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Deep learning-based survival 
prediction of oral cancer patients
Dong Wook Kim   1, Sanghoon Lee3, Sunmo Kwon1, Woong Nam1,2, In-Ho Cha1,2 & 
Hyung Jun Kim1,2

The Cox proportional hazards model commonly used to evaluate prognostic variables in survival of 
cancer patients may be too simplistic to properly predict a cancer patient’s outcome since it assumes 
that the outcome is a linear combination of covariates. In this retrospective study including 255 
patients suitable for analysis who underwent surgical treatment in our department from 2000 to 2017, 
we applied a deep learning-based survival prediction method in oral squamous cell carcinoma (SCC) 
patients and validated its performance. Survival prediction using DeepSurv, a deep learning based-
survival prediction algorithm, was compared with random survival forest (RSF) and the Cox proportional 
hazard model (CPH). DeepSurv showed the best performance among the three models, the c-index of 
the training and testing sets reaching 0.810 and 0.781, respectively, followed by RSF (0.770/0.764), 
and CPH (0.756/0.694). The performance of DeepSurv steadily improved with added features. Thus, 
deep learning-based survival prediction may improve prediction accuracy and guide clinicians both in 
choosing treatment options for better survival and in avoiding unnecessary treatments.

Over 350,000 people worldwide will be diagnosed with oral cancer this year1. It will cause over 170,000 deaths, 
killing roughly one person every 3 minutes1. Given its location, its impact on quality of life is quite large and treat-
ment is often challenging. Of those newly diagnosed individuals, only slightly more than half will survive after 5 
years. This number has not significantly improved in past few decades, despite advances in diagnostic techniques 
and state-of-the-art treatment modalities2.

Treatment of oral cancer depends on the staging system, and inaccurate staging system may lead to insuffi-
cient or unnecessary treatment. While various prognostic markers and therapeutic targets have been proposed in 
recent decades, they are not reflected in the current staging system3–7. This may partly account for the unchanged 
overall prognosis of oral cancer in the recent decades8.

The log-rank test and Cox proportional hazard (CPH) model are the most frequently used methods for sur-
vival analyses of cancer patients. The CPH model is used to identify the prognostic factors that significantly affect 
the survival of cancer patients. However, as it assumes that the outcome is a linear combination of covariates, it 
may be too simplistic to properly predict cancer patient outcomes, which seem complex and involve interactions 
between variables. The hazard function at time t for subject i with covariates x can be expressed as shown in (1). 
Moreover, this model does not provide a decision rule to be used in clinical practice.
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There have thus been attempts to accurately predict cancer patients’ survival, including in the field of oral cancer. 
One approach is the nomogram. In a study based on 96 patients, Kim et al. constructed a nomogram for predict-
ing the survival of oral SCC patients using clinical variables and molecular markers IMP3 and p538,9.

Machine learning, a branch of artificial intelligence which enables detection of relationships from complex 
datasets, has recently been employed for this purpose. Previous studies applying machine learning to oral cancer 
have reported good results. Shams et al. used machine learning with gene expression profiling to predict the 
possibility of oral cancer development in terms of the malignant transformation of oral premalignant lesions10. 
The study was conducted on 86 patients, 51 of whom developed oral cancer and 31 remained cancer free. Deep 
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learning along with support vector machine and other methods were compared. Highest accuracy was achieved 
when deep learning was applied with the Fisher discriminant analysis, achieving 96.5%, 98.1%, and 94.2% for 
accuracy, sensitivity, and specificity. This can be considered an improvement compared to previous results using 
traditional statistical methods, which showed a misclassification rate of 16%, with 91% sensitivity and 76% 
specificity11.

Kann et al. utilized deep learning to predict ENE before surgery using 270 head and neck cancer patients’ 
CT data12. Among them, oral SCC patients accounted for 106. ENE, also known as extracapsular extension or 
extracapsular spread, is known to be associated with higher rates of recurrence and poorer survival. Currently, 
ENE can only be diagnosed from postoperative pathology. While previous studies have reported an area under a 
receiver operating characteristic curve (AUC) ranging from 0.65–0.694, Kann et al. reported an AUC of 0.91, thus 
showing the potential of the deep learning model for use as a clinical decision-making tool to help guide head and 
neck cancer patient management.

However, when it comes to the prediction of cancer survival, accuracy and AUCs cannot sufficiently charac-
terize the outcome. Cancer survival cannot be described only with binary data (survival and death) but should 
incorporate ‘time to event’ as well. Chang et al. reported 93.8% accuracy with AUC of 0.90 in predicting oral 
cancer patients’ prognosis13. The study was based on 31 oral cancer patients’ clinicopathologic status and genomic 
markers. Due to the small sample size, the result was based on 5-fold cross-validation. Accuracy and AUC were 
measured in terms of disease status at a particular time point, and the time to event element was not taken into 
account. Though its results were not based on survival analysis, it is representative of early reports showing the 
favorable performance of machine learning with a relatively small dataset.

Tseng et al. conducted a study applying machine learning to oral cancer prognosis prediction of clinicopatho-
logic features of 674 patients14. Implemented methods were decision tree and artificial neural network, which 
now constitute primitive forms of random forest and deep learning. The study did not consider the time to event 
nature and only estimated disease status at the 5th year. Reported accuracy of training set and testing set was 
98.4% and 93.9%. Though it was not a survival analysis considering the time element, it was based on the largest 
oral cancer patient dataset to date, and is a notable early attempt to apply machine learning to oral cancer survival 
prediction.

For binary data, such as presence or absence of a disease, area under the receiver operating curve (AUC) can 
be used to estimate the performance of a model. However, in addition to binary disease status, cancer survival 
analysis must take into account time to event. Harrell’s c-index is known to be the most accurate and suitable 
method for estimating prediction error15. The c-index is used most commonly as a metric for survival prediction 
and reflects a measure of how well a model predicts the ordering of patients’ death times. A c = 0.5 is the average 
of a random model, and c = 1 refers to a perfect match of death time ranking15,16.

To our knowledge, this study in oral cancer survival implementing a recently-developed machine learning 
technique utilizes the largest dataset of its kind while taking time to event into account. We implemented random 
survival forests and deep learning to predict the survival of oral squamous cell carcinoma (SCC) patients, who 
comprise 90% of oral cancer patients2,16,17. Deep learning based-survival model, random survival forest (RSF), 
and CPH model were built and their performance compared with one another using Harrell’s c-index.

Results
Clinical characteristics.  Of the 255 patients’ records suitable for analysis, 141 patients were in stages I, 
II, and III, and 114 patients were in stage IV, according to the American Joint Committee on Cancer (AJCC) 
8th cancer staging manual. Among them, 65 patients had loco-regional recurrence and 44 patients died due to 
cancer-related causes. The mean follow-up period was 80.5 months. The clinical characteristics of the dataset is 
shown in Table 1, and Kaplan-Meier survival curve by TNM stage is shown in Fig. 1. There were no statistically 
significant survival differences among stages I, II and III. Statistically significant survival differences were only 
noted between stages IVB & others, and between IVA & II (Fig. 1).

The entire dataset was split into two mutually exclusive datasets, 70% into the training set and 30% into the 
testing set. The training set was utilized to generate the prediction model and the remaining 30% was employed 
to estimate the model’s accuracy. There were no statistically significant differences in the features between the two 
sets (Table2). Difference in survival outcome was absent between the two sets as well (Fig. 2).

Comparing the performance of deep-learning based survival prediction with random survival 
forest (RSF) and Cox proportional hazard (CPH) model.  Survival models based on DeepSurv16 (a deep 
learning-based model), Random survival forest (RSF)17, and a model based on CPH regression were built with 
the training set. The performance of these three models were compared by calculating Harrell’s c-index, which 
measures the concordance between predicted risks and actual survival, applied to both the training and testing 
set15 (Fig. 3). DeepSurv performed best among the three models, the c-index on training and testing sets reaching 
0.810 and 0.781, followed by RSF (0.770/0.764), and the CPH model (0.756/0.694). The results from different 
random splits of the dataset yielded consistent results (Supplementary Figs S1–S4).

Starting with five, the features were incrementally added up to nine. The first five features were statistically 
significant variables in univariate CPH regression (Fig. 4). Statistically insignificant and significant features were 
subsequently added. As the features were added one after another, the c-index of DeepSurv showed a relatively 
steadier upward trend, while RSF and CPH models showed decreases at the points where statistically insignificant 
features (LVP, BM, and RM) were added (Fig. 3). Though these variables turned out to be statistically insignificant 
in CPH analysis, they are still considered important in decision making and prognosis in a clinical setting18,19.

Cox proportional hazard (CPH) model.  The CPH model was built with the training set. Statistically sig-
nificant variables in univariate analyses were taken into multivariable analysis. While advanced T stage, N stage, 
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perineural invasion (PNI), extranodal extension (ENE), overall recurrence, poorly differentiated histologic grade 
(HG), and bone marrow invasion (BM) significantly affected oral SCC patients’ survival in univariate analyses, 
only the advanced T, N stage and overall recurrence remained statistically significant in multivariable analysis 
(Fig. 4).

Prediction accuracy was measured by means of c-index on the training and testing sets. As the number of 
features used to build the model increased from 5 to 9, the c-index did not steadily increase although there 
were decreases at certain points at which statistically insignificant features were added (Fig. 3). The c-index 
eventually reached 0.756 and 0.694 for the training and testing sets, which was the lowest among the models 
(Fig. 3).

Random survival forest (RSF).  Prediction error is calculated using OOB data (training set), and also using 
the testing set (Fig. 5A,B). The variable importance (VIMP), shown in Fig. 5C, was obtained by measuring the 
decrease in prediction accuracy when randomizing a particular variable17,20. Higher VIMP indicates the variable 
contributes more to predictive accuracy21. Note that the three highest ranking variables by VIMP match those 
selected by the multivariable CPH in Fig. 4.

Total number of patients n = 255

Sex (%)
Female 86 (33.7)

Male 169 (66.3)

Age (mean (SD)) 57.6 (12.13)

Site (%)

Tongue 73 (28.6)

Mandibular gingiva 62 (24.3)

Maxillary gingiva 40 (15.7)

Buccal cheek 36 (14.1)

Retromolar trigone 25 (9.8)

Floor of mouth 18 (7.1)

Lip 1 (0.4)

Histologic grade (%)

Well differentiated 72 (28.2)

Moderately differentiated 144 (56.5)

Poorly differentiated 39 (15.3)

TNM Stage† (%)

I 71 (27.8)

II 50 (19.6)

III 20 (7.8)

IVA 96 (37.6)

IVB 18 (7.1)

T stage† (%)

T1 79 (31.0)

T2 65 (25.5)

T3 22 (8.6)

T4a 86 (33.7)

T4b 3 (1.2)

N stage† (%)

N0 105 (41.2)

N1 16 (6.3)

N2a 12 (4.7)

N2b 23 (9.0)

N2c 17 (6.7)

N3b 82 (32.2)

Nx‡ 79 (31.0)

Bone marrow invasion (%) 58 (22.7)

Perineural invasion (%) 15 (5.9)

Lymphovascular permeation (%) 17 (6.7)

Presence of tumor at resection margin (%) 36 (14.1)

Extranodal extension (%) 29 (11.4)

Postoperative radiation therapy (%) 86 (33.7)

Postoperative CCRT§ (%) 17 (6.7)

Overall recurrence (%) 65 (25.5)

Cancer-related death (%) 44 (17.3)

Follow-up months (mean (SD)) 80.5 (52.02)

Table 1.  Clinical characteristics of the overall dataset. †According to AJCC 8th classification. §Concurrent 
chemoradiotherapy.
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Interactions between variables are measured and displayed in Fig. 5D and Supplementary Table S5 in pairwise 
manner15. It can be said that there are interactions between the two variables if a split on one variable in a tree 
makes a split on another variable more or less possible22,23. An interaction is measured based on minimal depth, 
defined as the distance from the root node to the node where a variable first splits22. T and N stages showed lowest 
minimal depth and are expected to be associated with other variables.

As the number of variables used to build the model increased from 5 to 9, there were increases and decreases 
in the c-index, eventually reaching 0.770 and 0.764 for the training set and testing set, respectively (Fig. 3).

DeepSurv.  The learning process of DeepSurv, a deep learning-based survival prediction is visualized in Fig. 6, 
showing good fit. The c-index increased more steadily than did CPH and RSF as the number of features to build 
the model increased (Fig. 3). The c-index of DeepSurv eventually reached 0.810 and 0.781 for the training set and 
testing set, the highest among the models (Fig. 3).

Discussion
Traditional hazards-based models such as CPH are not designed to predict an outcome, but to infer variables’ 
impact on a survival curve. Thus if one wants to predict something like “days till occurrence”, CPH may not be 
advisable and one should consider a method such as machine learning. While traditional statistics are about 
explanation, machine learning is about predictions. Traditional statistics may provide good reasons to enroll a 
patient into a new clinical trial. Machine learning may predict what type of treatment or clinical trial will be most 
beneficial for a patient by considering a vast amount of information including disease status and genetic profiles. 
When modeling nonlinear gene interactions, we cannot assume the data satisfies the linear proportional hazards 
condition, and the CPH model cannot be applied for such purpose. In oral SCC, even the clinical parameters are 
interrelated. T staging itself includes bone marrow invasion, and N staging considers the presence of extranodal 
extension according to the AJCC 8th cancer staging manual. Since N stage has a high correlation with ENE, the 
effect of ENE on survival will split between the two variables and hence get diluted. This effect, known as multi-
collinearity, becomes problematic when we try to incorporate novel prognostic factors, such as a certain muta-
tion or molecular marker in combination with clinico-pathologic status for predictions. Novel prognostic factors 
should be independent from pre-existing features to achieve optimized results, or should be powerful enough to 
be used alone in traditional statistics.

However, certain machine learning algorithms are impervious to problems of this nature. Strong collinearity 
between variables doesn’t impair the predictive accuracy. Algorithms that internally perform any form of feature 
selection and are good with high dimensional data are robust against multicollinearity24–26. Basically, the fact 
that we don’t check for multicollinearity in machine learning techniques isn’t a consequence of the algorithm, 
but rather of the goal. RSF has shown its ability to outperform classic CPH regressions17,22,23,27,28. Previous stud-
ies applying neural networks failed to demonstrate improvements beyond the classic linear CPH model until 
Katzman et al. recently showed deep neural networks outperforming standard survival analysis16,29,30. One of 
the advantages of a deep learning-based neural network is that it discerns relationships without prior feature 
selection16.

A previous study using nomogram to predict the survival of oral SCC patients using clinical variables and 
molecular markers of 96 patients yielded a c-index of 0.697, a result comparable to the CPH result in this study; 
RSF and the deep learning based-model yielded further increases.

The advantage of c-index as a measure of survival performance is that it does not depend on a single fixed 
time for evaluation. The c-index also specifically accounts for censoring. Furthermore, if c-index is only meas-
ured with the training set, overfitting, whereby a model corresponds too exactly to a training set and therefore 
fails to fit the testing data, cannot be excluded. The c-index in this study was measured on two mutually exclusive 

Figure 1.  Kaplan-Meier curve by stage of overall dataset, with pairwise comparisons using log-rank test. 
Statistically significant survival differences were only noted between stages IVB & others, and between IVA & II.
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datasets, training and testing, and no overfitting was observed. Random forest is known not to overfit20. The deep 
learning-based model in this study showed neither overfit nor underfit, but rather appropriate fit (Fig. 6). We also 
tried this on different splits of the dataset into training and testing set. The results from each splits were similar 

Training set Testing set

p-value(n = 183) (n = 72)

Sex
Female 63 (34.4%) 23 (31.9%) 0.818

Male 120 (65.6%) 49 (68.1%)

Age (mean(SD)) 57.3 (12.6) 58.3 (11.0) 0.830

Site

Tongue 53 (29.0%) 20 (27.8%) 0.407

Mandibular gingiva 50 (27.3%) 12 (16.7%)

Maxillary gingiva 28 (15.3%) 12 (16.7%)

Buccal cheek 24 (13.1%) 12 (16.7%)

Retromolar trigone 17 (9.3%) 8 (11.1%)

Floor of mouth 10 (5.5%) 8 (11.1%)

Lip 1 (0.5%) 0 (0.0%)

Histologic grade

Well-differentiated 59 (32.2%) 13 (18.1%) 0.476

Moderately-differentiated 92 (50.3%) 52 (72.2%)

Poorly-differentiated 32 (17.5%) 7 (9.7%)

TNM Stage

I 50 (27.3%) 21 (29.2%) 0.995

II 37 (20.2%) 13 (18.1%)

III 14 (7.7%) 6 (8.3%)

IVA 70 (38.3%) 26 (36.1%)

IVB 12 (6.6%) 6 (8.3%)

T stage

T1 57 (31.1%) 22 (30.6%) 0.912

T2 47 (25.7%) 18 (25.0%)

T3 13 (7.1%) 9 (12.5%)

T4a 64 (35.0%) 22 (30.6%)

T4b 2 (1.1%) 1 (1.4%)

N stage

Nx 72 (39.3%) 33 (45.8%) 0.422

N0 13 (7.1%) 3 (4.2%)

N1 8 (4.4%) 4 (5.6%)

N2a 17 (9.3%) 6 (8.3%)

N2b 11 (6.0%) 6 (8.3%)

N3b 62 (33.9%) 20 (27.8%)

Bone marrow invasion
Absence 142 (77.6%) 55 (76.4%) 0.967

Presence 41 (22.4%) 17 (23.6%)

Perineural invasion
Absence 175 (95.6%) 65 (90.3%) 0.137

Presence 8 (4.4%) 7 (9.7%)

Lymphovascular permeation
Absence 174 (95.1%) 64 (88.9%) 0.094

Presence 9 (4.9%) 8 (11.1%)

Resection margin
Free from tumor 158 (86.3%) 61 (84.7%) 0.893

Presence of tumor 25 (13.7%) 11 (15.3%)

Extranodal extension
Absence 164 (89.6%) 62 (86.1%) 0.565

Presence 19 (10.4%) 10 (13.9%)

Postoperative RT
No 122 (66.7%) 47 (65.3%) 0.949

Yes 61 (33.3%) 25 (34.7%)

Postoperative CCRT
No 169 (92.3) 69 (95.8) 0.411

Yes 14 (7.7) 3 (4.2)

Overall Recurrence†
No 136 (74.3) 54 (75.0) 1.000

Yes 47 (25.7) 18 (25.0)

Cancer related death
No 150 (82.0) 61 (84.7) 0.734

Yes 33 (18.0) 11 (15.3)

Follow-up months (mean (sd)) 79.7 (53.7) 82.3 (47.9) 0.448

Table 2.  Characteristics of training and testing sets. The entire dataset was split into two groups, 70% for 
training and 30% for testing. There were no statistically significant differences among the features of the two 
groups. Mann-Whitney U test for continuous variables; Chi square test, Fisher’s exact test, and Cochran-
Armitage Trend test for categorical variables. RT = Radiation therapy, CCRT = Concurrent chemoradiotherapy. 
†Includes local recurrences and regional recurrences.
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to above showing higher performance and improvement with added features in DeepSurv and RSF, compared to 
CPH.

This study demonstrates that deep learning-based survival predictions show higher performance with oral 
SCC patient data compared to the classic statistical method. This can benefit patients by stratifying risks and 
guiding treatment options to save more lives, as well as by avoiding ineffective/unnecessary treatments. Patients 
will soon benefit from these new techniques, though only if the clinicians learn and apply them. Though this 
study built the models and validated their performance with mutually exclusive training and testing datasets, we 

Figure 2.  Kaplan-Meier curve of training and testing sets. There was no statistically significant difference 
between the survival of training and testing sets in log-rank test (p = 0.55).

Figure 3.  Performance of DeepSurv, RSF, and CPH model in terms of c-index (95% confidence interval). 
DeepSurv performed best among the three models, showing a relatively more upward trend. Points 6, 8, and 
9 indicate where statistically insignificant factors (LNP, BM and RM) were added. (T = T stage, N = N stage, 
HG = Histologic grade, PNI = Perineural invasion, ENE = Extranodal extension, LVP = Lymphovascular 
permeation, OR = Overall recurrence, BM = Bone marrow invasion, RM = Presence of tumor at resection 
margin, RSF = Random survival forest, CPH = Cox proportional hazard model, OOB = Out-of-bag).
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PNI = Perineural invasion, ENE = Extranodal extension, BM = Bone Marrow invasion, LVP = Lymphovascular permeation, 
RM = presence of tumor at Resection Margin
*p < 0.05, **p < 0.01, ***p < 0.001

Cox proportional hazard model

T4b
N3b
PNI

ENE
Overall recurrence

N2b
Poorly differentiated

N2a
BM
N1

T4a
Male
LVP
RM
Nx

Age
T2

Well differentiated
T3

Univariate analyses Multivariable analysis

0.1       1      5  10      200      

42.7*** (10.78-169.16)
11.27*** (4.64-27.41)
4.5*** (2.09-9.71)
4.48*** (2.37-9.71)
3.99*** (2.20-7.22)
3.52* (1.25-9.89)
3.51*** (1.82-6.78)
3.00 (0.81-11.09)
2.64** (1.45-4.81)
2.51 (0.68-9.29)
2.25* (1.07-4.75)
2.08 (1.00-4.33)
1.95 (0.77-4.96)
1.72 (0.82-3.57)
1.72 (0.72-4.08)
1.00 (0.97-1.02)
0.85 (0.32-2.23)
0.77 (0.34-1.75)
0.71 (0.16-3.24)

N3b
T4b
N2a

Overall recurrence
N2b
PNI
Nx

T4a
N1

Poorly differentiated
BM

Well differentiated
T2
T3

ENE

HR (95%CI)
28.09* (1.88-419.49)
23.41** (3.00-182.82)
16.56* (1.14-239.46)
5.4** (2.67-10.92)
3.35* (1.14-9.86)
2.43 (0.93-6.31)
2.41 (0.93-6.27)
2.38 (0.78-7.30)
1.91 (0.44-8.24)
1.69 (0.78-3.64)
1.13 (0.41-3.09)
1.04 (0.43-2.54)
0.74 (0.26-2.10)
0.64 (0.13-3.21)
0.23 (0.02-2.95)

Figure 4.  Univariate & Multivariable CPH analyses. Variables are sorted in descending order of hazard ratio. 
Advanced T stage, N stage, perineural invasion (PNI), extranodal extension (ENE), overall recurrence, poorly 
differentiated histologic grade (HG), and bone marrow invasion (BM) were significant features in univariate 
analyses and were taken into multivariable analysis. Advanced T, N stage and overall recurrence remained 
statistically significant in multivariable analysis.

Figure 5.  Random survival forest model. 9 features were used to construct the model: T stage, N stage, 
histologic grade (HG), perineural invasion (PNI), extranodal extension (ENE), lymphovascular permeation 
(LVP), overall recurrence (OR), bone marrow invasion (BM), presence of tumor at resection margin (RM). (A) 
OOB error rates. (B) Estimated survival of testing set. (C) Variable importance plot. Higher VIMP indicates the 
variable contributes more to predictive accuracy. (D) Variable interaction plot. Lower values indicate higher 
interactivity, with the target variable marked in red. T stage and N stage show relatively higher interactions with 
other variables.

https://doi.org/10.1038/s41598-019-43372-7


8Scientific Reports |          (2019) 9:6994  | https://doi.org/10.1038/s41598-019-43372-7

www.nature.com/scientificreportswww.nature.com/scientificreports/

concede that these results are based on a single institution. A larger dataset from multiple centers may improve on 
these results and further establish the validity of deep learning-based survival prediction in oral cancer patients.

Methods
Study participants (acquisition of data).  Medical records of patients who had undergone surgical treat-
ment of oral SCC in our department from January 2000 to November 2018 were retrospectively reviewed. Data of 
444 patients were obtained at this step. Patients with metastatic disease, secondary primary cancer, perioperative 
mortality, a history of previous radiotherapy or/and chemotherapy, or a history of previous head and neck cancer 
were excluded. Patients with a follow-up period shorter than 36 months were also excluded. After excluding 189 
for insufficient data or meeting the exclusion criteria, a total of 255 patients’ records were suitable for analysis. The 
study was approved by the Ethics Review Board of Yonsei University Dental Hospital Institutional Review Board 
(IRB No. 2-2018-0035). Written or verbal informed consent was not obtained from any participants because the 
IRB waived the need for individual informed consent, as this study had a non-interventional retrospective design 
and all data were analyzed anonymously. The dataset analyzed during the current study are not publicly available 
but are available from the corresponding author on reasonable request.

Statistical analysis.  The statistical analysis was performed using the R programming language (R Core 
Team, Vienna, Austria, 2018). Baseline differences between the training set and testing set were assessed using 
the Mann-Whitney U test for continuous variables, Chi square test, Fisher’s exact test, and Cochran-Armitage 
Trend test for categorical variables. Survival curves were plotted using the Kaplan-Meier method and compared 
using log-rank test. To estimate the prognostic effect of the features, univariate and multiple CPH regression 
analysis were done as well. The moonBook package was used to visualize CPH regression analyses. p < 0.05 was 
considered significant.

Modelling process.  Prior to constructing machine learning models, the data set was split into two mutually 
exclusive sets. 70% of the overall dataset was assigned as the training set, which was utilized to generate the pre-
diction model. The remaining 30% of the data was designated as the testing set, for use in estimating the model’s 
accuracy. Harrell’s c-index was used to compare the performance of the proposed methods15.

Random survival forest (RSF).  While statistical methods such as classification and regression trees may be 
intuitive for clinicians, they suffer from high variance and poor performance27,31. These are addressed by random 
forest, which builds hundreds of trees and outputs the results by voting20. RSF reduces variance and bias by using 
all variables collected and by automatically assessing nonlinear effects and complex interactions17. This approach 

Figure 6.  Training and testing history of DeepSurv. The above figure shows the results with 9 features: T stage, 
N stage, HG, PNI, ENE, LVP, OR, BM, and RM. (A) A plot of loss on training and testing sets. The error over 
each iteration gradually decreased in both the training and testing sets. (B) A plot of accuracy. The accuracy in 
terms of c-index is plotted over each epoch. It does not seem overfitted or underfitted.
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is fully non-parametric, including the effects of the treatments and predictor variables, whereas traditional meth-
ods such as CPH utilize a linear combination of attributes17,22,27. Random survival forest models were trained 
using the RandomForestSRC R package.

Deep learning-based survival analysis.  DeepSurv by Katzman et al. was implemented as an open-source 
Python module (https://github.com/jaredleekatzman/DeepSurv)16. DeepSurv is a multi-layer feed forward net-
work, of which the output is a negative log partial likelihood, parameterized by the weights of the network. It is 
implemented in Theano with the Python package Lasagne. It also includes hyper-parameter optimization search. 
The source code is available at the above URL.
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