the mouse are 

capable of mounting light-evoked electrical responses that can increase immediate early 

gene expression in the SCN (Hannibal & Fahrenkrug, 2004; Sekaran et al., 2005). Despite 

early RHT innervation by a small number of terminals, there is a prolonged period of 

postnatal expansion and elaboration over the first two weeks after birth that corresponds 

with greater SCN responses to light (Speh & Moore, 1993; Kaufman & Menaker, 1994; 

Munoz Llamosas et al., 2000; Lupi et al., 2006; Mateju et al., 2009; McNeill et al., 2011). 

This postnatal window coincides with several critical events in the SCN, including cell loss, 

synaptogenesis, glial maturation, the switch in GABA responses, and changes in 

neuropeptide expression. Evidence that the RHT influences SCN development is provided 

by work demonstrating that enucleation and/or dark-rearing will decrease VIP, increase AVP, 

decrease Substance P, and modulate GFAP expression (Takatsuji et al., 1991; Isobe & 

Muramatsu, 1995; Ban et al., 1997; Munekawa et al., 2000; Ikeda et al., 2003b; Cambras et 
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al., 2005; Smith & Canal, 2009). This is matched by work indicating that the perinatal 

lighting environment can influence SCN function and behavioral rhythms later in life 

(Cambras et al., 1997; Ciarleglio et al., 2011; Chew et al., 2017), including modulation of 

key properties such as free-running period length. The neurobiological basis of these effects 

remain unclear, but may relate directly to changes in neuropeptide expression since these 

signals serve as both important modulators of the SCN network and as daily outputs to 

downstream clock tissues. The precise mechanisms by which the retina influences the 

composition and function of the SCN network are important areas for future research.

Several principles of circadian development gleaned from rodent studies appear to 

generalize to humans and non-human primates. The emergence of fetal rhythms during 

embryonic development is common in many mammalian species (reviewed in Mirmiran & 

Ariagno, 2000; Seron-Ferre et al., 2007). In humans and non-human primates, daily rhythms 

in fetal heart rate, respiration, hormone production, and body movement can be detected 

during late gestation. Daily rhythms in body temperature can be detected in 50% of babies 

born prematurely (Mirmiran & Ariagno, 2000), but body temperature rhythms are low 

amplitude in most newborns (Glotzbach et al., 1995). Over the ensuing months, daily 

rhythms re-emerge in the neonate with distinct rhythms emerging at different ages (Kleitman 

& Engelmann, 1953; Price et al., 1983; Glotzbach et al., 1995; Kennaway et al., 1996; 

McGraw et al., 1999; Rivkees, 2007). The prenatal emergence of overt rhythms in primates 

appears to coincide with the onset of molecular clock function in the SCN, although there 

are very few studies examining this issue. In the capuchin monkey, Bmal1, Per2, Cry2, and 

Clock are expressed by an age corresponding to 90% gestation (Torres-Farfan et al., 2006). 

Daily fluctuations in Bmal1 and Per2 are evident at this age, although the phasing and 

amplitude of these rhythms is not identical to adults. Lastly, sequential expression of VIP 

and AVP occurs in humans prior to birth, with postnatal increases in the number of SCN 

neurons until 1-3 years of age (Swaab et al., 1996; Xu et al., 2003). Collectively, these data 

suggest that SCN development in both primates and rodents is characterized by an extended 

interval of postnatal maturation at the molecular and network levels. Against this backdrop, 

many investigators have warned about the potential harm caused by circadian disruption 

during perinatal development (Mirmiran & Ariagno, 2000; Amaral et al., 2014). There is an 

increasing appreciation of the health costs of circadian disruption in adulthood (Evans & 

Davidson, 2013), and circadian disruption during gestation may have detrimental 

consequences for both mother and child (Amaral et al., 2014). Additional work aimed at 

decoding the mechanisms that guide SCN development is expected to provide a solid 

foundation upon which to better understand the sources and effects of circadian disruption 

early in life. To achieve this goal, it will be important to study the precise mechanisms that 

guide SCN development in both rodent and non-human primates, as well as the effects of 

circadian disruption on short- and long-term health outcomes.
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Abbreviations

ALDHL1: Aldehyde Dehydrogenase 1 Family Member L1

APC: Adenomatous Polyposis Coli

ASCL: Achaete-Scute Family Transcription Factor

AVP: Arginine Vasopressin

BB2: Bombesin 2 receptor

BCL-2: B-Cell Lymphoma 2 Protein

bHLH: Basic Helix-Loop-Helix

Bmal1/BMAL1: Brain and Muscle Arnt-Like Protein 1 gene/protein

BrdU: 5-Bromo-2’-Deoxyuridine

CB: Calbindin

Clock/CLOCK: Circadian Locomotor Output Cycles Kaput gene/protein

CR: Calretinin

Cry/CRY: Cryptochrome gene/protein

DLX: Distal-Less Homeobox

E#: Embryonic Day

FGF: Fibroblast Growth Factor

FOXD: Forkhead Box Domain

FZD: The Wingless Receptor, Frizzled

GABA: γ-Aminobutyric Acid

GAD: Glutamic Acid Decarboxylase

GFAP: Glial Fibrillary Acidic Protein

GP: Gestational Period

GRP: Gastrin-Releasing Peptide

HES: Hairy Enhancer of Split

ipRGCs: Intrinsically Sensitive Retinal Ganglion Cells

L1: L1 protein

LHX: LIM Homeobox

MAPK: Mitogen-Activated Protein Kinase
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MBP: Myelin Basic Protein

NCAM: Neural Cell Adhesion Molecule

NeuN: Neuronal Nuclei Protein

NK-1: Substance P receptor

NKX: Nkx Homeobox

NMS: Neuromedin S

P#: Postnatal Day

Per/PER: Period gene/protein

PKA: Protein Kinase A

PLC: Phospholipase C

PLP: Proteolipid Protein

POU2F: POU Class 2 Homeobox

PROK: Prokineticin

PVN: Paraventricular Nucleus

RAX: Retinal and Anterior Neural Fold Homeobox

RHT: Retinohypothalamic Tract

Ror/ROR: RAR-Related Orphan Receptor gene/protein

SCN: Suprachiasmatic Nucleus

SHH: Sonic Hedgehog

SIX: Six Homeobox

SON: Supraoptic Nucleus

V1: Vasopressin Receptor

VAX: Ventral Anterior Homeobox

VGAT: Vesicular GABA Transporter

VIP: Vasoactive Intestinal Polypeptide

VPAC2: Vasoactive Intestinal Peptide Receptor 2

WNT: Wingless Signaling Pathway

ZFHX: Zinc Finger Homeobox
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Figure1. 
Development of the circadian timekeeping system. A. In adulthood, the suprachiasmatic 

nucleus (SCN) receives light input via the retinohypothalamic tract and provides daily 

outputs signals to downstream tissues to coordinate the timing of overt rhythms. B. 

Simplified model of the circadian molecular clock in mammals, which is composed of self-

sustained transcriptional-translational feedback loops that regulate daily expression of clock 

genes and their protein products. In SCN neurons, the transcription factors CLOCK and 

BMAL1 dimerize and activate Period (Per) and Cryptochrome (Cry) expression during the 
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day. After translation, PER and CRY dimers repress their own transcription at night. This 

core feedback loop is interlocked with other transcriptional loops that stabilize and augment 

circadian function. For example, REV-ERB and ROR regulate the daily expression of 

Bmal1. C. The shell-core model of the adult SCN network illustrating the spatial location of 

five neuronal subclasses in mice. AVP: Arginine Vasopressin, VIP: Vasoactive Intestinal 

Polypeptide, GRP: Gastrin-Releasing Peptide, CB: Calbindin; CR: Calretinin. Note: all five 

peptides are also expressed in rats and hamsters although the expression of CB and CR 

differs among rodent species. D. Timeline of SCN development. Important milestones are 

illustrated for SCN development in rodents. Most information illustrated on the timeline 

derives from studies using mice, but detailed information on the timing of fetal metabolic/

electrical rhythms, Rev-erb rhythms, synaptogenesis, and glial maturation are only available 

for rats. Early genetic markers of SCN differentiation are labeled purple to represent those 

for which effects on SCN development have been reported. Color version of this figure can 

be viewed online.

Carmona-Alcocer et al. Page 43

Eur J Neurosci. Author manuscript; available in PMC 2020 May 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	Graphical Abstract
	Introduction
	SCN Cellular Development
	Hypothalamic Development
	SCN Neurogenesis
	Early Stages of SCN Differentiation
	Process Elongation and Synaptogenesis
	Neuronal Loss
	Glial Development

	SCN Network Development
	Development of the SCN Clock
	Development of Specific Chemical Signals
	GABA (γ-Aminobutyric Acid)
	VIP (Vasoactive Intestinal Polypeptide)
	AVP (Arginine Vasopressin)
	Other Signaling Peptides
	Other Cellular Markers


	Conclusions
	References
	Figure1.

