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Identifying immunologically-vulnerable regions
of the HCV E2 glycoprotein and broadly
neutralizing antibodies that target them
Ahmed A. Quadeer 1, Raymond H.Y. Louie 1,2,3,4 & Matthew R. McKay 1,5

Isolation of broadly neutralizing human monoclonal antibodies (HmAbs) targeting the E2

glycoprotein of Hepatitis C virus (HCV) has sparked hope for effective vaccine development.

Nonetheless, escape mutations have been reported. Ideally, a potent vaccine should elicit

HmAbs that target regions of E2 that are most difficult to escape. Here, aimed at addressing

this challenge, we develop a predictive in-silico evolutionary model for E2 that identifies one

such region, a specific antigenic domain, making it an attractive target for a robust antibody

response. Specific broadly neutralizing HmAbs that appear difficult to escape from are also

identified. By providing a framework for identifying vulnerable regions of E2 and for assessing

the potency of specific antibodies, our results can aid the rational design of an effective

prophylactic HCV vaccine.
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HCV infection currently affects around 71 million people
worldwide1, with this number increasing by 3–4 million
each year. Around 20–30% of infections are asympto-

matic and resolve within 6 months, while the remaining persis-
tent infections often lead to chronic hepatitis, fibrosis, cirrhosis,
and liver cancer2. Although notable treatment therapies based on
antiviral agents have been recently developed, these are generally
expensive and have limited efficacy due to the appearance of drug
resistance mutations3. There is currently a need for a potent HCV
vaccine.

A confounding factor thwarting the development of a HCV
vaccine is the high replication rate (~1012 copies per day4) and
mutation rate (~10−4 mutations per nucleotide per replication
cycle5,6), which allows the virus to escape from human immune
responses. However, the recent discovery of HmAbs capable of
neutralizing numerous HCV isolates, referred to as broadly
neutralizing HmAbs7–9, and the association of their early
appearance with spontaneous viral clearance10,11 has raised hope
for a potent prophylactic HCV vaccine. The major target of these
neutralizing HmAbs is the envelope glycoprotein 2 (E2), the most
exposed part of the virus which directly interacts with the cellular
receptors during viral entry12,13. However, the neutralization
breadth of these antibodies has been measured against only a few
HCV isolates, including the representative isolates of the six HCV
genotypes, due largely to the limited availability of diverse
replication-competent chimeric HCV strains14. Moreover, escape
mutations from these broadly neutralizing HmAbs have been
reported in multiple experimental studies15–18, pointing to
potential limitations in their efficacy.

An important challenge in the design of a potent prophylactic
HCV vaccine is to elicit antibodies that target regions of E2 for
which individual mutations needed to escape the associated
immune pressure carry a high fitness cost to the virus. This
requires a systematic characterization of the fitness landscape, a
mapping from the amino acid sequence of a viral strain to a
number which quantifies its ability to assemble and propagate
infection. The fitness landscape of a highly variable protein like
E2 is seemingly complicated, being characterized not only by
effects of point mutations at individual residues, but also by
interactions (e.g., compensatory or antagonistic) between muta-
tions at multiple residues19–21. Experimentally determining such
a complex fitness landscape is infeasible as it would require a
prohibitively large number of fitness experiments. Knowledge of
the fitness landscape of E2 alone, however, is not sufficient to
predict viral escape from antibody response. This is because the
escape process is mediated through complex (fitness-dependent)
stochastic dynamics which involve host–virus interaction, com-
petition between different strains in the evolving virus quasis-
pecies, etc.

To address these issues, we employ a recently proposed effi-
cient computational method to infer an in silico model for the
fitness landscape of the HCV E2 protein using available sequences
for genotype 1a (one of the most prevalent HCV genotypes
worldwide22). We validate the inferred model by comparing with
numerous experimental data and demonstrating meaningful
predictions. Then, we integrate the fitness landscape into a sto-
chastic population genetics model of in-host viral evolution,
which we employ to quantify the average time to escape from
antibody responses targeting any specific residue in E2. The
evolutionary model is validated by comparing with experimental
and clinical data. We study the escape time associated with
mutations at residues in each of the five known antigenic domains
of E2, which reveals one particular domain, namely antigenic
domain C, comprising residues at which mutations take pre-
dominantly longer time to escape. By using binding information
of known broadly neutralizing HmAbs determined

experimentally, we also study the effectiveness of these antibodies
in neutralizing diverse viral strains. Our analysis suggests that
mutations at binding residues of many broadly neutralizing
HmAbs are associated with relatively short escape times, pointing
to their limited neutralization breadth even within genotype 1a
isolates. However, we also discover HmAbs which we predict to
be relatively escape-resistant; meaning that mutations at binding
residues of these HmAbs take longer time to escape as compared
to other HmAbs. This, in turn, points to their potentially
enhanced ability to neutralize diverse genotype 1a isolates. The
results we report here can aid the rational design of potent HCV
vaccines and associated protocols that solicit antibody responses
specifically directed toward vulnerable regions of E2.

Results
E2 fitness landscape inference and validation. We inferred an
in-silico model for the fitness landscape of E2 using the sequence
data available for genotype 1a (Methods). This involved obtaining
a prevalence landscape—an estimate of the probability of obser-
ving a particular sequence among naturally occurring viral
populations—using a maximum entropy (least-biased) probabil-
istic model23. For an arbitrary sequence x ¼ x1; x2; ¼ ; xL½ �, the
model assigns the probability

ph;J xð Þ ¼ e�Eh;J xð Þ

Z
; with Eh;J xð Þ ¼

XL
i¼1

hi xið Þ þ
XL
i¼1

XL
j¼iþ1

Jij xi; xj
� �

;

ð1Þ
where, following the language of statistical physics, h denotes the
set of all fields (representing the effects of point mutations at
individual residues), whereas J denotes the set of all couplings
(representing the interactions between mutations at different
residues). In addition, Z is a normalization factor while Eh,J(x) is
referred to as the energy of strain x. The field and coupling
parameters are chosen such that the single and double mutant
probabilities of the model match those observed in the multiple
sequence alignment (MSA) (Methods). Such maximum entropy
models have been used previously for inferring the fitness land-
scape of the polymerase protein (NS5B) of HCV24, as well as for
several HIV proteins25–27. The E2 protein of HCV has much
higher mutational diversity compared with all other HCV pro-
teins, and consequently the number of model parameters for E2 is
very large (Supplementary Fig. 1). This makes the task of infer-
ring these parameters challenging. Here, to address this challenge,
we inferred the model parameters using an efficient computa-
tional approach that we introduced previously to infer the com-
plicated fitness landscape of the HIV envelope protein28.

The single and double mutant probabilities obtained using the
inferred model matched well with those of the MSA (Fig. 1a, b),
confirming the accuracy of the maximum entropy model fit.
Furthermore, although not involved in the model training
procedure, additional statistics of the MSA—including the triple
mutant probabilities (Fig. 1c) and the distribution of the number
of mutations (Fig. 1d)—were also accurately captured by the
inferred model.

For the polymerase protein of HCV24 and multiple HIV
proteins25–28, as well as for bacterial proteins29, tests against
in vitro fitness measurements have demonstrated that the
prevalence landscape, inferred using maximum-entropy-based
models, is a good representative of the underlying fitness
landscape. To assess this correspondence for E2, we compared
fitness predictions based on the inferred landscape with in vitro
infectivity measurements compiled from the literature16,30–39.
These include a total of 92 measurements consisting of sequences
differing from the wild-type (H77) sequence by between 1 and 30
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mutations. We employed the energy of a sequence computed
using the inferred model (Eq. (1)) as a metric of fitness, which is
inversely related to its prevalence. Therefore, a sequence with low
energy is considered to have high fitness and vice versa. A strong
negative correlation (Methods) �r ¼ �0:72, was observed between
model energies and experimental fitness measurements (Fig. 2a),
corroborating that the inferred E2 prevalence landscape indeed
serves as a meaningful proxy for the respective intrinsic fitness
landscape.

In addition to experimental fitness measurements, we also
tested our landscape’s ability to predict a specific non-epitope
compensatory mutation Q444R, reported to be associated with
the escape mutation N417S that conferred resistance to the
HmAb HCV1 (binding residues 412–423) in a chimpanzee
model17. The compensatory effect of Q444R for N417S was
confirmed by engineering these mutations in the H77 virus E2
glycoprotein in vitro. To test whether our landscape can capture
this effect, we analyzed the change in energy observed by making
all possible mutations in the H77 strain carrying the N417S
mutant (H77N417S). Mutations yielding a negative change in
energy imply an increase in fitness, whereas those yielding a
positive energy change would imply a fitness decrease. Quite
strikingly, our model predicted four mutations at residue 444
(Q444H, Q444V, Q444Y, and Q444R) to be associated with the
most negative change in energy among all mutations in the
H77N417S strain (Fig. 2b), which is consistent with the reported
compensatory role of mutation at this residue for the escape
mutation N417S. All fitness-improving single mutation variants
of the H77N417S mutant strain are listed in Supplementary Table 1
(for comparison, the same is also shown for the H77 strain,
indicating that these fitness-improving variants are not specific to
the H77N417S mutant strain).

Relative escape time prediction and validation. The above
experimental validations provide confidence in our model’s
predictive power of viral fitness. However, in order to predict
escape from antibodies, one should account for the complex
stochastic dynamics involved with in-host viral evolution. This
includes, for example, effects of host–virus interaction, multiple
possible pathways that may be used by the virus to evade
host immune response, and sequence heterogeneity of the evol-
ving virus quasispecies. To incorporate these stochastic effects,
following a similar approach to recent work on HIV40, we
incorporated the predicted E2 fitness landscape into a
Wright–Fisher-like population genetics model41 for simulating
the in-host viral evolution. The parameters of this model, such as
mutation rate and effective population size, were set according to
known values for HCV, while the inferred E2 fitness landscape
was used to determine the probability of survival of each sequence
in the population from one generation to the next (see Methods
for details).

For each E2 residue, we used this simulation model to predict
the time for an escape mutation to reach a majority in the
population. Specifically, for a given residue, we started the
simulation with an initial homogeneous population comprising a
randomly selected MSA sequence with the consensus amino acid
at that residue. Antibody pressure was modeled such that any
sequence in the population with consensus amino acid at that
residue was penalized by a fixed reduction in fitness, chosen large
enough to confer a selective advantage to sequences with a
mutant at the residue. This evolutionary simulation continued
until the frequency of sequences in the population with a mutant
at the residue was sufficiently high (reaching above 0.5), at which
time escape was said to have occurred. The number of
generations for escape was recorded, and this procedure was
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Fig. 1 Statistical validation of the inferred E2 landscape. The inferred model accurately reproduces the statistics of the observed E2 sequences. Scatter plots
of the data statistics, single mutant (a) and double mutant probabilities (b), used to train the model. Results for the data statistics, the triple mutant
probabilities (c) and the distribution of the number of mutations (d), predicted by the inferred model. A strong Pearson correlation of ρ ¼ 0:94 and
ρ ¼ 0:83 is observed between the MSA and model probabilities, respectively
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repeated many times for the same initial strain, as well as for
multiple initial strains (Methods). The mean times over all
iterations, termed as escape time, were computed and recorded
for every E2 residue (Supplementary Data 1). As the specific
values of the escape times depend on the parameters selected
for the evolutionary model (see Methods), these should be
most meaningfully interpreted in a comparative sense, providing
a classification of the relative ease of escape across residues.

We validated the predictions of the evolutionary simulations
against multiple experimental and clinical data. First, we tested
our model for known escape mutations from multiple E2-specific
HmAbs15–18 (Fig. 2c). One would assume that such escape
mutations would generally be associated with lower escape
times than mutations at other residues in E2. These escape-
associated residues include mutations from specific antibodies
that were either determined experimentally or observed over
time in chronically infected hosts (listed in Supplementary
Table 2). Our results demonstrated that these escape mutations
were indeed associated with lower values of escape time
(P ¼ 1:5 ´ 10�24, Mann–Whitney test), as expected.

We further validated our evolutionary model by examining the
escape times associated with mutating the buried and exposed
(surface) residues in E2. The buried residues that form the protein
core are likely to be crucial for stability42, and thus mutations at
these residues are generally expected to incur a higher fitness cost
than mutations at the exposed residues. As such, one would
anticipate that escape times would be typically longer for these
residues, if they were to be targeted by the immune system. While
the buried residues may generally not often be accessible to
antibodies, studying escape times associated with mutating them
is meaningful, since multiple experimentally identified antibody
binding residues have been found to be nonexposed38, and these
are also generally accessible to the cellular arm (comprising T
lymphocytes) of the adaptive immune system. We identified the
buried and exposed residues in E2 from the recently-determined
truncated crystal structure of the E2 core domain43 using the
standard relative solvent accessibility (RSA) metric (Methods).
The hypervariable region 1 (HVR1), for which the crystal
structure is not yet resolved, was included in the set of exposed
residues, as it is known to be the most immunogenic region of
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E244. Comparing the escape times associated with the two sets of
residues revealed that the mutations at buried residues were
indeed predicted to have longer escape times (P ¼ 7:3 ´ 10�6,
Mann–Whitney test) (Fig. 2d).

While our main focus is on antibody-based immune responses,
we assessed the predictions of our model for residues involved with
escape from cytotoxic T lymphocyte (CTL) responses. Although E2
is a major target of antibodies, multiple experimental studies have
reported that it is also subjected to a CTL response45. In fact,
clinical studies have suggested the HLA-B57 allele to be associated
with spontaneous viral clearance due to targeting of a specific CTL
E2 epitope46. We compared the escape times associated with
mutating the residues in all E2-specific epitopes available in the
HIV Molecular Immunology Database47 (listed in Supplementary
Table 3). This study suggested a lack of residues with shorter escape
times in epitopes targeted by the HLA alleles (HLA-B57, HLA-B51,
and HLA-A3) associated with spontaneous viral clearance46,48,49

(P ¼ 2:7´ 10�2, Mann–Whitney test), corroborating the possible
role of targeting these epitopes in combating HCV (Fig. 2e).

Identification of antigenic domains resistant to escape. Having
provided numerous sources of validation of our model’s pre-
dictive power, we applied it to identify exposed regions in E2 that
may be targeted by HmAbs for stimulating a robust antibody
response. We did this by superimposing the escape time asso-
ciated with mutations at each residue of E2 as a heat map on the
protein structure (Fig. 3a). A reasonable proportion of red colored
residues in this map suggested an abundance of mutations on the
E2 surface associated with relatively longer escape times. This is
encouraging from an immunological perspective as it raises the
possibility of rationally designing antibodies50 that specifically
target the exposed E2 residues which appear most difficult to

escape from, and thereby for eliciting a robust and potentially
effective immune response.

We further studied the escape times associated with regions in
E2 that are known to be targeted by HmAbs. Specifically, we
analyzed the following three regions: (i) HVR1 which plays an
important role during viral entry by interacting with the
scavenger receptor class B type 1 (SR-B1) receptor13; (ii) the
co-receptor CD81 binding sites (CD81bs) critical for viral entry12;
and (iii) the E2 antigenic sites. Different terminologies have been
used in the literature for defining these antigenic sites in E2, e.g.,
antigenic domains36,38 A–E, antigenic regions7,9 1–5, and
epitopes51 I–III. However, these definitions of antigenic sites
are largely overlapping (e.g., antigenic domain B and antigenic
region 3 share multiple residues, and antigenic domain E and
epitope I comprise the same residues). Here, we focused on the
five E2 antigenic domains A–E.

We compared the relative ease of escaping immune pressure
directed at each domain using two metrics (see Methods for
details): (i) The minimum escape time across all residues in a
domain, and (ii) the number of residues in a domain having
escape times less than or equal to a (small) threshold number of
generations. The latter quantity provides a measure of the
abundance of residues in the domain that appear to be associated
with low escape times. In addition, to get an idea of what may
reasonably constitute an easy escape in terms of our computed
escape times, we designed a classifier using the information
available in the literature for the experimentally/clinically-
observed escape mutations from E2-specific HmAbs (Supple-
mentary Table 2). Specifically, a classifier designed using the
residues with observed escape mutations as true positive control
values and assuming all remaining residues as true negative values
achieved an area under the receiver operating characteristic curve
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(AUC) of 0.93 (Supplementary Fig. 3a). Due to the imbalanced
size of the two classes, i.e., the number of residues with observed
escape mutations being around 1/5th that of the remaining E2
residues, we calculated an optimal escape time cut-off value ζ
based on the F1 score and the Matthews correlation coefficient—
two widely used metrics to gauge the performance of binary
classifiers with imbalanced dataset. Both metrics returned the
same value of ζ~100 generations (Supplementary Fig. 3b). This
suggests that, based on the available information about the escape
mutations from E2-specific HmAbs, any residue which our model
ascribes an escape time of less than ζ generations may be
considered potentially easy to escape and vice versa. The choice of
ζ~100 is a statistically reasonable cut-off; though, if one wished to
further decrease the chance of incorrectly classifying a residue as
difficult to escape, a larger value of ζ could also be considered.

Among the studied domains, our model associated HVR1 with
the lowest escape time, which was much less than ζ (Fig. 3b, top
panel), and the largest number of residues associated with low-
escape times (Fig. 3b, bottom panel). This is indicative of the
relative ease by which the virus may escape HVR1-specific
antibodies, which is consistent with the fact that these are
generally known to be strain-specific and fail to neutralize viral
variants generated by the high variability of this region52.
Interestingly, the minimum escape time for CD81bs was
predicted to be close to that of HVR1 (Fig. 3b, top panel). This
is in contrast to its importance in viral entry and in eliciting
neutralizing antibody response53. Further investigation revealed
that this surprising result was due to two residues with relatively
low escape times (residues 438 and 442) in the CD81bs (Fig. 3c).
Compared to other domains (Fig. 3b, bottom panel), CD81bs also
contained a relative abundance of residues associated with low
escape times. From our model predictions, the minimum escape
time for antigenic domains A, B, and D appeared to be similar to
HVR1 (Fig. 3b, top panel), implying the possibility of reasonably
fast viral escape from antibodies targeting these regions. In
contrast, domains C and E seemed to be comparatively difficult to
escape, as the associated minimum escape time was relatively
larger than all other domains and also larger than ζ (Fig. 3b, top
panel). However, domain E still seemed to comprise multiple
residues with low escape times (Fig. 3b, bottom panel). Such
escape mutations (at residues 415 and 417) in domain E have
indeed been reported in a controlled experiment on chimpan-
zees17 and in humans during a phase 2 clinical trial54,55. Overall,
with the largest minimum escape time and with no identified
residues with low escape times, domain C stands out as a region
of E2 that seems most resistant to antibody escape (Fig. 3b, d).
This suggests the potential importance of HmAbs which
specifically target this domain for HCV vaccine development.

Escape resistance of HmAbs. By employing our model together
with experimental data regarding antibody binding, we assessed the
efficacy of known broadly neutralizing HmAbs. The most effective
antibodies are expected to be those which bind primarily to E2
residues that are associated with relatively large escape time, and
thereby restrict easy escape. The binding residues of broadly neu-
tralizing HmAbs isolated from HCV-infected patients have been
defined experimentally using various methods. These include struc-
tural studies involving binding of antibodies to short E2 peptides36,56

or E2 core domain43, global E2 alanine scanning mutagenesis38, or
selective alanine scanning mutagenesis of limited sets of E2 residues
(listed in Supplementary Table 4). Here we focused on the antibody
binding sites reported using both global and selective alanine scan-
ning mutagenesis. Note that a particular antibody may bind to a
subset of residues in an antigenic domain, multiple additional resi-
dues surrounding an antigenic domain, or to multiple antigenic
domains.

Considering first the global alanine scanning method, which
provides the most comprehensive information about the residues
critical for antibody binding, we defined the set of binding
residues for each HmAb as the residues which when substituted
by alanine (or glycine in case of residues with alanine as wild-
type) cause a reduction of binding relative to the wild-type (RB)
to less than or equal to 20% (Fig. 4a). Note that in addition to
exposed residues, these reported binding residues involve a large
proportion of buried residues that presumably impact antibody
recognition by conformational changes in the protein or through
effects on local or global protein stability38.

Our model predicted that numerous binding residues of all
domain A specific HmAbs have relatively low escape times, much
smaller than ζ (Fig. 4a). This is in line with the high flexibility of
this domain and the known nonneutralizing nature of the
associated antibodies57. In contrast, our analysis (Fig. 4a) revealed
at least one HmAb in all other domains with binding residues having
comparatively large escape times (greater than ζ). Specifically, these
included domain B HmAb HC-1, domain C HmAbs CBH-23 and
CBH-7, domain D HmAb HC84-20, and domain E HmAb HC33-1.
Of these, domain E HmAb HC33-1 was associated with the
largest escape time (~300 generations), and thus appeared the most
difficult to escape (Fig. 4a). The number of HmAbs predicted to be
relatively escape-resistant reduced to two (CBH-7 and HC33-1) when
a relaxed threshold of RB ≤ 40% was used for defining binding
residues of these HmAbs (Supplementary Fig. 4). Taken together,
our model suggests that many existing broadly neutralizing HmAbs
may permit relatively easy escape, even within genotype 1a. It also
identifies that HmAbs HC-1, CBH-23, CBH-7, HC84-20, and
HC33-1 (Fig. 4b) as being comparatively more difficult to escape,
promoting these as candidates in the design of a potentially effective
vaccine against HCV.

We additionally investigated the escape times associated with 20
other HmAbs for which the binding residues were determined by
selective alanine scanning mutagenesis (Supplementary Table 4). Our
model predicted half of these HmAbs with escape time greater than ζ
and thus these appear to be relatively difficult to escape
(Supplementary Fig. 5). Of particular interest are the HmAbs specific
to antigenic region 3 (AR3A and AR3B) which were previously
shown to prevent HCV infection in humanized mice58.

Discussion
The association of spontaneous viral clearance with the early
appearance of a broad neutralizing antibody response suggests
that a rational vaccine design eliciting a targeted escape-resistant
antibody response is a promising way forward for an effective
HCV vaccine. However, identifying escape-resistant antigenic
regions and antibodies targeting such regions experimentally is
challenging. To address this problem in a systematic way, we first
inferred a model for the fitness landscape of the E2 protein from
available sequence data, considering the effects of point mutations
as well as interactions between mutations at different residues.
Predictions from this model showed consistency with experi-
mental data. We used this fitness information to develop an
evolutionary model for computing time to escape antibody
pressure directed toward any E2 residue, which thereby enabled
us to predict the most difficult to escape regions in E2, as well as
to categorize the available HmAbs according to their ease of
escape through mutation of their binding residues. We identified
specific HmAbs that may serve as potential vaccine components,
due to their relative resilience to escape.

In regards to the inference of the fitness landscape, which was
trained based on population-level sequence data, the high correlation
observed between prevalence and fitness of E2 (Fig. 2a) is not
obvious, particularly given the complex evolutionary dynamics of this
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protein. While such a simple relationship between prevalence and
fitness has been reported previously for HCV NS5B24 and many HIV
proteins25,26,28, it was not observed for the haemagglutinin protein of
the influenza A virus59. One may ask what is the mechanistic
rationale for this correspondence? Such a rationale has been pro-
posed previously for HIV proteins, in which three key factors were
identified60: (i) a diverse and mostly ineffective immune response due
to host genetic diversity, (ii) reversion to the ancestral (fitter)
sequence upon transmission to a new host, and (iii) absence of strong
and effective natural or vaccine-induced herd memory responses
which move the virus away from the steady state. While being a
different virus, HCV is similar to HIV in many aspects and may also
involve these factors. Specifically, as the majority of the sequences are
sampled from chronic patients (acute HCV infections being largely
asymptomatic) and E2 being a target of both neutralizing antibodies
and T lymphocytes45, it is also likely subjected to diverse and inef-
fective immune responses in such patients. Reversion to the con-
sensus amino acid upon HCV transmission to a new host has also
been reported61. Moreover, with no functioning vaccine available1,
we speculate that HCV sequences may also be in a quasi-steady state,
resulting in a monotonic relationship between prevalence and fitness.
The high correlation (�r ¼ �0:72) observed between predicted pre-
valence and in vitro fitness measurements corroborates that our
model can reasonably predict viral fitness (Fig. 2a), and this is on par

with that observed for HIV proteins and the HCV NS5B protein in
previous studies24–26,28.

The importance of incorporating interactions between muta-
tions at different residues (quantified by the coupling parameters
in Eq. (1)) is demonstrated by comparing our model predictions
with those obtained using a simpler model based only on amino
acid conservation (or single mutant probabilities), which ignores
such interactions. Our tests showed that for the most direct
biological validation of the model (i.e., comparison of model fit-
ness predictions with in vitro infectivity measurements), such a
conservation-only model provided a relatively lower correlation
(�r=−0.64) (Supplementary Fig. 6; compare with the corre-
sponding results for our model in Fig. 2a). This demonstrates the
superiority of our proposed model in predicting experimental
fitness. Further tests revealed that incorporating residue interac-
tions into the model can also produce different conclusions
relating to relatively escape-resistant antibodies which appear to
be practically important (see Supplementary Note 1 for details).

For each E2 residue, the escape time was obtained by averaging
over the time it takes to observe escape in a fixed number of
transmitted/founder (T/F) sequences (see Methods). We choose
this average prediction measure in order to quantify the typical
time for escape from an antibody targeting a specific residue. For a
given residue, a higher value of the proposed escape time metric is
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residues of 16 HmAbs, determined using global alanine scanning38. The binding residues of the HmAbs are defined as the mutations that resulted in
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indicative that antibody pressure directed toward that residue is
generally more difficult to escape. We emphasize however that a
high value of this metric does not preclude the existence of specific
evolutionary scenarios (e.g., specific trajectories originating from
specific T/F sequences) for which the escape time is fairly short,
but these are expected to occur with very low probability.

Despite major advances in understanding HCV, there is still no
clear consensus on whether the cellular or humoral immune
response is the major determinant of spontaneous viral clearance.
There are multiple reports supporting the importance of T
lymphocyte-mediated immunity46,48 while others17,58 have
demonstrated the significance of humoral immune responses in
HCV clearance. Our analysis supports the possible role of
humoral immunity in spontaneous viral clearance. Specifically, it
suggests that E2 comprises a good proportion of exposed residues
that seemingly resist mutations which, when targeted by neu-
tralizing antibodies, may lead to clearance of infection.

A major obstacle to an effective antibody-based HCV vaccine is
HVR1, the most variable and immunogenic region in E2 that
elicits a nonneutralizing antibody response in the majority of
infected individuals44. HVR1 provides shielding of important
antigenic domains located in the vicinity of CD81 binding sites,
which are the targets of the broadly neutralizing HmAbs analyzed
in this work. These antigenic domains are believed to be disclosed
only during viral entry when a conformational change takes place
for the interaction of E2 with CD8162. Thus, a rational vaccine
design should seek to elicit a repertoire of highly specific HmAbs
capable of binding to the most escape-resistant regions of E2
exposed during viral entry. Recent reports show that this may be
possible by using HVR1-deleted antigen as an HCV vaccine
immunogen63, by rationally designing antibodies50 that target
specifically the escape-resistant regions of E2 (e.g., those predicted
in Fig. 3a), or by delivering specific HmAbs (e.g., HC33-1 and
CBH-23; see Fig. 4a and Supplementary Fig. 4) using adeno-
associated viral vectors58. In addition, it would be desirable to
elicit HmAbs that target different regions of E2 to avoid com-
petition in antibody binding14.

While we focused primarily on genotype 1a—one of the most
prevalent HCV genotypes worldwide22—our proposed frame-
work can also be applied to study the E2 protein of other geno-
types, provided that enough sequence data is available. Such a
study can be helpful in identifying truly broadly neutralizing
HmAbs (i.e., antibodies capable of neutralizing diverse HCV
isolates in multiple genotypes), and thus may pave the way for the
rational design of a universal prophylactic HCV vaccine.

Methods
Sequence data: acquisition and preprocessing. We downloaded the amino acid
MSA of HCV genotype 1a E2 from the Los Alamos National Laboratory (LANL) HCV
sequence database (https://hcv.lanl.gov; accessed September 25, 2017). Specifically,
searching for genotype 1, subtype a, and genomic region E2 in the search interface at
https://hcv.lanl.gov/components/sequence/HCV/search/searchi.html yielded around
3400 sequences. To control sequence quality, we excluded (i) the problematic sequences
(default option) which include sequences that are either very short, comprise large
deletions, or are artificially synthesized in laboratories; and (ii) the sequences having
more than 2% gaps in the MSA. This filtering procedure resulted in a total of B=
3363 sequences (accession numbers provided in Supplementary Data 2), with these
sequences belonging to a total of N= 1298 patients. Due to this filtering procedure, the
resulting sequences cover the full E2 region, i.e., there are no gaps and the majority of
the sequences have no ambiguous amino acids (Supplementary Fig. 7). To control
residue quality, we excluded residues which were 100% conserved (11 residues). This
resulted in a total of L= 352 residues.

The MSA can be represented by a matrix X ¼ xð1Þ; ¼ ; xðBÞ
� �T

where the kth

row is a vector of amino acids xðkÞ ¼ ½xðkÞ1 ; ¼ ; xðkÞL � representing the kth sequence.

Here, the amino acids at residue i, xðkÞi , are identified as either consensus ðxðkÞi ¼ 0Þ
or the mth dominant (most frequent) mutant ðx kð Þ

i ¼ mÞ for m ¼ 1; ::; qi where qi
denotes the number of mutants at residue i.

Fitness landscape inference model. We infer a prevalance landscape of E2 which
serves as a proxy for its fitness landscape. We choose this prevalance landscape as
the “least biased” distribution that maximizes the entropy of the sequence dis-
tribution, while at the same time reproducing the single and double mutant
probabilities given by

fi að Þ ¼ 1
N

PB
k¼1

wkδ xðkÞi ; a
� �

fij a; bð Þ ¼ 1
N

PB
k¼1

wkδ xðkÞi ; a
� �

δ xðkÞj ; b
� �

;

ð2Þ

where fi(a) denotes the frequency of amino acid a at residue i and fij(a, b) the joint
frequency of amino acids a and b at residues i and j respectively, as observed from
the MSA X. Also, δ is the Kronecker delta function

δ a; bð Þ ¼ 0 if a ≠ b

1 if a ¼ b

�
; ð3Þ

and wk is one divided by the number of MSA sequences contributed by the patient
from which sequence k was extracted. We further verified that these single and double
mutant probabilities are robust to the data, and are not significantly affected by the
addition or removal of particular sequences in the MSA (Supplementary Fig. 8).

This least biased, or maximum entropy distribution, for a particular sequence
x ¼ ½x1; ¼ ; xL�, assigns the probability

ph;J xð Þ ¼ e�Eh;J xð Þ
Z ;

with Eh;J xð Þ ¼ PL
i¼1

hi xið Þ þPL
i¼1

PL
j¼iþ1

Jijðxi; xjÞ and Z ¼P
x′
e�Eh;J x′ð Þ:

ð4Þ

Here h denotes the set of all fields, J denotes the set of all couplings, Eh;J xð Þ is the
energy of strain x, while Z is the partition function (a normalization term ensuring
the distribution has total mass of unity). The field hiðxiÞ and coupling Jijðxi; xjÞ
parameters are chosen such that the single and double mutant probabilities of the
model match those in the MSA, i.e.,

fi að Þ ¼
X
x

δ xi; að Þph;J xð Þ

fij a; bð Þ ¼
X
x

δ xi; að Þδ xj; b
� �

ph;J xð Þ:
ð5Þ

This choice can be formulated as the following convex optimization problem24

ðh�; J�Þ ¼ arg min KL
h;J

ðp0 k ph;JÞ; ð6Þ

where

p0 xð Þ ¼ 1
N

XB
k¼1

wkδ xðkÞ; x
� �

denotes the patient-weighted probability of observing strain x in the MSA, and

KL p0jjph;J
� �

¼
X
x

p0 xð Þ ln p0 xð Þ
ph;J xð Þ

represents the Kullback–Leibler divergence between p0 and ph,J.
Although the optimization problem in Eq. (6) is convex and thus can be solved

by gradient descent algorithms, the number of mutants and length of HCV E2 lead
to computational issues. To alleviate this, we considered the inference framework
introduced in ref. 28 to solve this problem accurately and efficiently. This
framework comprises three steps, which are summarized in the following.

The first step in the inference framework is aimed toward limiting overfitting whilst
simultaneously reducing the computational time. This is achieved by reducing the
number of mutants considered per residue (qi) by grouping the low-frequency mutants
together. Specifically, only the top ki most-frequent mutants are considered, while the
remaining qi − ki mutants are grouped together such that the corresponding entropy
with grouping achieves a certain fraction ϕ of the entropy without grouping. For residue
i, this involves choosing the smallest integer ki such that

Si kið Þ � ϕSiðqiÞ;
where

Si kið Þ ¼ �
Xki
a¼0

fi að Þ ln fi að Þ � �fi ln fi;

and

�fi ¼
Xqi

a¼kiþ1

fiðaÞ:

Now ϕ is chosen such that the mean of

βi ϕð Þ ¼
Pqi

a¼1 fi að Þ � fι að Þ� �2
Pqi

a¼1
fiðaÞ 1�fi að Þð Þ

N
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is approximately one, where

�fi að Þ ¼
fi að Þ
�fi
0

if a < ki þ 1

if a ¼ ki þ 1

if a > ki þ 1

8><
>: :

The idea is to introduce bias due to grouping (numerator), until it becomes
commensurate with the fluctuations in the estimated amino acid frequencies
(denominator).

Before describing the next step of the inference framework, it is convenient to define
a binary matrix based on the amino acid matrix. Specifically, each amino acid at the ith
residue is represented by qi binary digits, where qi ¼ ki þ 1 is the modified number of
mutants after combining. The jth most-frequent amino acid is then represented by the
qi-bit binary representation of 2j−1, and thus the consensus sequence is the all-zero
vector. We will denote Y as the binary matrix corresponding to the amino acid matrix
after mutant combining, with ith row denoted by yi.

Note that the problem with solving Eq. (6) is that ph;J contains the partition
function Z (see Eq. (4)), which is intractable to compute. Thus, in the second step
of the inference framework, the minimum probability flow (MPF) method is used
to alleviate this computational burden by replacing ph;J with an alternate
probability mass function (PMF). While this PMF is also parametrized by the fields
and couplings, it results in a tractable optimization problem whose solution should
accurately approximate the true solution. This PMF is chosen by first considering a
continuous-time Markov chain whose states correspond to the M ¼QL

i¼1ðqi þ 1Þ
possible sequences. The master equation describing this Markov chain is given by

d
dt

ph;J;t yi
� � ¼ XM

j¼1;j≠i

Γijph;J;t yj

� �
�
XM
j¼1;j≠i

Γjiph;J;t yi
� �

;

where ph;J;t yi
� �

denotes the probability of yi at time t, and ph;J;t ¼ p0 at time t ¼ 0,
where p0 is the empirical PMF. The solution to this master equation is given by

ph;J;t yi
� � ¼ exp tΓð Þp0½ �i;

where a½ �i denotes the ith element of the vector a. The matrix Γ is the M ´M
transition rate matrix with ði; jÞth element Γij designed such that

lim
t!1 ph;J;tðyiÞ ¼ ph;JðyiÞ;

with details of this matrix given in ref. 64. The above equation implies that for any
given h and J, the transition rate matrix is designed to ensure that as time increases,
the PMF “evolves” toward ph;J .

The next step is to choose a t which can result in a tractable optimization
problem. MPF replaces ph;J in Eq. (6) by ph;J;t with t small. As we will see, this has
the advantage that the resulting optimization problem is convex and easy to solve.
The resulting KL divergence between p0 and ph;J;t , expanded as a Taylor series
around t ¼ 0, results in the linear approximation

KL p0 k ph;J;t
� �

¼ tKh;J þ oðtÞ;
where

Kh;J ¼
XB
b¼1

XL
i¼1

Xqi
a¼1

exp
1
2

2yb; i�1ð ÞLþa�1
� �XL

j¼1

Xqj
c¼1

yb; j�1ð ÞLþcJij a; cð Þ � hiðaÞ
 ! !

;

with yb;n denoting the ðb; nÞth entry of Y. Based on this representation, the estimate
of the parameters can be found by minimizing the objective function Kh;J.
Including regularization, the estimate of the parameters is given by

ðhMPF; JMPFÞ ¼ arg min
h;J

Kh;Jþλ1
XL
i¼1

Xqi
a¼1

XL
j¼iþ1

Xqj
b¼1

jJijða; bÞj þ λ2
XL
i¼1

Xqi
a¼1

XL
j¼iþ1

Xqj
b¼1

Jijða; bÞ2
 !

;

ð7Þ
where λ1 and λ2 are the L1 and L2 regularization parameters, respectively, and are
chosen in the next step. Note that this objective function is convex, and does not
contain the intractable partition function.

For the third step of the inference framework, each field and coupling
parameter set that solves Eq. (7) is used to initialize a gradient descent algorithm
using MCMC simulations to approximate the gradient. Gradient descent was
implemented by a modified RPROP algorithm65, which was run for each parameter
set. The couplings which were set to zero due to the L1 regularization in Eq. (7)
were fixed to zero during each iteration of the gradient descent algorithm. Out of
these different parameter sets, we choose the one, as in ref. 40, such that

ε1 ¼
1
L

XL
i¼1

Xqi
a¼1

fmodel
i a; λ1; λ2ð Þ � fi a;ϕ

�ð Þ� �2
1
N fi a;ϕ

�ð Þ 1� fi a; ϕ
�ð Þð Þ � 1; ð8Þ

ε2 ¼
1PL

k¼1 qk
PL

l¼kþ1 ql

XL
i¼1

Xqi
a¼1

XL
j¼iþ1

Xqj
b¼1

fmodel
ij a; b; λ1; λ2ð Þ � fij a; b; ϕ

�ð Þ
� �2

1
N fij a; b;ϕ

�ð Þ 1� fij a; b;ϕ
�ð Þ

� � � 1;

ð9Þ

where fmodel
i a; λ1; λ2ð Þ and fmodel

ij a; b; λ1; λ2ð Þ are the single and double mutant
probabilities obtained from the model using regularization parameters λ1 and λ2 and
the refined parameters from gradient descent; and fi a; ϕ

�ð Þ and fij a; b; ϕ
�ð Þ are the

single and double mutant probabilities after grouping with combining factor ϕ� . The
conditions in Eqs. (8) and (9) ensure that the regularization parameters are chosen to
balance overfitting and underfitting in the single and double mutant probabilities,
respectively.

Fitness verification. To verify that the inferred prevalence landscape correlates
well with the E2 fitness landscape, we compared with in vitro experimental
E2 fitness measurements from literature16,30–39. As experimental measurements
from multiple laboratories were collected, we considered the average Spearman
correlation, a common approach in meta-analysis66, which calculates the weighted
average of the individual Spearman correlation ri for experiment i, with the weights
equal to the number of fitness measurements Ni. This is given by

�r ¼
Pnexp

i¼1 NiriPnexp
i¼1 Ni

;

where nexp is the number of experiments.

Population genetics evolutionary model. We consider a population genetics
evolutionary model to quantify the ease of escaping immune pressure, for each residue.
This is achieved by a metric, escape time, which reflects the minimum number of
generations for mutations at the residue to reach a frequency > 0.5. The model
incorporates the inferred fitness landscape to quantify the fitness of viral sequences.
A Wright–Fisher like evolutionary model is considered (a well established population
genetics model41) where sequences undergo mutation, selection and random sampling
(genetic drift) in discrete generations. We assume a fixed sized population of
Ne ¼ 2000, which is in line with the effective population size of HCV for in-host
evolution67.

To calculate the number of generations for mutations to reach a frequency >0.5
for residue i, we first pick a sequence randomly from the MSA, with the condition
that this sequence has no mutations at that residue. This sequence then forms
the initial homogenous population. Sequences in this population then undergo a
mutation step, where each nucleotide mutates randomly to another nucleotide
with probability μ ¼ 10�4, in line with known HCV mutation probabilities5,6.

After the mutation step, each sequence undergoes selection based on the
parameters of the inferred fitness model. Specifically, sequence x in the population
will survive with probability40,60,68

fh;J xð Þ ¼ gh;J xð ÞP
y gh;J yð Þ ; with gh;J xð Þ ¼ eβ

�E�Eh;J xð Þð Þ
1þ eβ

�E�Eh;J xð Þð Þ ;

where �E is the average energy of sequences in the population at the current
generation. The function gh;J xð Þmaps predicted energy (ranging from �1 to þ1)
to fitness by smoothly interpolating between 0, for sequences that have much lower
fitness than the population average, and 1 for sequences that have much higher
fitness than the population average. Note that for gh;J xð Þ; one can use any
monotonic mapping from energy to fitness68. A similar form for gh;J xð Þ was also
used in previous Wright–Fisher like simulation models40,60,68. Similar to ref. 40, we
estimated β � 0:1 based on the experimental in vitro infectivity
measurements16,30–39 and sequence energies, but we note that the qualitative
results are not sensitive to the specific choice of β (Supplementary Fig. 9a, b). To
account for the effects of immune pressure on residue i, sequences with a wild type
at that residue have their energy increased (i.e., their fitness decreased) by b ¼ 10
before calculation of fh;J xð Þ. This value is chosen to be similar to the largest hj over
all j, so that escape confers a selective advantage for mutants at residue i. Note that
choosing other values of b (within ± 10% of b ¼ 10) leads to similar qualitative
results (Supplementary Fig. 9c, d). The reported results are robust to the value of
the population size Ne as well (Supplementary Fig. 9e).

As in standard Wright–Fisher models41, individuals in the next generation are
then generated through a multinomial sampling process with parameters Ne and
fh;J xð Þ. To predict the number of generations for mutations to reach a majority for
residue i, we repeat the above evolutionary steps until the frequency of mutations at
residue i is over 0.5. We repeat this procedure using 25 T/F sequences from the
MSA, and for each T/F sequence we perform 100 simulation runs. We then average
the results to give the final escape time score tie for residue i. Note that choosing
a distinct set of T/F sequences from the MSA (Supplementary Fig. 9f) or choosing
T/F sequences randomly from the inferred model (equilibrium sampling via
MCMC simulation; Supplementary Fig. 10) produces similar qualitative results.

Evolutionary metrics.

1. The minimum escape time is defined as

tmin
e ¼ min

i
tie;

where i is either selected from the set of residues forming an antigenic domain
(Fig. 3b) or the set of binding residues of an antibody (Fig. 4a).
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2. The number of residues having escape times less than or equal to a (small)
threshold number of generations τ is defined as

nτe ¼
X
i

1 tie�τð Þ;

where i is selected as mentioned above, 1ðeÞ is the indicator function of an
event e, and τ represents a low-escape time (around the cut-off ζ � 100
generations) selected from the set {80, 100, 120, 140}.

Incorporating unobserved variants to the analysis. Our proposed method, like
any data-inspired approach, is limited by the finite number of available sequences.
Specifically, the proposed model cannot learn the parameters (fields hi and cou-
plings Jij) for any amino acid variant at a residue which is 100% conserved, and any
unobserved amino acid at a residue where other variants are present in the
sequence data. Nonetheless, one can still make some reasonable predictions about
such unobserved variants using our model, as we describe below.

As no variation is observed at 100%-conserved residues, we excluded them
during pre-processing of the data. However, this resulted in the removal of only
roughly 3% of all E2 residues (11 out of 363). Moreover, given the high mutational
diversity in the observed E2 sequences (i.e., with 97% of residues showing
mutational variation), one reasonably expects that the lack of any observed
mutations at this small number of residues is suggestive of their highly deleterious
effect on viral fitness. Thus, from a vaccine perspective, these residues appear
important as one would prefer to elicit an antibody response against residues where
escape by incurring mutation is extremely difficult due to the associated high-
fitness cost. Although we could not accurately infer the escape times associated
with mutations at these 100%-conserved residues, these were incorporated in our
analysis (Figs. 3 and 4) by assigning to them the largest escape time obtained for a
residue (maxi t

i
e) from our model. Nonetheless, even if these residues were

excluded from our analysis, it does not change our findings related to antigenic
domains (Fig. 3) or HmAbs (Fig. 4) as the distinguishing feature is the presence/
absence of mutations associated with short-escape times.

In the comparison of model predictions with experimental fitness
measurements (Fig. 2a), the infectivity of some sequences was reported with
unobserved amino acid variants, and thus the energy (defined in Eq. (1)) of
such sequences could not be predicted by our model. However, for including
these sequences in the comparison, we assumed (similar to the above case for
unobserved variants at 100%-conserved residues) that given the high genetic
diversity of E2, the unobserved amino acid variant may be at least as deleterious as
the least-frequent amino acid at such residues. Thus, similar to previous related
works24–28,40,60, such sequences were assigned energy values that were calculated
using the same sequences, except that the involved unobserved amino acids were
replaced with the least-frequent amino acids at the corresponding residues. While
not being precise, this was found to be a reasonable assumption as the model
predictions correlated very well with such experimental fitness measurements (see
Supplementary Fig. 2).

Relative solvent accessibility. Each residue in the crystal structure (PDB ID:
4MWF) was assigned a solvent accessible surface area (SASA) using the
PyMOL software (www.pymol.org) get_area() function, using a 1.4 solvent
radius parameter. SASA values per residue were converted to relative solvent
accessibility (RSA) values by normalizing by the respective SASA values per
residue in a Gly-X-Gly tripeptide construct, as reported by ref. 69. Residues with
RSA > 0.2, used as a threshold in ref. 70, are considered exposed residues while the
remaining residues are considered buried. In addition, the residues in HVR1 (not
present in the resolved crystal structure) were also considered a part of exposed
residues.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The mean escape time predicted for each residue in E2 is summarized in Supplementary
Data 1. Accession numbers of genotype 1a E2 sequences used for inferring the model are
listed in Supplementary Data 2. These sequences were downloaded on September 25,
2017 from the publicly available LANL HCV sequence database, https://hcv.lanl.gov. The
experimental fitness (infectivity) measurements for E2 compiled from literature are
included in Supplementary Data 3.

Code availability
The software implementation of the minimum-probability-flow-based method28, used
for inferring the fitness landscape parameters, is available at https://github.com/
raymondlouie/MPF-BML. Data and scripts for reproducing the results are available at
https://github.com/ahmedaq/HCV-E2.
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