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A B S T R A C T

Background. Estimation of glomerular filtration rate (GFR) us-
ing estimated glomerular filtration rate creatinine (eGFRcr) is
central to clinical practice but has limitations. We tested the hy-
pothesis that serum metabolomic profiling can identify novel
markers that in combination can provide more accurate GFR
estimates.
Methods. We performed a cross-sectional study of 200 African
American Study of Kidney Disease and Hypertension (AASK)
and 265 Multi-Ethnic Study of Atherosclerosis (MESA) partici-
pants with measured GFR (mGFR). Untargeted gas chromatog-
raphy/dual mass spectrometry– and liquid chromatography/
dual mass spectrometry–based quantification was followed by
the development of targeted assays for 15 metabolites. On the
log scale, GFR was estimated from single- and multiple-
metabolite panels and compared with eGFR using the Chronic
Kidney Disease Epidemiology equations with creatinine and/or
cystatin C using established metrics, including the proportion of
errors>30% of mGFR (1-P30), before and after bias correction.
Results. Of untargeted metabolites in the AASK and MESA,
283 of 780 (36%) and 387 of 1447 (27%), respectively, were sig-
nificantly correlated (P� 0.001) with mGFR. A targeted metab-
olite panel eGFR developed in the AASK and validated in the
MESA was more accurate (1-P30 3.7 and 1.9%, respectively)
than eGFRcr [11.2 and 18.5%, respectively (P< 0.001 for both)]
and estimating GFR using cystatin C (eGFRcys) [10.6%
(P¼ 0.02) and 9.1% (P< 0.05), respectively] but was not con-
sistently better than eGFR using both creatinine and cystatin C
[3.7% (P> 0.05) and 9.1% (P< 0.05), respectively]. A panel ex-
cluding creatinine and demographics still performed well [1-P30

6.4% (P¼ 0.11) and 3.4% (P< 0.001) in the AASK and MESA]
versus eGFRcr.
Conclusions. Multimetabolite panels can enable accurate GFR
estimation. Metabolomic equations, preferably excluding

creatinine and demographic characteristics, should be tested for

robustness and generalizability as a potential confirmatory test

when eGFRcr is unreliable.
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I N T R O D U C T I O N

Estimated glomerular filtration rate (eGFR) from the serum
concentration of the metabolite creatinine (eGFRcr) is widely
used and central to the detection, staging and management of
chronic kidney disease (CKD) [1]. eGFRcr equations require
demographic characteristics (age, sex and race) as surrogates for
creatinine generation by muscle and diet [2]. The Chronic
Kidney Disease Epidemiology Collaboration (CKD-EPI) equa-
tion for eGFRcr includes coefficients for age, sex and race and is
recommended for routine clinical use in white and black popu-
lations in North America, Europe and Australia, with modifica-
tions as necessary for use in racial and ethnic groups from other
geographic regions [3, 4]. Like all eGFRcr equations, it is biased
in clinical conditions with alterations in non-GFR determinants
of serum creatinine and has limited precision even in popula-
tions without known alterations [errors >30% from measured
GFR (mGFR) (1-P30) in 10–20% of estimates] [5, 6]. Of particu-
lar importance is that chronic illness is often accompanied by a
loss of muscle mass, which blunts the increase in serum creati-
nine concentration at lower GFRs and reduces the sensitivity of
eGFRcr for detecting decreased GFR. Thus, while the advan-
tages of creatinine as a filtration marker have led to widespread
use for more than a century, it is clear that further improve-
ments in GFR estimation will likely require new filtration
markers.

Serum concentrations of cystatin C and other low-molecular
weight proteins are less influenced than creatinine by muscle

VC The Author(s) 2018. Published by Oxford University Press on behalf of ERA-EDTA. All rights reserved. 825

O
R

IG
IN

A
L

A
R

T
IC

LE



mass and diet. Estimating GFR using cystatin C (eGFRcys)
rather than creatinine can reduce bias due to these factors. In a
community-based sample of frail older participants, decreased
eGFR had a prevalence of 77% based on eGFRcys compared
with 45% based on eGFRcr, showing biases can be large, but a
gold standard is needed to know which measure is biased [7].
Importantly, precision is improved only when cystatin C is
added to creatinine (eGFRcr-cys), not when it replaces creatinine
(i.e. eGFRcys) [8]. Although eGFRcys and eGFRcr-cys are rec-
ommended as confirmatory tests for decreased eGFRcr [1, 6],
estimates without creatinine and demographics are needed.

Metabolomics has promise to be transformative in the field
of GFR estimation since it allows for rapid screening of thou-
sands of metabolites (molecular weight �50–1500 Da), which
are often cleared primarily by glomerular filtration, similar to
creatinine. Novel metabolites that are strongly correlated with
GFR could serve as filtration markers with or in place of creati-
nine. Previous metabolomic studies used eGFRcr rather than
mGFR as the gold standard, leaving doubt as to whether metab-
olites estimate GFR or non-GFR determinants of serum creati-
nine [9–14]. Finally, the Metabolon platform has the advantage
of already identifying hundreds of the metabolites, facilitating
development of targeted mass spectrometry assays that are both
accurate and easily included in multiplex panels. Inclusion of
multiple markers should make estimates more robust to factors
influencing only one metabolite. Ideally such panels would pro-
vide highly accurate, robust estimates of GFR. Exclusion of cre-
atinine would make panels more suitable to use when the
validity of creatinine is questionable (e.g. muscle wasting).
Exclusion of demographics is desirable since defining race is
problematic and the relationship of age and sex to metabolism
may vary across different settings (e.g. diet, geography and
illness).

This article aims to test central concepts in a pathway toward
developing a more accurate and generalizable GFR estimate
based on metabolomics. We hypothesized that multiple metab-
olites with correlations to mGFR that are better than or equal to
creatinine can be discovered and validated, targeted assays can
be developed and multiplexed with high precision and validity
and an initial panel of metabolites can allow for GFR estimation
without creatinine or demographics that is at least as accurate
as eGFRcr and eGFRcys using the CKD-EPI equation.

M A T E R I A L S A N D M E T H O D S

The design of this proof-of-concept study was cross-sectional,
with discovery using untargeted assays in one cohort and vali-
dation using untargeted assays in a second cohort and repeat
testing in both cohorts using targeted assays for a subset of
promising metabolites (see Supplementary material for addi-
tional details).

Participants

Two populations were chosen to be complementary, with
different GFR ranges, methods of GFR measurement and racial
composition, to develop metabolite associations with mGFR
that are likely to be generalizable. African American Study of

Kidney (AASK) participants with consistent mGFR at the 48-
month follow-up visit were selected as the discovery study pop-
ulation. Multi-Ethnic Study of Atherosclerosis (MESA) partici-
pants with mGFR were selected as the validation study
population (n¼ 265).

Laboratory methods for index tests

Untargeted and targeted metabolomic profiling was per-
formed at Metabolon (Durham, NC, USA). Untargeted gas
chromatography/dual mass spectrometry– and liquid chroma-
tography/dual mass spectrometry–based metabolomics semi-
quantification followed published methods, including updates
to the platform finalized during the course of this study, de-
tailed in the Supplementary material [15, 16]. For the 15 most
promising metabolites with available pure standards identified
in the AASK and previous studies (prior to collection of MESA
data), Metabolon developed targeted assays for absolute quanti-
fication using negative and positive ionization ultra-perfor-
mance liquid chromatography–tandem mass spectrometry
(UPLC–MS/MS) methods performed on an Agilent 1290
UPLC system coupled to a Sciex QTrap5500 mass spectrome-
ter. The metabolites were also required to have reliable assays
and be good candidates for multiplexing. Targeted assays had
coefficients of variation typically <5% in a serum quality con-
trol sample during qualification of the targeted assays and con-
tinued to perform similarly during sample analysis. For
consistency with the approach of developing a panel assayed by
mass spectrometry we used the targeted mass spectrometry
assays for creatinine, which showed excellent agreement with
the original clinical chemistry assays. Cystatin C was assayed on
serum frozen at�70�C in the MESA on the Roche Cobas using
Gentian assays, which was traceable to International Federation
for Clinical Chemists (IFCC) Working Group for the
Standardization of Serum Cystatin C and the Institute for
Reference Materials and Measurements certified reference
materials [17] and in the AASK F48 using a particle-enhanced
immunonephelometric assay (N Latex Cystatin C, Dade
Behring, IL, USA) at the Cleveland Clinic Foundation (CCF)
laboratory (calibrated to IFCC values using published methods;
1.12� (0.105þ 0.848�CCF cystatin C) [8].

Laboratory methods for reference tests

GFR was measured by urinary clearance of iothalamate in the
AASK [18] and plasma clearance of iohexol in the MESA [17] us-
ing established procedures detailed previously. In the AASK,
mGFR was computed as the weighted mean of four clearance peri-
ods of 25–35 min duration. In the MESA, mGFR was computed
from samples of 10 to 300 min. mGFR was indexed per 1.73 m2 of
body surface area (BSA) in both studies. BSA was calculated
using the DuBois and DuBois formula (0.20247� height in
meters0.725�weight in kilograms0.425).

Data analytical methods

Metabolite levels were log transformed and metabolites were
ranked by correlation with log mGFR and compared across the
AASK and MESA. Metabolites for targeted assays were selected
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among those strongly correlated with mGFR with feasible, reli-
able, targeted assays and with additional metabolites selected if
they added independent predictive value in stepwise regression
or were viewed as promising in other ongoing studies.

Targeted metabolite assays were tested for linearity, interfer-
ence and precision. Linear regression using backward
stepwise selection was used to develop eGFR equations with
the metabolites, with and without creatinine, age, sex and race
(P-enter¼ 0.01 and P-exit¼ 0.05). The performance of eGFR
equations in estimating mGFR was quantified using several
established metrics [5]. Root mean square error (RMSE) esti-
mates the residual of the observed from predicted values. Used
on the log scale, it approximates the standard deviation (SD) of
the percent error in estimation. In addition, we used the inter-
quartile range (IQR) of the mean difference between mGFR
and eGFR to quantify precision. The frequency of large errors
was quantified by 1-P30 and 1-P20, quantifying the percentage
of errors >30% and 20% of mGFR, respectively, reflecting the
desire to achieve lower error rates at the more accurate 20%
standard. The CKD-EPI 2009 creatinine equation, which mod-
els creatinine as a linear spline with a sex-specific knot, was
used as the reference equation since it is the established clinical
standard [1]. The CKD-EPI 2012 cystatin C and creatinine–
cystatin C equations were used as alternative reference equa-
tions [8]. Finally, we developed an equation in the AASK and
evaluated its performance in the MESA. This analysis excluded
12 individuals in the AASK with missing cystatin C data to al-
low comparison with established equations including cystatin C
as well as creatinine. Since equations developed in other

populations could have nonzero bias, we also compared equa-
tions after calibration to zero bias (on the log scale).

All statistical tests accounted for the paired design whereby a
reference and comparison eGFR are calculated for each mGFR.
To calculate P-values, we used a signed-rank test for RMSE,
McNemar’s chi-squared for 1-P30 and 1-P20 and bootstrap
methods for SD and IQR. Sensitivity analyses calculated area
under the curve in the context of an receiver operating curve
(AUC) for detecting mGFR<60 mL/min/1.73 m2, recognizing
this analysis is limited by dependence on the distribution of
mGFRs in the study as well as concordance in predicting mGFR
category and additional measures of precision (SD and IQR).

R E S U L T S

Study populations

The AASK participants were African American with a
mean mGFR of 47 mL/min/1.73 m2, while the MESA partici-
pants comprised equal proportions of whites and African
Americans with a higher mean mGFR of 73 mL/min/1.73 m2

(Table 1).

Discovery and validation using untargeted assays

Using untargeted assays, metabolite levels showed a wide
distribution of correlations with mGFR in both the AASK and
MESA populations. In both populations there was a marked ex-
cess of correlations outside the range expected under the null
hypothesis, especially for negative correlations, including 29%

Table 1. Characteristics and concentrations of targeted metabolites among study participants in the AASK and MESA

Characteristic AASK (n¼ 200) MESA (n¼ 265)

Mean (SD) 5th–95th percentile Mean (SD) 5th–95th percentile

Sex (male), % 69 53
Black, % 100 46
Diabetes, % 0 12
Age (years) 60 (9) 44–73 71 (9) 57–85
BMI 30 (6) 22–42 30 (5) 23–39
Creatinine (mg/dL) 1.9 (.9) 1.1–3.8 0.93 (0.35) 0.6–1.36
Cystatin Ca (mg/L) 1.8 (0.6) 1.1–3.1 1.0 (0.3) 0.7–1.7
mGFRb (mL/min/1.73 m2) 47 (17) 19–75 73 (19) 44–105
mGFR<60 mL/min/1.73 m2, % 78 24

Targeted serum metabolites
N-acetylthreonine (lg/mL) 0.16 (0.08) 0.08–0.34 0.09 (0.04) 0.06–0.14
Pseudouridine (lg/mL) 1.7 (1.2) 0.9–4.8 0.95 (0.4) 0.63–1.48
N-acetylserine (lg/mL) 0.15 (0.07) 0.08–0.32 0.15 (0.08) 0.10–0.23
Creatinine (mg/dL) 1.9 (0.9) 1.0–3.7 0.95 (0.35) 0.61–1.41
Meso-erythritol (lg/mL) 1.5 (0.9) 0.7–3.3 0.89 (0.38) 0.48–1.43
Arabitol (lg/mL) 0.86 (0.46) 0.41–1.96 0.56 (0.24) 0.34–0.9
Myo-inositol (lg/mL) 11 (5) 6–22 6.2 (2.4) 3.7–10.4
Urea (lg/mL) 34 (18) 16–65 17 (7) 10–29
N-acetylalanine (lg/mL) 0.35 (0.11) 0.23–0.57 0.22 (0.06) 0.16–0.32
3-Indoxylsulfate (lg/mL) 2.2 (2.3) 0.5–4.4 1.1 (0.8) 0.30–2.3
Phenylacetyl-glutamine (lg/mL) 1.6 (1.7) 0.3–3.9 1 (0.76) 0.23–2.11
Tryptophan (lg/mL) 12 (3) 7–16 8.2 (1.9) 5.2–11.4
Kynurenine (lg/mL) 0.54 (0.18) 0.32–0.86 0.39 (0.11) 0.22–0.6
3-Methyl-histidine (lg/mL) 3.7 (3.7) 0.4–11 2 (1.7) 0.30–5.8
Trans-4-hydroxy-proline (lg/mL) 3.6 (1.8) 1.6–7.2 1.9 (1.1) 0.90–3.8

aCystatin C data are missing for 12 participants in the AASK.
bAverage of three consistent GFR measurements by design in the AASK; creatinine converted to mg/dL (1 lg/mL¼ 0.1 mg/dL).
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of the AASK metabolites and 23% of the MESA metabolites
(P< 0.001) (Figure 1 and Supplementary data, Table S1).
Positive correlations at this level of statistical significance
(P< 0.001) were observed in 7.0 and 3.7% of the AASK and
MESA populations, far exceeding the 0.1% expected due to
chance alone (Figure 1 panels A and B, respectively).
Metabolites with stronger correlations in the AASK were more
likely to have stronger correlations in the MESA (Figure 1 panel
C); of the 283 metabolites with P< 0.001 in the AASK that
were also measured in the MESA, 42% had P< 0.001 in the
MESA. Among these, the untargeted assay for creatinine had a
correlation of �0.73 in the AASK and �0.41 in the MESA
(P< 10�11 in each). Eighteen metabolites (13 known and 5 un-
known) were more strongly negatively correlated with mGFR
in the AASK than the untargeted assay for creatinine, as were
93 metabolites in the MESA (62 known and 31 unknown). Of
the 18 in the AASK, 14 were also measured in the MESA, and
12 of the 14 were more negatively correlated than the untar-
geted assay for creatinine (Supplementary data, Table S1).
Among metabolites measured in both the AASK and MESA,
tryptophan was the most positively correlated with mGFR in
the AASK (r¼ 0.58, P<10�15) and MESA (r¼ 0.34, P¼ 10�8;
Supplementary data, Table S1).

Repeated testing using targeted assays

Targeted assays generally improved correlations with
mGFR. Of 30 comparisons of targeted and untargeted assays
across the two studies, 25 showed correlations with mGFR us-
ing the targeted assays whose absolute value was equal or higher
than that for the untargeted assay (Supplementary data, Table
S2). However, the magnitude of the improvement varied mark-
edly across metabolites. The targeted creatinine assay was much
more closely correlated with mGFR than untargeted creatinine
in both studies (r¼�0.84 and �0.55 versus �0.73 and �0.41).
Targeted creatinine was highly correlated with the Jaffe assay in
the AASK and the enzymatic creatinine assay in the MESA
(r¼ 0.984 and 0.993, intercepts of �0.04 and 0.02 mg/dL and
slopes of 0.989 and 0.996, respectively).

Performance of eGFR based on single metabolites

We first examined the performance of single metabolites in
each study separately compared with eGFRcr using the CKD-
EPI equation (Table 2). For eGFRcr, 1-P30 was higher in the
AASK than in the MESA (11.5% versus 18.5%), but 1-P20 was
similar (31.0% and 33.2%), as was RMSE (0.205 and 0.200)
(Table 2 top row). Without using demographic characteristics,
a number of metabolites performed as well or better in RMSE
than creatinine alone (N-acetylthreonine, pseudouridine and
N-acetylserine in both studies and meso-erythritol, arabitol,
myo-inositol and N-acetylalanine in the MESA only).
Creatinine alone performed worse than eGFRcr in both the
AASK and MESA. No single metabolite without demographics
performed better than eGFRcr in the AASK, while two metabo-
lites performed better than eGFRcr in the MESA (N-acetyl-
threonine and pseudouridine).

Performance of eGFR based on a metabolite panel

We next examined panels of metabolites selected by stepwise
regression among the 15 targeted metabolite assays in each
study separately. In contrast to the findings of the single metab-
olites, panels of multiple metabolites showed better perfor-
mance than eGFRcr (Table 2 bottom section). Panels including
metabolites, creatinine and demographic characteristics had by
far the lowest RMSE in both the AASK and MESA (0.147 and
0.124, respectively) and the best 1-P30 (4.5 and 1.9%, respec-
tively) and 1-P20 (14.5 and 10.6%, respectively). Panels with
only metabolites, excluding creatinine as well as demographic
characteristics, were still more accurate (RMSE of 0.161 and
0.148, 1-P30 of 5.0 and 3.8% and 1-P20 of 21.0 and 17.4% in the
AASK and MESA, respectively) than eGFRcr; the improvement
was statistically significantly better for all metrics with 1-P30

less than half for eGFRcr.

Validation in the MESA of an AASK equation

The metabolite equations developed in the AASK (detailed
in Supplementary data, Tables S3 and S4) were unbiased and
were more accurate than eGFRcr (P< 0.05 for five of six com-
parisons for both RMSE and 1-P30 metrics) (Table 3). In the
MESA, the AASK metabolite equations had comparable
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for overlapping metabolites in the two studies. In (A) and (B), dashed lines show the null hypothesis expected distribution of correlations. In
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accuracy to the equations in the AASK (P< 0.01 for six of six
comparisons to eGFRcr) but underestimated mGFR with biases
ranging from �1.6 to �3.8 mL/min/1.73 m2. After eGFRcr was
recalibrated to remove the bias in the MESA, its accuracy im-
proved (1-P30 decreased from 18.5 to 9.4%), but the AASK me-
tabolite equations were still significantly better. Finally, we used
CKD-EPI cystatin equations as alternative reference equations.

Similar to prior studies, eGFRcys showed similar performance
to eGFRcr in most comparisons while eGFRcr-cys showed bet-
ter performance than eGFRcr in all comparisons. The AASK
metabolite equations were substantially more accurate than
eGFRcys in 17 of 18 comparisons, but only 8 of 18 comparisons
to eGFRcr-cys in both the AASK and MESA (Table 2). Notably,
the AASK metabolite equation excluding creatinine and

Table 2. Performance of targeted metabolites in GFR estimation in the AASK and MESA

Models for estimating mGFR AASK (n¼ 200) MESA (n¼ 265)

Without age and sex With age and sex Without age and sex With age, sex and race

RMSE 1-P30

(%)
1-P20

(%)
RMSE 1-P30

(%)
1-P20

(%)
RMSE 1-P30

(%)
1-P20

(%)
RMSE 1-P30

(%)
1-P20

(%)

Reference model CKD-EPI eGFRcr 0.205 11.5 31.0 0.200 18.5 33.2

Single
metabolites

N-acetylthreonine 0.194 13.0 24.0 0.184 11.0 25.0 0.167*** 7.9*** 21.9** 0.144*** 4.5*** 15.1***
Pseudouridine 0.210 12.5 29.5 0.210 12.0 30.0 0.163*** 6.0*** 19.6*** 0.137*** 2.6*** 13.2***
N-acetylserine 0.219 18.0 30.0 0.216 16.0 28.0 0.204 13.6 30.6 0.182* 8.7*** 23.0***
Creatinine 0.226 14.5 36.0 0.190* 10.5 24.5* 0.238 20.8 40.8 0.149*** 4.9*** 15.1***
Meso-erythritol 0.228 17.5 33.5 0.228 18.5 33.5 0.211 14.0 34.0 0.190 9.8** 27.2
Arabitol 0.241 18.5 34.5 0.239 16.5 33.0 0.216 13.2 31.7 0.185* 10.2** 25.7
Myo-inositol 0.244 20.5 38.5 0.245 21.0 36.0 0.218 14.3 32.8 0.194 9.8** 31.3
Urea 0.261 21.5 39.5 0.258 19.5 34.0 0.245 18.5 38.5 0.210 15.1 32.1
N-acetylalanine 0.267 18.5 38.5 0.263 20.0 35.5 0.192 11.3* 26.0 0.169*** 7.9*** 16.6***
3-Indoxylsulfate 0.326 31.5 51.0 0.328 31.5 51.5 0.265 23.0 41.1 0.227 15.5 34.3
Phenylacetylglutamine 0.349 33.0 52.5 0.349 32.0 54.0 0.259 23.4 42.6 0.228 15.1 32.1
Tryptophan 0.359 36.5 58.0 0.360 35.5 57.5 0.267 21.5 41.5 0.229 17.7 30.9
Kynurenine 0.359 35.0 50.0 0.360 34.5 51.0 0.258 20.4 39.6 0.217 12.8 33.6
3-Methyl-histidine 0.380 36.0 59.5 0.380 38.0 57.5 0.273 22.6 42.3 0.230 16.2 34.0
Trans-4-hydroxy-proline 0.394 39.5 58.5 0.396 38.0 57.0 0.282 25.7 43.8 0.237 15.5 34.3

Panels Best by stepwise among
metabolites

0.156** 3.5** 17.5** 0.147*** 4.5** 14.5*** 0.146*** 3.0*** 15.8*** 0.124*** 1.9*** 10.6***

Best by stepwise
excluding cr

0.161* 5.0* 21.0* 0.159** 4.5* 18.0** 0.148*** 3.8*** 17.4*** 0.129*** 2.3*** 10.8***

Metabolites are ordered by increasing RMSE in the AASK. RMSE is calculated on the log(mGFR) scale.
CKD-EPI equations always include demographics and hence do not have prediction metrics without demographics.
*P� 0.05, ** P� 0.01, *** P� 0.001 for improvement compared with CKD-EPI eGFRcr (two-tailed test; worse performance than eGFRcr is less relevant and not footnoted).

Table 3. Discovery in the AASK and validation in the MESA of a metabolite model eGFR compared with using estimated from creatinine, cystatin and
demographics

Equations for estimating mGFR Development AASK (n¼188) Validation MESA (n¼265)

Development Recalibrated to zero
bias on log scale

Validation Recalibrated to zero
bias on log scale

RMSE 1-P30 Median
bias
(eGFR-
mGFR)

RMSE 1-P30 RMSE 1-P30 Median
bias
(eGFR-
mGFR)

RMSE 1-P30

Reference equation CKD-EPI eGFRcr (%) 0.2071 11.2 1.024 0.206 11.7 0.200 18.5 7.186 0.176 9.4

Alternative reference
equations

CKD-EPI eGFRcys (%) 0.221 10.6 –5.443 0.164** 8.0 0.191 9.1** 3.018 0.191 9.4
CKD-EPI eGFRcr-cys (%) 0.166*a 3.7**a –3.040 0.144*** 5.3** 0.169* 9.1*** 6.369 0.155*** 6.8

AASK metabolite
equation

Including demographics (%) 0.144***a,b 3.7***a –0.640 0.144*** 3.7*** 0.137***a,b 1.9***a,b –1.589 0.136***a 1.5%***a,b

Excluding creatinine (%) 0.153***a 4.3*a –0.423 0.153*** 4.3** 0.152***a,b 3.0***a,b –3.858 0.139***a 2.6***a,b

Excluding creatinine and
demographics (%)

0.157*a 6.4 –0.137 0.157* 6.4 0.157***a 3.4***a,b –3.133 0.149**a 3.0**a

Equations in the AASK are shown in Supplementary data, Table S4. RMSE is calculated on the log(mGFR) scale.
P-values compared with RMSE and 1-P30 are two-tailed (worse performance than the reference eGFR is less relevant and not footnoted).
*P� 0.05, ** P� 0.01, *** P� 0.001 for improvement compared with eGFRcr. aP� 0.05 compared with eGFRcys. bP� 0.05 compared with eGFRcr-cys.
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demographics has numerically higher 1-P30 than eGFRcr-cys,
but this difference could have been due to chance (6.4% versus
3.7%; P¼ 0.30). Categorical analyses for AUC and concordance
for mGFR staging categories showed similar results, although
power was more limited (Supplementary data, Table S5).
Individual estimates for calibrated equations are shown in
Figure 2. Subgroup analyses by race and sex in the MESA
(Supplementary data, Table S5) suggest improved performance
was similar across subgroups, although we observed systematic

bias by sex for metabolite equations as was previously observed
for eGFRcr and eGFRcr-cys [17].

D I S C U S S I O N

Our goal in this study was to identify novel glomerular filtration–
related markers using metabolomics that are better than or equal
to creatinine, the most established metabolite in use for GFR esti-
mation. We found that more than one-quarter of metabolites
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measured using nontargeted assays were significantly correlated
with mGFR. The correlations were mostly negative, consistent
across two-study populations and included a dozen metabolites
that were more strongly correlated with mGFR than creatinine in
both studies. Targeted assays for a subset of the promising metab-
olites were developed efficiently and increased the strength of cor-
relation with mGFR. Finally, targeted assays for panels of
metabolites without creatinine provided more accurate estimation
of mGFR than the CKD-EPI eGFRcr equation. Metabolite equa-
tions developed in the AASK performed well in the MESA, with
low bias and excellent accuracy. These AASK equations were bet-
ter than eGFRcr and eGFRcys using the CKD-EPI equations, even
after recalibration of the CKD-EPI equations to remove bias, but
were not consistently significantly better than bias-corrected
eGFRcr-cys. Excluding creatinine and demographics still led
to a metabolite equation with good accuracy (>30% from mGFR,
1-P30 <6.4%), suggesting a path to eGFR tests that are accurate
and independent of creatinine and demographics.

The optimal composition of panels of metabolites and
whether and when it may be beneficial to include creatinine,
cystatin C or other low molecular weight protein filtration
markers (e.g. beta-2 microglobulin or beta-trace protein) for
clinical use remains to be determined. However, our results pro-
vide proof of the concept that a panel of novel metabolites can
accurately estimate mGFR. Metabolite panels that improve on
the precision of eGFRcr-cys in a wide range of settings would
be useful in clinical settings where precise and accurate GFR
estimates are needed for clinical action, possibly providing an
alternative to GFR measurement, which although valuable, is
cumbersome, not easy to standardize and too often clinically
unavailable. Alternatively, metabolite panels with similar per-
formance to that shown here are as accurate as eGFRcr-cys in
general population and general CKD settings, would be useful
in settings where creatinine or cystatin are unreliable as filtra-
tion markers. Studies quantifying the degree of benefit in such
settings will be important to guide future use of new estimates
such as the one we develop here.

This study is the first to quantify correlations of untargeted
metabolomics assays with mGFR rather than eGFR, develop
targeted metabolite assays, combine them into a metabolite
panel eGFR and validate it in a second population. While untar-
geted metabolomic assays of�1000 compounds, including cre-
atinine and urea, in a single sample are considered
semiquantitative, we found that results were highly correlated
with mGFR. As hypothesized, these low molecular weight com-
pounds are a promising source for discovering powerful filtra-
tion-related markers. The metabolites we focussed on were also
found to be strongly correlated with eGFRcr in other studies.
Recently, Sekula et al. [9] reported 56 metabolites that repli-
cated as associated with eGFRcr, including 6 metabolites that
were consistently strongly (r<�0.50) correlated with eGFRcr
(pseudouridine, c-mannosyltryptophan, N-acetylalanine,
erythronate, myo-inositol and N-acetylcarnosine). In our study,
all except N-acetylcarnosine were very strongly negatively cor-
related with mGFR. In fact, correlations were even stronger for
all of the three we tested using targeted assays. Of interest, tryp-
tophan was positively correlated with mGFR (lower levels at

lower levels of mGFR), which is likely due to increased catabo-
lism [19], but contributed to the accuracy of panels for GFR es-
timation. Thus tryptophan can be considered a GFR marker
even though it is not a retained solute.

Using multiple noncorrelated filtration-related markers in a
panel reduces the effect of non-GFR determinants of each single
marker on the overall panel. For example, the AASK model
containing four metabolites without creatinine or demo-
graphics has a median coefficient of �0.23 for the metabolites
compared with�1.2 for creatinine alone in the CKD-EPI equa-
tion (in the high creatinine part of the spline). As such, each co-
efficient contributes substantially less to the overall GFR
estimation than creatinine does in eGFRcr. We hypothesize
that panels where no one marker contributes to the overall esti-
mate disproportionately will be more robust across very diverse
study populations. In the current panel, the metabolites that we
identified are within the amino acid, nucleic acid and carbohy-
drate metabolic pathways and their serum concentrations may
be affected by non-GFR determinants as well as by GFR.
Further knowledge of non-GFR determinants of panel metabo-
lites will be helpful to clinical interpretation of corresponding
GFR estimates. Genetic non-GFR effects undoubtedly exist but
are often small. For example, infrequent variants in ACY1,
whose product catalyzes the hydrolysis of acetylated L-amino
acids, explain �0.5% of the variance in N-acetylthreonine con-
centrations. This is analogous to common genetic variants that
have modest effects on serum creatinine and cystatin C levels
but are not included in GFR estimating equations [20, 21].
Theoretical considerations suggest a concern that diet and sup-
plements may influence the serum tryptophan concentration.
In particular, this marker will need to be extensively tested for
generalizability across a variety of clinical settings before it can
be recommended as part of a panel of markers to estimate GFR
in a broad population setting.

Our results suggest that studies of metabolite association
with subsequent CKD progression or end-stage renal disease in-
cidence are likely to be strongly confounded by baseline GFR,
since more than one-quarter of the metabolome is elevated at
low GFR. Therefore, it will be important to replicate previously
reported associations of metabolites with eGFRcr and risk of
CKD progression [10–14, 22] and test their independence of
baseline GFR. Improved estimates of GFR such as the ones we
presented could allow future studies to distinguish progression
markers from filtration markers.

The strengths of the study include validation of the initial
discovery and demonstration of the consistency of the results
across two complementary populations with mGFR and devel-
opment of highly precise and accurate targeted assays for
metabolites identified in the initial screen. Validation of the
global discovery showed the validity of the approach in that
42% of markers with P< 0.001 in the AASK have P< 0.001 in
the MESA, much higher than the 0.1% expected due to chance
alone. However, it also points out that metabolites that did not
validate likely included false positives and the expected overop-
timism included in initial discovery prior to replication.

This study also has limitations. The AASK is a study of
African Americans with hypertensive kidney disease and as such
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is a rather homogeneous population with respect to race, geo-
graphical location and diet (US based) and cause of kidney dis-
ease. We were able to replicate the findings in US Whites and
Blacks with and without kidney disease and thus know that these
results are not due to Black ethnicity. However, the relative ho-
mogeneity of the samples does not allow us to test the generaliz-
ability of the findings. Sample handling in the AASK did not
follow a standardized protocol and the storage period was many
years. As a result, some metabolites may have been missed, but
those that were identified are likely to be robust to a range of
handling techniques and long-term storage. The identity of
some of the most strongly correlated metabolites with mGFR
was unknown, limiting our current panel but providing an op-
portunity for further improvement on this proof of concept.
GFR measurement is known to be imprecise, but this inflates the
reported GFR estimation errors [18]. Furthermore, iothalamate
and iohexol GFR measurement methods differ systematically
[23] and standardization of GFR for BSA may not optimally deal
with variation in body compositon. Importantly, the perfor-
mance and practicality of combining metabolites with low mo-
lecular weight proteins such as cystatin C was not tested.
However, our focus on metabolites measured in a multiplex
panel has the potential for economies of scale. Future steps
should include evaluation of panels including cystatin C and po-
tentially other low molecular weight proteins. A better under-
standing of the metabolism of all components of the panel used
to estimate GFR will be useful to better predict when they are
influenced by non-GFR determinants. The magnitude of such
influences on the overall GFR estimate across a range of clinical
settings needs to be quantified, particularly in clinical settings
where creatinine and cystatin are known to be unreliable.

In summary, the algorithms presented here provide a proof
of concept in realizing the potential of translating untargeted
metabolomic screening to algorithms. Given the known limita-
tions of serum creatinine and widespread use of GFR estimation,
the clinical implications that a panel of metabolites can provide
an accurate estimate of GFR with or without serum creatinine
or demographics could be substantial if these initial results can
be taken through the full diagnostic test development process.
Testing in multiple populations should be conducted to confirm
the external generalizability of a metabolite panel. Importantly,
the final robust algorithm that can be used to estimate GFR
would ideally be developed in a more diverse dataset.
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A B S T R A C T

Background. The impact of haemodialysis (HD) and kidney

transplantation on quality of life (QoL) is often underesti-

mated due to a lack of comparative studies with other pa-

tient groups.

Methods. We conducted a cross-sectional cohort study in

168 patients including HD patients, kidney transplant

recipients (KTR), patients with a haematological malignancy
either receiving chemotherapy or in remission and healthy
controls. All participants completed the 36-item short form
survey of health-related quality of life, the Checklist
Individual Strength and the Hospital Anxiety and Depression
Scale questionnaire.
Results. HD patients and haematological patients undergo-
ing chemotherapy were more frequently severely fatigued
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