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Abstract
Medial vascular calcification has emerged as a putative key factor contributing to the excessive cardiovascular mortality of 
patients with chronic kidney disease (CKD). Hyperphosphatemia is considered a decisive determinant of vascular calcifica-
tion in CKD. A critical role in initiation and progression of vascular calcification during elevated phosphate conditions is 
attributed to vascular smooth muscle cells (VSMCs), which are able to change their phenotype into osteo-/chondroblasts-
like cells. These transdifferentiated VSMCs actively promote calcification in the medial layer of the arteries by producing 
a local pro-calcifying environment as well as nidus sites for precipitation of calcium and phosphate and growth of calcium 
phosphate crystals. Elevated extracellular phosphate induces osteo-/chondrogenic transdifferentiation of VSMCs through 
complex intracellular signaling pathways, which are still incompletely understood. The present review addresses critical 
intracellular pathways controlling osteo-/chondrogenic transdifferentiation of VSMCs and, thus, vascular calcification dur-
ing hyperphosphatemia. Elucidating these pathways holds a significant promise to open novel therapeutic opportunities 
counteracting the progression of vascular calcification in CKD.

Keywords  Osteogenic signaling · Vascular smooth muscle cells · Vascular calcification · Phosphate · CKD

Introduction

Medial vascular calcification, often termed in short vascular 
calcification, represents the pathological deposition of cal-
cium and phosphate in the medial layer of the arteries [1]. 
Vascular calcification is observed as a common complication 

in chronic kidney disease (CKD) [2, 3], diabetes mellitus [4], 
and aging [5]. It is also found in association with various 
pathological conditions including hypertension, atheroscle-
rosis, osteoporosis, and rheumatoid arthritis [6, 7], and can 
be caused by rare monogenic disorders [8, 9].
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The most extensive vascular calcification is observed in 
patients with CKD [2, 3]. In these patients, vascular calcifi-
cation was suggested as a critical risk factor for cardiovas-
cular events, and is associated with increased cardiovascu-
lar and all-cause morbidity and mortality [10, 11]. Vascular 
calcification has been considered decisive for the clinical 
course of the disease [2]. Nonetheless, the exact contribu-
tion of vascular calcification to cardiovascular mortality 
remains to be established, as currently only observational 
data are available. The observational studies are hampered 
by the slow onset and progression of vascular calcification 
and limited diagnostic methods. The recent discovery of a 
nanoparticle-based test of the calcification propensity may, 
however, establish a clinical approach to study risk factors 
and mechanisms of vascular calcification in CKD [12].

However, so far, the complex processes leading to vascu-
lar calcification in CKD remain incompletely understood. 
Consequently, no convincing concepts and treatment options 
to prevent or reduce the development of vascular calcifica-
tion are yet available [13, 14].

Phosphate and vascular calcification in CKD

In CKD, the initiation and progression of vascular calcifica-
tion is triggered by a combination of various pathological 
factors [2, 3, 15, 16]. Dysregulation of mineral homeostasis 
and elevated phosphate levels are considered key determi-
nants of vascular calcification in CKD [1, 17]. Hyperphos-
phatemia frequently occurs as a consequence of impaired 
renal function [2] and is associated with vascular calcifica-
tion [2, 6] as well as increased risk for cardiovascular events 
and death [18]. However, the effects of phosphate binders on 
vascular calcification are still uncertain [19], which may be 
also attributed to the complex interplay of systemic phos-
phate handling and the availability of bone as a large source 
of phosphate [20]. Phosphate handling and development of 
hyperphosphatemia in CKD have been reviewed in detail 
elsewhere [20–24].

Phosphate complexes with calcium and calcium phos-
phate nanoparticles are able to activate pro-calcific intracel-
lular signaling pathways [25, 26]. Increased calcium phos-
phate product levels [27] and calcium phosphate–protein 
complexes, known as calciprotein particles (CPPs) [28–30], 
are associated with the development of vascular calcifica-
tion in CKD. The formation of CPPs and mineral stress have 
been reviewed in detail elsewhere [31, 32].

Even in patients with normal renal function, enhanced 
serum phosphate levels are associated with coronary artery 
calcification [33] and a high risk of cardiovascular events 
and mortality [34]. Thus, phosphate seems to play a crucial 
role in the pathophysiology of vascular calcification [1, 29].

Mechanisms of vascular calcification 
in hyperphosphatemia

The mechanisms promoting the initiation and progres-
sion of vascular calcification show similarities to those 
accomplishing physiological bone formation [35, 36] 
involving osteo-/chondrogenic transdifferentiation as well 
as apoptosis of vascular cells, decreased availability of 
calcification inhibitors, extracellular vesicle release, and 
remodeling of extracellular matrix [2, 6]. These mecha-
nisms are not mutually exclusive. Vascular smooth muscle 
cells (VSMCs) play a key role during vascular calcification 
(Fig. 1) [3, 6, 15, 17].

Under physiological conditions, calcium and phosphate 
concentrations exceed their solubility [37] and endogenous 
local and circulating calcification inhibitors are required to 
prevent the ectopic precipitation of calcium and phosphate 
[2]. The strongest endogenous inhibitor of mineralization 
is considered to be inorganic pyrophosphate [3, 6] found 
in relatively high levels in blood [1], but also being locally 
produced by VSMCs [10]. VSMCs produce and release 
pyrophosphate in the extracellular space, effects involv-
ing the ectonucleotide pyrophosphatase/phosphodiester-
ase (ENPP1) and the transmembrane protein ankylosis 
protein homolog (ANKH) [10, 38]. In addition, Fetuin-
A is a circulating protein that can bind directly calcium 
or hydroxyapatite to inhibit the growth of hydroxyapatite 
crystals [1, 2]. Dietary protein restriction in rats with CKD 
is associated with reduced systemic Fetuin-A concentra-
tions and increased vascular calcification [39]. VSMCs can 
take up Fetuin-A from the extracellular space and produce 
several other inhibitory proteins such as matrix-Gla pro-
tein, osteopontin, or osteoprotegerin [1, 2], which are fur-
ther loaded into extracellular vesicles to prevent vascular 
mineralization [3]. Various pathological factors, especially 
high extracellular phosphate levels, are able to suppress 
the production of calcification inhibitors and to promote 
the release of exosomal vesicles lacking these inhibitors, 
but with increased load of pro-calcific proteins such as 
tissue-nonspecific alkaline phosphatase (ALPL) [40, 41]. 
These could form microcalcifications and serve as a nidus 
for calcium phosphate precipitation and growth of calcium 
phosphate crystals [7, 40, 42].

Hyperphosphatemia may further lead to extracellular 
matrix remodeling in the medial layer of the vasculature 
[2, 43]. Increased production of matrix metalloproteinases 
(MMPs) by VSMCs [44–47] such as MMP2 or MMP9 [43, 
46, 47] and further degradation of various extracellular 
matrix proteins including elastic fibers provide additional 
nidus sites for calcium phosphate precipitation [2, 7, 43]. 
Along those lines, excessive levels of the cysteine protease 
cathepsin S leads to cleavage of elastin and generation 
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bioactive elastin peptides [48], which may act directly on 
VSMCs to further accelerate vascular calcification [2, 48, 
49] during hyperphosphatemia. Furthermore, in the pres-
ence of phosphate, VSMCs synthesize increased levels 
of collagen, leading to deposition of a collagen-enriched 
extracellular matrix [7, 10, 50, 51]. More importantly, 
phosphate induces the expression of enzymes such as pro-
collagen-lysine, 2-oxoglutarate 5-dioxygenase 1 (PLOD1), 
or lysyl oxidase (LOX) in VSMCs [52] that mediate col-
lagen cross-linking and supramolecular organization [53], 
which seems to represent a critical event during extracel-
lular matrix remodeling associated with vascular tissue 
mineralization [50, 52].

Apoptosis is another key mechanism promoting vascular 
tissue mineralization [54, 55]. Previous studies showed that 
high extracellular phosphate levels induce apoptosis and 
necrosis of VSMCs [1, 2, 16, 46]. Under such circumstances, 
VSMCs release apoptotic bodies, which could serve as a 
nidus for calcium phosphate deposition [1, 42, 54, 56]. In 
addition, apoptosis of VSMCs may lead to medial VSMC 
loss and degeneration as well as elastin breaks, cyst-like 
structures, and changes in extracellular matrix composi-
tion within the medial layer of the arteries [55, 57], effects 
that may also contribute to vascular mineralization [2, 7, 

43]. Inhibition of apoptosis with caspase inhibitor is able to 
reduce VSMC mineralization [54].

In vascular tissue, calcification is actively promoted 
by osteoblast- and chondroblast-like cells [36, 58]. In the 
media, VSMCs are able to change their phenotype from a 
contractile into an osteo-/chondrogenic phenotype under 
high phosphate conditions [6, 17]. Osteo-/chondrogenic 
transdifferentiation of VSMCs precedes and is required for 
vascular tissue mineralization [17, 58, 59]. Further sources 
of osteo-/chondroblast-like cells in the vasculature include 
pericytes [60], myofibroblasts in the adventitia [7, 61], or 
vascular progenitor cells [62].

Phosphate‑induced osteo‑/chondrogenic 
transdifferentiation of VSMCs

In response to high extracellular phosphate levels, VSMCs 
are able to change their phenotype into osteo-/chondroblast-
like cells actively promoting vascular mineralization [46, 
63, 64]. These transdifferentiated VSMCs lose their con-
tractile phenotype in favor of a more mesenchymal one and 
gain similar properties as osteoblasts and chondroblasts [7]. 
They express osteogenic transcription factors such as msh 
homeobox 2 (MSX2), core-binding factor α-1 (CBFA1) [46, 

Fig. 1   Role of vascular smooth 
muscle cells in vascular calci-
fication. Following exposure 
to pro-calcific factors, most 
importantly hyperphosphatemia, 
vascular smooth muscle cells 
(VSMCs) are able to trans-
differentiate into an osteo-/
chondrogenic phenotype. This 
process is characterized and, at 
least partly, mediated by expres-
sion of osteogenic transcription 
factors such as CBFA1, MSX2, 
SOX9, and osterix. The osteo-/
chondroblast-like cells actively 
promote calcification by 
reduced availability of calcifica-
tion inhibitors, apoptosis, and 
apoptotic body release as well 
as release of calcifying extracel-
lular vesicles, remodeling of the 
extracellular matrix and elastin 
degradation, and a pro-inflam-
matory state with release of 
pro-inflammatory cytokines and 
oxidative stress. These create 
a pro-calcifying environment, 
which allows for active miner-
alization of the vasculature
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63–65] or osterix [66], as well as chondrogenic transcrip-
tion factors including SRY-Box 9 (SOX9) [46, 67–69]. The 
transcription factor CBFA1 (also known as RUNX2) plays 
a decisive role in vascular calcification [3]. Deficiency of 
CBFA1 in VSMCs prevents vascular osteo-/chondrogenic 
transdifferentiation and calcification [70, 71]. The transcrip-
tion factor MSX2 induces the expression of CBFA1 and 
osterix in VSMCs [72]. Osterix is up-regulated by CBFA1 
[73] and required for its full activation [10]. In addition, 
SOX9 may cooperate with CBFA1 to suppress the smooth 
muscle phenotype and promote transdifferentiation of 
VSMCs [69].

In these VSMCs, the expression of smooth muscle-spe-
cific proteins such as α-smooth muscle actin (αSMA) or 
smooth muscle protein 22-α (SM22-α) is reduced [58]. The 
phosphate-induced increase of osteogenic transcription fac-
tor expression is considered an event prior to downregulation 
of VSMC-specific markers [74, 75].

The osteo-/chondrogenic transcription factors further 
induce the expression of osteogenic- and chondrogenic-spe-
cific proteins in VSMCs such as osteocalcin, type I collagen, 
bone morphogenetic protein-2 (BMP-2), or ALPL [2, 6, 63, 
76, 77]. ALPL is a key regulator of vascular calcification 
[7, 76]. Increased ALPL activity is a decisive event in vas-
cular calcification [7]. Similar as in bone, ALPL degrades 
inorganic pyrophosphate to allow unrestrained tissue min-
eralization [7, 10].

The osteo-/chondrogenic transdifferentiated VSMCs may 
promote the calcification of vascular tissue by producing a 
local pro-calcifying environment and nidus sites for precipi-
tation of calcium and phosphate as well as growth of calcium 
phosphate crystals.

Signaling pathways regulating VSMCs 
calcification during high phosphate 
conditions

Extracellular phosphate is a signaling molecule [78] that 
induces various changes in VSMCs via the regulation of 
intracellular pathways [46, 51, 63, 64]. The signaling path-
ways controlling osteo-/chondrogenic transdifferentiation 
of VSMCs and, thus, vascular calcification under elevated 
phosphate conditions are extremely complex and still incom-
pletely understood. Identification of the critical intracellu-
lar pathways regulating phosphate-induced vascular calci-
fication may provide the basis for therapeutic strategies to 
reduce the progression of vascular calcification in CKD. A 
significant progress has been made in this field and some 
recent observations are highlighted in this review.

Transduction of phosphate signals to VSMCs

How VSMCs sense elevated extracellular phosphate levels 
is still ill defined. Toll-like receptors may be involved in 
phosphate-sensing [79]. In addition, calcium phosphate nan-
oparticles can be internalized and dissolved in lysosomes, 
thus, triggering intracellular signaling effects [6]. Phosphate 
can be transported into VSMCs via the type III sodium-
dependent phosphate transporters PIT1 and PIT2 [2, 15].

PIT1 is well described to mediate the effects of phos-
phate in VSMCs via phosphate transport-dependent and 
phosphate transport-independent functions [80, 81]. Inter-
estingly, PIT1 is most abundant in cells at the endoplas-
mic reticulum [82] and the exact mechanisms how PIT1 
mediates its effects on vascular calcification are not finally 
defined. PIT1-downstream signaling involves the activation 
of ERK1/2 MAP-kinase [75, 81] and leads to up-regulation 
of CBFA1 and ALPL expression in VSMCs [15, 80, 81]. 
The downstream effects of ERK1/2 during vascular calcifi-
cation are still incompletely understood. Silencing of PIT1 is 
sufficient to suppress phosphate-induced osteoinduction and 
mineralization of VSMCs [80]. PIT1 functions are appar-
ently modulated mainly by changes in expression levels [66, 
83]. Accordingly, phosphate up-regulates PIT1 expression in 
VSMCs [64, 84]. PIT1 expression can be transcriptionally 
regulated in VSMCs by several pathways including SAPK/
JNK MAP-kinase signaling [85], β-catenin signaling [84], 
or transcription factor-4 (ATF4) [86]. Activation of the 
mineralocorticoid receptor (MR) in VSMCs may directly 
up-regulate PIT1 transcription [59, 66]. PIT1 is involved 
in the pro-calcific effects of aldosterone in VSMCs [66]. 
Elevated phosphate levels induce the expression of aldos-
terone synthase in VSMCs via disruption of apurinic/apy-
rimidinic endodeoxyribonuclease 1 (APEX1)-dependent 
gene suppression, while MR blockade is able to reduce 
PIT1-dependent osteoinductive signaling and calcification 
of VSMCs during hyperphosphatemia [64].

PIT2 is up-regulated together with PIT1 in the vascula-
ture in uremic conditions [87]. These two transporters were 
considered to play a redundant role in phosphate-induced 
osteoinduction in VSMCs [88]. However, the recent find-
ings suggest that PIT2 may even protect against vascular 
calcification by the up-regulation of osteoprotegerin [89], a 
key regulator of bone metabolism and inhibitor of vascular 
calcification [31, 90].

Phosphate‑dependent osteoinductive signaling 
cascades

Presumably, a multitude of intracellular signaling pathways 
and para/autocrine signals orchestrate the calcification 
response to phosphate. Elevated extracellular phosphate lev-
els trigger activation of the transcription factor nuclear factor 
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“‘kappa-light-chain-enhancer” of activated B cells (NF-kB) 
in VSMCs [63, 79, 91, 92]. Activation of the NF-kB pathway 
is critically important for phosphate-induced vascular calci-
fication [63, 79, 91–93]. NF-kB signaling promotes VSMC 
mineralization in part by inducing MSX2 expression and up-
regulating CBFA1 to increase ALPL expression [63, 72, 93]. 
Moreover, NF-kB increases the expression of tristetraprolin 
(TTP), an RNA-destabilizing protein that reduces ANKH 
mRNA levels and, thus, may modify the production or 
release of pyrophosphate in the extracellular space [91, 93]. 
In addition, smooth muscle-specific deficiency of NF-KB or 
NF-kB inhibition is sufficient to block vascular calcification 
during hyperphosphatemia [63, 79, 91, 92].

The deleterious effects of phosphate in the cardiovascu-
lar system may also involve the serum- and glucocorticoid-
inducible kinase (SGK1) [94]. SGK1, a serine/threonine 
protein kinase, is activated via phosphatidylinositide-
3-kinase (PI3K), 3-phosphoinositide-dependent kinase 1 
(PDK1), and mammalian target of rapamycin (mTOR) sign-
aling [95], and orchestrates the cellular response to various 
pathological triggers [94–98]. In VSMCs, SGK1 expression 
and activity are increased by phosphate and its activation 
plays a key role in phosphate-induced vascular calcification 
[93]. Inhibition or deficiency of SGK1 is able to suppress 
vascular calcification during hyperphosphatemia [93]. SGK1 
promotes osteo-/chondrogenic transdifferentiation and cal-
cification of VSMCs through the activation of the tran-
scription factor NF-kB [93]. SGK1 directly phosphorylates 
IKKα to induce NF-kB activation, an effect requiring also 
IKKβ [99]. Furthermore, phosphorylation-dependent ubiq-
uitination and degradation of IkBα leads to NF-kB nuclear 
translocation, NF-kB-dependent target gene transcription 
[63, 94], and subsequent osteo-/chondrogenic transdiffer-
entiation of VSMCs. Thus, interference with SGK1/NF-kB 
signaling pathway may preserve an anti-calcific environ-
ment of VSMCs and ameliorate vascular calcification during 
hyperphosphatemia.

AKT (also known as protein kinase B) signaling contrib-
utes to the complex machinery underlying VSMC osteoin-
duction [56, 100, 101]. Phosphate reduces AKT phospho-
rylation in VSMCs [56, 100], while both pro-calcific effects 
[101] and protective effects against vascular calcification 
[101, 102] of AKT activation have been described. AKT 
and SGK1 are able to phosphorylate and inactivate glycogen 
synthase kinase 3 (GSK-3) [103, 104]. Vascular AKT/SGK-
resistance of GSK-3 is able to ameliorate vascular osteoin-
duction and calcification [104]. The PI3K-dependent path-
ways, thus, have an essential, but diverse and complex role 
during vascular calcification, which requires further study 
to dissect pro- and anti-calcific effects.

The WNT/β-catenin pathway is established as a major 
component of the osteoinductive signaling cascade and a 
mediator of vascular calcification [84, 105–110]. WNT 

are ligand proteins that bind at the cell surface receptors 
of the Frizzled family and lipoprotein receptor-related pro-
tein (LRP)-5/6 for intracellular signaling [109], leading to 
β-catenin activation, nuclear translocation, and target gene 
expression [84, 109]. GSK3β activity promotes β-catenin 
phosphorylation and its degradation by the proteasome, 
interfering with WNT-signaling [103, 104]. WNT/β-catenin 
pathway is activated by phosphate [108, 110], and partici-
pates in phosphate-induced osteo-/chondrogenic transdif-
ferentiation and calcification of VSMCs [84, 105, 106]. 
Activation of the WNT/β-catenin pathway is required for 
the downstream effects of MSX2 [105] and contributes to 
osteo-/chondrogenic transdifferentiation of VSMCs, at least 
in part, by directly up-regulating CBFA1 [106] as well as 
PIT1 gene expression [84] during hyperphosphatemia. In 
addition, WNT/β-catenin may further participate to vascular 
calcification by induction of MMP2 and MMP9 in VSMCs 
[47]. Furthermore, interference with WNT/β-catenin signal-
ing activation is able to suppress osteo-/chondrogenic trans-
differentiation of VSMCs and vascular calcification [107, 
108, 110–112]. WNT/β-catenin pathway inhibitors such as 
Dickkopf-related protein 1 (DKK1) [108] or secreted friz-
zled-related proteins (SFRPs) [112] showed anti-calcific 
effects in VSMCs during in vitro hyperphosphatemia. How-
ever, the systemic effects of WNT/β-catenin may be more 
complex, as DKK1 inhibition also promoted bone formation 
and prevented vascular calcification in a CKD mouse model 
[113].

Counterregulatory pathways 
during phosphate‑induced VSMCs calcification

Phosphate-induced activation of NF-kB signaling in VSMCs 
can be counteracted by the endogenous inhibitor TNFAIP3, 
also known as A20 [63]. TNFAIP3 is a zinc-finger protein, 
which interferes with NF-kB activation via IkBα [114]. In 
accordance, up-regulation of TNFAIP3 expression is able 
to inhibit osteo-/chondrogenic transdifferentiation and cal-
cification of VSMCs following phosphate exposure [63]. In 
VSMCs, TNFAIP3 expression can be increased at the tran-
scriptional level by the elevated extracellular Zn2+ levels via 
the Zn2+-sensing receptor (ZnR), also known as G protein-
coupled receptor 39 (GPR39) [63]. Both in vitro and in vivo 
Zn2+ supplementation up-regulates vascular TNFAIP3 
expression and suppresses NF-kB-dependent osteo-/chon-
drogenic signaling as well as calcification of VSMCs during 
hyperphosphatemia [63].

Similarly, activation of another membrane receptor, the 
Ca2+-sensing receptor (CASR), may interfere with phos-
phate-induced VSMC calcification [51, 115, 116]. CASR 
can be activated by extracellular Ca2+, but also by the other 
cations such as Mg2+, Gd3+, amino acids, or polyamines [51, 
117]. The downstream signaling involved in the anti-calcific 
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effects of CASR activation is, however, still incompletely 
understood [51, 116]. Nonetheless, calcimimetics increase 
CASR expression and reduce mineralization of VSMCs 
[118]. Moreover, activation of the vitamin D3 receptor 
(VDR) inhibits VSMCs mineralization by up-regulating 
CASR expression [115]. Along those lines, Mg2+ supple-
mentation showed inhibitory effects on vascular calcifica-
tion in vitro and in animal models [119–121]. In addition to 
activation of the CASR [51], Mg2+ may also inhibit WNT/β-
catenin signaling [110] or directly interfere with calcium 
phosphate precipitation [122] to suppress vascular tissue 
mineralization. The so far known mechanisms involved in 
the anti-calcific properties of Mg2+ are discussed in detail 
elsewhere [119–121]. Taken together, activation of ZnR-
dependent as well as CASR-dependent anti-calcific intra-
cellular pathways interferes with phosphate-induced sign-
aling, osteo-/chondrogenic transdifferentiation of VSMCs, 
and, thus, vascular calcification.

Another factor that may interfere with osteo-/chon-
drogenic pathways in VSMCs is the FGF23 co-receptor 
α-klotho, which may also circulate as soluble humoral fac-
tor [123–125]. In VSMCs, according to some studies, klotho 
expression is down-regulated by phosphate [124], an effect 
associated with activated mTOR signaling [123], which aug-
ments vascular calcification [123, 124]. However, other stud-
ies found no evidence of klotho expression in VSMCs [126]. 
Soluble klotho has been suggested to contribute to vascular 
calcification [125] and may be able to inhibit the phosphate 
uptake via PIT1 in VSMCs [125]. The suggested protective 
effects of klotho on vascular calcification involve the inhi-
bition of the WNT/β-catenin signaling pathway [127, 128]. 
In addition, both anti- [129] and pro-calcific [130] effects 
of FGF23 were described. Further research is required to 
elucidate the various functions and possible modifiers of the 
effects of vascular FGF23/klotho.

Cytokine signaling and inflammatory responses

Pro-inflammatory intracellular signaling in VSMCs also 
seems to induce or augment osteo-/chondrogenic transdiffer-
entiation of VSMCs triggered by elevated phosphate levels 
[13, 67, 68, 131–133]. Phosphate is associated with vascular 
inflammation [67, 68, 132, 134–136]. Accordingly, a recent 
study showed that phosphate overload directly induces 
local inflammation in cultured VSMCs and systemic and 
vascular inflammation in vivo [135]. VSMCs produce pro-
inflammatory cytokines such as TNFα, IL-1β, IL-6, BMP-2, 
or TGFβ1 [66–68, 72, 137, 138], powerful stimulators of 
VSMC osteoinduction by modulating intracellular signal-
ing [72, 138].

Exposure to calcium phosphate crystals induces IL-1β 
release via the activation of spleen tyrosine kinase (SYK), 
apparently independent from inflammasome activation [25]. 

Nonetheless, inflammasome activation is required for vas-
cular calcification during hyperphosphatemia [137], effects 
presumably involving TNFα [139]. TNFα further increases 
MSX2 expression in VSMCs via the NF-kB pathway to 
induce osteo-/chondrogenic transdifferentiation of VSMCs 
[72]. In addition, the RANKL/RANK system augments 
vascular calcification via NF-kB, which can be blocked 
by the inhibitory RANKL-decoy receptor osteoprotegerin 
[140]. Similarly, the SGK1/NF-kB osteoinductive pathway 
may be activated by IL-18 [133], resulting in aggravation 
of phosphate-induced VSMCs mineralization [133, 141]. 
Furthermore, together with the NF-kB pathway, WNT/β-
catenin signaling may modulate pro-inflammatory signaling 
cascades in VSMCs in response to hyperphosphatemia [127, 
142, 143].

In addition, TNFα-mediated VSMC calcification is also 
associated with increase of BMP-2 signaling [144]. Phos-
phate induces BMP-2 expression in VSMCs [26, 79] and 
BMP-2 mediates the effects of phosphate in vascular cal-
cification [134, 145]. BMP-2 triggers VSMC osteoinduc-
tion [146], at least partly, via MSX2 up-regulation [147] 
and involves the WNT/β-catenin pathway [145] as well as 
generation of cellular oxidative stress [148]. Furthermore, 
the pro-calcific effects of BMP-2 in VSMCs involve the up-
regulation of PIT-1 expression [134] and SMAD signaling 
[148].

IL-6 is another key mediator of phosphate-induced vascu-
lar calcification [135, 149–151]. In VSMCs, IL-6 regulates 
various pathways leading to osteo-/chondrogenic transdiffer-
entiation of VSMCs including activation of BMP-2-WNT/β-
catenin signaling [152], RANKL [149], and STAT3 pathway 
[153, 154] or induction of oxidative stress [138, 151].

Moreover, TGFβ1 was described as a strong promoter of 
osteoinduction and calcification of VSMCs [67, 68, 155]. 
TGFβ1 expression is increased by phosphate in VSMCs [67, 
68]. TGFβ1-downstream osteoinductive signaling includes 
the transcription factor NFAT5 (also known as TonEBP), 
which mediates the SOX9-dependent up-regulation of 
CBFA1 in VSMCs [67, 68, 155, 156]. TGFβ1 may also 
contribute to vascular calcification by inducing cellular 
senescence, including up-regulation of plasminogen acti-
vator inhibitor PAI-1, which exerts pro-calcific effects [67, 
155, 157]. Most importantly, inhibition of TGFβ1-dependent 
signaling is able to suppress phosphate-induced vascular cal-
cification [67, 68, 155].

Signaling pathways induced by calcium phosphate 
nanoparticles and CPPs

Phosphate affects VSMCs calcification through intracellular 
effects of calcium phosphate nanoparticles [26], which can 
be engulfed by lysosomes [6, 63]. Calcium phosphate nano-
particles are endocytosed by VSMCs, which further leads 
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to release of Ca2+ from the lysosomes, elevated intracellular 
Ca2+ levels, and subsequent apoptosis of VSMCs [6, 136] 
or Ca2+-induced inflammasome activation [158]. The osteo-
genic lysosomal effects are dependent on the acidic lysoso-
mal pH [6, 136]. Accordingly, alkalinisation of lysosomal 
pH with NH4Cl [67], bafilomycin A1, or methylamine [68] is 
able to suppress phosphate-induced VSMCs osteo-/chondro-
genic transdifferentiation and calcification. Lysosomes may 
also regulate several other osteoinductive signaling path-
ways, besides inducing apoptosis of VSMCs. The transfer of 
lysosomes loaded with LDL/cholesterol from macrophages 
into VSMCs may trigger the phenotypical transdifferentia-
tion of VSMCs [159]. Moreover, lysosomes are involved in 
maturation of various proteins, including pro-TGFβ [160], 
which may affect VSMCs osteo-/chondrogenic transdifferen-
tiation [67, 68, 119]. Thus, the lysosomes are key organelles 
for the intracellular osteoinductive effects of phosphate [6, 
67, 68, 136].

Calcium phosphate crystal formation is inhibited by 
Fetuin-A and the formation of calciprotein particles (CPPs) 
[31]. However, these may undergo transition from the amor-
phous (primary CPPs) to the crystalline (secondary CPPs) 
phase [12, 30, 161], which is promoted by various physico-
chemical factors [30]. The secondary CPPs may also trigger 
vascular calcification via a cell-mediated process [28, 161, 
162] by inducing osteo-/chondrogenic transdifferentiation 
of VSMCs [28]. Secondary CPPs, but not primary CPPs, 
are able to trigger directly VSMC calcification [161, 162]. 
These effects involve the uptake of CPPs by VSMCs and an 
increase of intracellular Ca2+ levels [161] followed by the 
induction of cellular oxidative stress and pro-inflammatory 
responses [161, 162] to promote mineralization. Thus, due 
to its antioxidant properties, hydrogen sulfide suppresses 
VSMC calcification promoted by CPPs [162]. Increased 
expression and release of the pro-inflammatory cytokine 
TNFα and activation of TNFα/TNFR1 system is critically 
important for CPPs-induced VSMC calcification [161].

The properties of CPPs formation may also be utilized 
for novel diagnostic approaches [12]. A nanoparticle-based 
assay was developed, which detects the influence of serum 
on spontaneous transformation of primary CPPs into sec-
ondary CPPs and, thus, the balance between inhibitors and 
promoters of calcification in the serum [12]. Serum calcifi-
cation propensity was suggested as a biomarker for cardio-
vascular disease [163] and shown to predict cardiovascular 
and all-cause mortality in CKD [164, 165].

Oxidative stress‑downstream signaling pathways

Oxidative stress contributes to vascular calcification in CKD 
[166]. Phosphate induces oxidative stress in VSMCs by trig-
gering an imbalance between the antioxidant and the reac-
tive oxygen species (ROS)-generating systems [10, 46, 138, 

167]. Similarly, the superoxide-generating NAPDH oxidase 
system is associated with vascular calcification [168]. Oxi-
dative stress mediates, at least partly, the effects of phosphate 
on osteo-/chondrogenic transdifferentiation and calcification 
of VSMCs [46, 138, 169]. In contrast to the acidification of 
lysosomes, intracellular alkalinisation by phosphate uptake 
via PIT1 [170] may contribute to phosphate-induced ROS 
production and oxidative stress [46, 170].

The downstream effectors of oxidative stress leading to 
osteo-/chondrogenic transdifferentiation of VSMCs include a 
multitude of signaling pathways. Oxidative stress is a strong 
promoter of CBFA1 expression and osteo-/chondrogenic 
transdifferentiation of VSMCs [169, 171, 172]. Furthermore, 
oxidative stress promotes osteoinduction in VSMCs via the 
ERK1/2 MAP-kinase [171, 172] as well as p38 MAP-kinase 
pathways [171]. Activation of either ERK1/2 [81, 171, 172] 
or p38 MAP-kinase signaling pathways [171, 173] promotes 
vascular calcification. P38 MAP-kinase may directly acti-
vate CBFA1 [173], contribute to inflammasome activation 
[174], and activate NF-kB via mitogen- and stress-activated 
protein kinase-1 (MSK1) [175]. ROS were also shown to 
activate the transcription factor NF-kB and NF-kB-depend-
ent osteoinductive signaling pathways [167] and promote 
pro-inflammatory responses of VSMCs [176]. Oxidative 
stress leads to the increased expression of matrix metallo-
proteinases [46, 177] that degrade extracellular matrix to 
allow mineralization [43, 44] as well as increased PAI-1 
expression [16, 46, 155]. In addition, oxidative stress may 
induce the apoptosis of VSMCs [178] to promote vascular 
mineralization [1].

In accordance, antioxidants blunt osteo-/chondrogenic 
transdifferentiation of VSMCs and vascular calcification 
[179]. Similarly, Fibulin-3, an extracellular matrix glyco-
protein, inhibits phosphate-induced phenotypical transdif-
ferentiation and calcification of VSMCs through inhibition 
of cellular oxidative stress [46]. Conversely, loss of cytosolic 
serine hydroxymethyl transferase 1 (SHMT1), a key enzyme 
in one carbon metabolism, aggravates VSMC osteoinduction 
and calcification during elevated phosphate conditions by 
inducing oxidative stress [180]. SHMT1 is, however, up-
regulated following phosphate treatment in VSMCs, a find-
ing pointing to a role of SHMT1 in the cellular response that 
limits calcification [180].

Nitric oxide (NO) levels are associated with oxidative 
stress in VSMCs [16]. NO deficiency may induce oxidative 
stress [16, 181] and, thus, may promote osteo-/chondrogenic 
transdifferentiation of VSMCs with subsequent mineraliza-
tion of vascular tissue [16]. Impaired NO production leads 
to the aggravation of phosphate-induced vascular calcifica-
tion [16]. Conversely, NO prevents vascular calcification and 
inhibits osteo-/chondrogenic signaling pathways by inter-
fering with TGFβ1/PAI-1 signaling [16, 155]. Thus, NO is 
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a key factor that regulates intracellular signaling pathways 
controlling vascular calcification.

Apoptosis signaling pathways

In response to phosphate, a multitude of up-stream signaling 
cascades may lead eventually also to the activation of pro-
apoptotic signaling pathways in VSMCs [6, 56, 74, 178, 182, 
183]. A key event is represented by the downregulation of 
growth arrest-specific gene 6 (Gas6) and its receptor tyrosine 
kinase Axl [74, 182, 183]. Phosphate reduces the expression 
of Gas6 and Axl in VSMCs [184], leading to Bcl2 inactiva-
tion, activation of the pro-apoptotic protein Bcl2-associated 
death promoter (Bad), and subsequent caspase-3 activation 
and VSMC apoptosis [74, 182]. Gas6/Axl activates Bcl2 
via AKT [183], a key downstream signaling pathway of 
the Gas6-mediated VSMC survival [183]. In accordance, 
phosphate inhibits AKT phosphorylation in VSMCs [56, 
100, 183], while activation of the PI3K/AKT pathway may 
prevent phosphate-induced apoptosis of VSMCs [56]. Simi-
larly, vitamin K2 [182], iron citrate [185], estrogens [186], 
testosterone [187], α-lipoic acid [188], or statins [183, 184] 
inhibit phosphate-induced VSMCs apoptosis by restoring 
the Gas6-dependent anti-apoptotic pathway, effects leading 
to a reduction in VSMC calcification [54, 55]. A key up-
stream regulator of Gas6 expression in VSMCs is the AMP-
activated protein kinase (AMPK) [189, 190]. AMPK activity 
is suppressed in the presence of phosphate [191] and AMPK 
activation reduces VSMC calcification [189–191], effects 
involving inhibition of oxidative stress-mediated apoptosis 
[189].

Other factors involved in the regulation 
of osteoinductive pathways

Several additional cellular factors such as components of 
the epigenetic regulation [192] including microRNAs [193], 
DNA methylation [194–196], or histone modifications [197] 
contribute to the osteoinductive intracellular signaling path-
ways during hyperphosphatemia. The role of epigenetics 
[192] as well as the so far known microRNAs [193, 198, 
199] involved in vascular calcification have been reviewed 
in detail elsewhere. The microRNAs were shown to have 
a decisive role in osteo-/chondrogenic transdifferentiation 
of VSMCs by regulating various cellular processes dur-
ing hyperphosphatemia such as gene expression [192, 193, 
198–202], inflammasome activation [137], apoptosis [201, 
203], senescence [154, 201], or endoplasmic reticulum stress 
[203]. Moreover, the recent findings describe that microR-
NAs are involved in the regulation of several intracellular 
pathways controlling osteo-/chondrogenic phenotypic switch 
of VSMCs including the WNT/β-catenin pathway [107], 

PI3K signaling [204], STAT3 pathway [154], or TGFβ1/
SMAD signaling [205].

In addition, aging-related epigenetic changes were shown 
to influence vascular calcification [198, 201, 206–209]. 
Hyperphosphatemia promotes premature senescence and 
aging of VSMCs [206, 210], at least in part, by suppressing 
Sirtuin 1 expression [201, 211] and subsequent p21 activa-
tion [211]. During senescence, VSMCs are characterized 
by telomere shortening, increased oxidative DNA damage 
or impaired DNA repair [212], factors driving osteo-/chon-
drogenic transdifferentiation of VSMCs [207–209]. Fur-
thermore, senescent VSMCs are associated with increased 
expression of BMP-2 as well as pro-inflammatory cytokines 
such as IL-1β, IL-6, or TNFα [209], well-known promoters 
of VSMC calcification [72, 146, 147, 151]. In accordance, 
preventing cellular senescence by increasing Sirtuin 1 lev-
els in VSMCs is able to interfere with phosphate-induced 
VSMC osteo-/chondrogenic transdifferentiation and calci-
fication [211, 213].

Other cellular factors, which contribute to the osteoin-
ductive intracellular pathways during hyperphosphatemia, 
include autophagy [214, 215], endoplasmic reticulum stress 
[172, 203], or mitochondrial dysfunction [188, 189, 213]. 
Increase of cellular autophagy [185, 214, 216], restoration 
of mitochondrial function [188, 189, 213], or inhibition of 
endoplasmic reticulum stress [172] were all described to 
interfere with phosphate-induced vascular calcification.

Interplay between signaling pathways 
in the regulation of vascular calcification

Phosphate triggers osteo-/chondrogenic transdifferentiation 
and calcification of VSMCs by regulating a multitude of 
signaling pathways. As described above, these processes 
are controlled by an extremely complex cellular network of 
signaling pathways characterized by many cross talks and 
close interactions between these signaling cascades (Fig. 2). 
Alteration of central factors of this network affects also on 
the interconnected signaling pathways and, thus, may be 
effective in interfering with the pro-calcific effects of phos-
phate in VSMCs.

Clearly, elucidating the complex interplay of the cellular 
responses to high phosphate exposure requires further study, 
to connect the currently identified pathways, to define the 
relative importance during different stages of the process, 
and, finally, to gain a more comprehensive understanding of 
the onset and progression of vascular calcification in CKD.
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Conclusions

Elevated phosphate concentrations trigger vascular calcifica-
tion through a complex and highly regulated process. A key 
role during vascular calcification is attributed to VSMCs, 
which actively promote mineralization by mechanisms 
involving osteo-/chondrogenic phenotypical transdifferen-
tiation. A complex interplay between different intracellu-
lar signaling cascades tightly controls phosphate-induced 
osteo-/chondrogenic transdifferentiation of VSMCs. Identi-
fication of the critical intracellular pathways regulating vas-
cular calcification may help to develop feasible therapeutic 
approaches to reduce the progression of vascular calcifica-
tion in CKD.
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