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ABSTRACT: Transcriptional repressor EthR from Mycobacterium tuberculosis is a
valuable target for antibiotic booster drugs. We previously reported a virtual screening
campaign to identify EthR inhibitors for development. Two ligand binding orientations
were often proposed, though only the top scoring pose was utilized for filtering of the large
data set. We obtained biophysically validated hits, some of which yielded complex crystal
structures. In some cases, the crystallized binding mode and top scoring mode agree, while
for others an alternate ligand binding orientation was found. In this contribution, we
combine rigid docking, molecular dynamics simulations, and the linear interaction energy
method to calculate binding free energies and derive relative binding energies for a
number of EthR inhibitors in both modes. This strategy allowed us to correctly predict the
most favorable orientation. Therefore, this widely applicable approach will be suitable to
triage multiple binding modes within EthR and other potential drug targets with similar
characteristics.

EthR (Figure 1a) is a well-studied transcriptional repressor
from Mycobacterium tuberculosis that represses the

expression of the Bayer−Villager mono-oxygenase protein
EthA, the in vivo activator of antibiotic pro-drug ethionamide.
The homodimeric protein belongs to the family of TetR
repressors comprising an N-terminal DNA-binding domain
and a C-terminal ligand binding domain. Importantly, EthR
ligands inhibiting DNA-binding have been shown to increase
ethA expression and significantly boost ethionamide efficacy in
in vivo models.1,−4,17 Consequently, EthR inhibitors are under
intense investigation as booster codrugs.5−9,12−15 Several
approaches have been used to explore novel chemotypes for
binding the lipophilic EthR ligand site (Figure 1b), including
traditional high-throughput library screening,10 fragment-based
drug discovery,12,16 and our previously reported virtual
screening (VS) program based on the GOLD software.18 We
reported our screen of over 400 000 ligands against EthR, a
cohort filtered from an initial starting library in excess of six
million compounds derived from the Drugs Now subset of the
ZINC database.18 Our predocking filtering strategy included
restricting compound volume to 200−700 Å and the
requirement of at least one H-bond acceptor, compatible
with the size and nature of the EthR binding channel, as well as
tailoring physiochemical properties to largely lipophilic binding
site.18 In most cases, rigid receptor docking (RRD) yielded two
distinct orientations of binding to EthR; however, only the top
scoring pose was used for further filtering. Subsequent in vitro

assays yielded several biophysically and structurally confirmed
hits, though the in crystallo binding mode in some cases was
different in orientation to the top scoring virtual screening
pose. For one compound we observed both orientations within
the crystallized complex, each modeled with 50% occupancy.
Importantly, because of the design of the VS, each compound
represented a different scaffold, as confirmed in the structural
analysis of EthR complexes performed by Tanina and
colleagues in 2018.19

In recent years, both RRD and induced-fit docking (IFD)
protocols have become reasonably proficient at reproducing
crystallographic binding modes, as evaluated by the D3R
Grand Challenges (Drug Design Data Resource).21−23 RRD
and IFD have been applied in virtual screening and structure-
based drug design to discover and develop novel ligands for a
wide variety of medically relevant targets.24 EthR poses a
challenge to RRD due to the composition of the binding site: it
is highly lipophilic with two asparagine residues (Asn 176 and
Asn 179, respectively) located in the center of the pocket. The
side chains of these two residues are typically involved in
hydrogen bonding and “anchoring” the compound, allowing
for the proposed flipping of binding modes.
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While automated ligand docking approaches can be
combined with molecular dynamics (MD) simulations, explicit
MD simulations themselves are not yet feasible for screening
libraries containing millions of compounds.25,26 The combined
RDD−MD approach presented here refines the binding poses
in explicit solvent (often absent in RRD), and following
RDD−MD with the calculation of relative ligand binding
energies quantifies the binding event in solution to prioritize
favorably binding ligands.27,28 In this contribution we combine

RRD, MD simulations, and the linear interaction energy (LIE)
method27,29 to calculate the relative free energies of binding for
four inhibitors in their two proposed orientations.
From our previous virtual screening,18 we identified

compounds 3, 10, and 85 as promising EthR ligands, and
successfully cocrystallized EthR with 10. The structures of
these compounds are given in the supplementary material in
Chart S1. Here we report in addition the cocrystallized
structures of EthR with 3 and 85, both at a resolution of 1.8 Å.
Compound 3 has two similar poses where the methyl-

oxopyrazine moiety is exposed to solvent (Figure 2a). Key
interactions between compound 3 and the EthR pocket
include a hydrogen bond between the R159 side chain and the
oxopyrazine carbonyl oxygen (2.6 Å, only present in one pose),
an OH···N hydrogen bond from the hydroxyl oxygen of Y148
to a pyrazine nitrogen (2.9−3.3 Å), and a CH···O interaction
to L87 (2.8 Å). A close-up of these interaction patterns can be
seen in Figure S1. The B-factors of the ligand itself are
approximately twice the magnitude of the average B-factor for
the surrounding protein, an indication of increased ligand
flexibility.
No hydrogen bond interactions are observed in the crystal

structure of EthR cocrystallized with compound 85 (Figure
2b). In this case binding appears to be driven by van der Waals
interactions (Figure S2). A close contact is formed between the
central carbonyl on the pyrazolopyrimidine core to the sulfur
atom of M142 (2.5 Å). Further details on data collection and
refinement statistics are presented in Table S1.
These three crystal structures highlight the differences

between the virtual screening pose used for ligand selection
and the experimentally observed binding mode. Specifically,
the VS provided two orientations for compound 3, the top
scoring pose of which matches the crystal structure.
Conversely, for compound 85, the VS protocol yielded only
one orientation, which does not match the crystal structure.
Finally, two orientations were suggested for compound 10
(Figure 2c) and both are observed in crystallo. We used these
cases and the crystal structure of the EthR-BDM31343
complex (PDB 3TP0,7 1.9 Å resolution, Figure 2d) to study
alternate binding conformations. BDM31343 presents an

Figure 1. (a) Ribbon diagram of EthR-85, with compound 85 in stick
depiction with molecular surface. Carbon atoms of the ligand are
shown in green. (b) The binding site of EthR is largely lipophilic
(colored orange/red) with few heteroatoms available to act as
hydrogen bond donors or acceptors (blue). Image prepared in
Chimera using pocket analysis by CASTp20 for EthR (PDB 1U9N).

Figure 2. Ligand binding pocket of (a) EthR-compound 3, ligand in plum; (b) EthR-compound 85, ligand in green; (c) EthR-compound 10,18

ligand A in yellow and ligand B in blue; and (d) EthR-BDM31343, ligand in dark red.7 Hydrogen bonds are highlighted as dotted magenta lines,
and close contacts are in blue. Only key residues are shown for clarity.
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unambiguous single binding mode, and docking studies
undertaken in 201311 demonstrated that docking of this
compound (under the VS protocol by which we identified
compounds 10, 3, and 8511,18) produced five poses of one
orientation, in agreement with the crystal structure. We
hypothesized that had we utilized relative binding energies in
selecting which orientation from virtual screening was
energetically favorable, we would have correctly predicted
the experimental binding mode. This suggests that a more
quantitative approach is required to evaluate the likelihood of
observing different poses. Here we used the calculated binding
energies in explicit solvent as the criteria to determine the most
favorable pose and compared these results to our crystallo-
graphic data. It was found that the MD−LIE approach can
confidently identify and rank correct binding modes.
For each EthR−ligand complex, MD−LIE calculations in

explicit solvent (24 Å sphere radius) were carried out
employing the highest scoring VS pose (“pose 1”) and the
highest-scoring alternate pose for the opposite binding
orientation (“pose 2”). For compounds 85 and BDM31343
where no second orientation was proposed by docking, the
alternate binding mode within the linear tube-like EthR
binding channel was created manually through an approx-
imately 180° rotation, maintaining the hydrogen bonding
pattern and the hydrophobic interactions on either side of the
amide bond. Each simulation was performed in quadruplicate
employing different starting velocities (see the Supporting
Information for details).30 Following equilibration, the
complexes were unrestrained for an initial 10 ns production
MD run, extended to 20 ns when required, leading to a total of
40−80 ns of unrestrained MD per system. Each compound
was also independently simulated in explicit solvent. Further
details are provided in the Supporting Information. All four
replicates were used to calculate a relative binding energy,
given in Table 1. Ligand positions per pose can be seen in
Figure S4.
Per-residue contributions to binding energy (Figure 3 and

Table S2) were calculated for each complex. These calculations
allowed us to confirm the relevance of the interactions
observed in the crystal structure and identify any exploitable
interactions for ligand development that were not captured by
the crystal structure. This was particularly relevant for
compounds 3 and 85 which were indicated to be more
flexible and of lower occupancy, respectively, in the EthR
binding site in crystallo. While BDM31343 has been reported

to have an EC50 of 3.3 × 10−6 mol, compounds 3, 10, and 85
displayed no antitubercular booster activity.18 Although the
compounds appear quite similar in terms of molecular weight
and size, our lead compounds display significantly more polar
surfaces compared to BDM31343, which may be responsible
for a reduced uptake through the very hydrophobic M.
tuberculosis cell wall. The detailed energetic characterization of
protein−ligand interactions reported here will be used to
further optimize our lead compounds.
Figure 3 shows the electrostatic and van der Waals

contribution of the relevant binding site residues for each
ligand (contributions for compound 10 are deconvoluted as
10-A and 10-B). Negative binding energy contributions denote
a favorable interaction. As anticipated, given the highly
lipophilic nature of the binding channel, binding is mostly
driven by van der Waals interactions (shown in blue). The
common largest contributions arise from residues F110, W103,
W145, and W207. Electrostatic interactions are mostly due to
residues N176 and N179, which are the two key hydrogen
bonding residues of the EthR binding channel. Compound 3
adopts a different binding position than the other presented
ligands; it interacts more strongly with L90, M102, W103, and
V152 and weakly with F110, W145, N176, and N179. Binding
by compound 85 is dominated by van der Waals interactions;
compound 85 makes electrostatic interactions with only N179
and E180. Clear differences can be seen between poses A and
B of compound 10; the alternate positions of the carbonyl
oxygen forms an HB interaction with N176 in pose A, while in
pose B this interaction occurs preferentially with N179.
Similarly, only pose A of compound 10 interacts with Y148
and T149 and the binding energy includes a contribution from
M142; pose B interacts favorably with E180. Compound 3 also
benefits from the strong electrostatic contributions by G106
due to Cα-H···O and Cα-H···N hydrogen bonds. A Cα-H···S
weak hydrogen bond from the sulfur of M142 to compound
10-A is responsible for a M142 contribution to binding energy,
which is more pronounced for compound 85 where a short
Cα-H···S contact by the M142 sulfur can be observed in the
crystal structure and the van der Waals energy contribution
ranges from −1.60 to −2.49 kcal mol−1. M142 is also involved
in BDM31343 binding: the M142 sulfur interacts with the
cyano-group of the ligand. BDM31343 makes more favorable
electrostatic interactions than the other ligands, and van der
Waals interactions are weaker in energy contribution. Overall,
analysis of the energy contributions to ligand binding

Table 1. Summary of Results of LIE Calculations Per Compound, Per Pose Where the Poses Are Related by a 180° Inversion
within the Binding Sitea

ligand in water
(kcal mol−1)

ligand in protein
(kcal mol−1)

compound virtual screening pose binding mode in crystallo ⟨Ul‑s
vdw⟩ ⟨Ul‑s

el ⟩ ⟨Ul‑s
vdw⟩ ⟨Ul‑s

el ⟩ β averageΔGbind−γ (kcal mol−1 ± SE)

3 1 √ √ −28.0 −58.9 −52.4 −43.9 0.43 2.1 ± 0.2
2 √ × −28.0 −58.9 −55.3 −37.2 0.43 4.4 ± 0.4

85 1 √ × −32.7 −73.9 −63.0 −42.3 0.43 8.1 ± 0.4
2 × √ −32.7 −73.9 −62.0 −47.5 0.43 6.1 ± 0.8

10 1 √ √ −25.9 −40.1 −52.2 −21.6 0.37 2.1 ± 0.3
2 √ √ −25.9 −40.1 −50.1 −22.9 0.37 2.0 ± 0.3

BDM31343 1 √ √ −27.6 −42.7 −48.7 −28.4 0.43 2.3 ± 0.4
2 × × −27.6 −42.7 −48.5 −25.6 0.43 3.6 ± 0.7

aTicks denote where (a) the pose could be observed in the five solutions from virtual screening and (b) the pose corresponds to the binding mode
in the crystal. For BDM31343, virtual screening poses refer to docking output presented previously.11 Averages were derived from the final 10 ns of
converged simulation time. Relative binding energies are shown unadjusted for the γ factor.
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corroborate the interactions inferred from the crystal
structures, emphasizing the lipophilicity-driven nature of the
binding to EthR. This data can be used to quantitatively
evaluate the binding event and help inform design decisions
at which positions to try to strengthen hydrogen bond
acceptors, for example, or to exploit “weak” hydrogen bonding
opportunities such as those seen via G106 with compound 3 or
M142 with BDM31343 and compound 85. Given the evidence
of weak binding by 85, both compounds 3 and 10-A provide
the best starting points for further development.
Figure 4a shows the overlay of the crystal structure of

compound 3, with each of the two simulated poses (taken as
an average structure at the 10 ns time point). Pose 1 (the
highest-scoring VS mode) is a match for the crystallo-
graphically observed binding mode and is also the most
energetically favorable binder as compared to pose 2 (Table 1,

ΔΔG = 2.3 ± 0.6 kcal mol−1). For compound 85, the results of
the virtual screening suggested only one pose (pose 1).
However, it is pose 2 which is energetically more favorable
(ΔΔG = 2.0 ± 1.2 kcal mol−1, Table 1). In the case of
compound 10, the dual occupancy found in the crystal
structure is in line with our MD−LIE free energy calculations,
which demonstrates that the binding free energy for these
poses is almost identical (ΔΔG = 0.1 ± 0.6 kcal mol−1, Figure
4c). Finally, for BDM31343 (Figure 4d) pose 1 is energetically
favorable (ΔΔG = 1.3 ± 1.1 kcal mol−1), and it corresponds to
the pose found in the crystal structure. Therefore, we can
conclude that both virtual screening and the MD−LIE
estimate correctly predict the binding mode of compounds 3
and 10 and BDM31343. However, it is only the MD−LIE
approach that correctly identified the experimentally observed
binding mode of compound 85. Therefore, we have
demonstrated that the MD−LIE approach allows one to
accurately determine and rank potential poses from the in
silico screening output.

Figure 3. Mean contribution of energy to the overall binding, per-
residue of the binding site, for both (a) electrostatic and (b) van der
Waals energies for compounds 3, 10, and 85 and BDM31343. Energy
contributions over the course of the simulation are given in Figure S3.
Only values exceeding ±1 kcal mol−1 are shown. Graphs prepared in
Graphpad Prism 7.

Figure 4. Comparison of the average structure at 10 ns for each
molecular dynamics simulation with the crystal structure. For
matching modes, the closest replica is used; replicate 1 is given as
representative for alternative mode. (a) Compound 3 (in pink) vs (i)
pose 1 and (ii) pose 2. (b) Compound 85 (in green) vs (i) pose 1 and
(ii) pose 2. (c) Compound 10-A (in yellow) vs (i) pose 1 and (ii)
pose 2; compound 10-B (in blue) vs (iii) pose 1 and (iv) pose 2. (d)
BDM31343 (in dark red) vs (i) pose 1 and (ii) pose 2.
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In summary, this contribution has addressed a key issue
posed to computer-aided drug discovery on the EthR target. In
this system, the cylindrical, hydrophobic binding site may give
rise to multiple likely binding modes which may be difficult to
infer only by docking score rank. Determination of the most
favorable pose(s) requires crystallographic confirmation, which
may be difficult to achieve. The inclusion of the MD−LIE
approach to calculate the relative binding energy calculations is
an established practice for ranking small cohorts of screening
outputs. Though still not viable for routine screening at
scale,31,32 its application on the EthR systems has the potential
to accelerate the identification and evaluation of novel ligands.
Further studies would be required to determine if MD−LIE is
sensitive enough for smaller fragment-sized molecules with
weak binding affinities, or if indeed a one-simulation end-point
method such as MM/GBSA or MM/PBSA could be a higher-
throughput method with sufficient accuracy. MD−LIE or an
equivalent method could be used to prioritize outputs from
crystallographic fragment screening,33 where multiple, milli-
molar-affinity binding events across a protein surface are
frequently observed.34

Recent literature has demonstrated that multiple binding
modes within series can be commonplace35 and often are
unapparent unless crystal structures are obtained. This is also
true of EthR, for example with BDM31343 and related
compound BDM14500.5 In the absence of a crystal structure
(or indeed a complete set of crystal structures to understand
structure−activity relationships or SAR), MD−LIE can offer
an alternative stop-gap measure where assays confirm binding
but cocrystal structures remain elusive. However, further study
is required to determine if our approach is applicable to targets
beyond EthR. Furthermore, per-residue energy contributions
to the binding event will enable medicinal chemistry design
strategies by characterizing the protein−ligand interaction and
highlighting where gains could be made (or unfavorable
interactions are occurring).36

Ultimately, the pilot experiment presented here suggests a
role for relative binding energies and per-residue contributions
in not just ranking ligand binders but also confirming ligand
binding modes. Furthermore, we have contributed two more
crystal structures to the growing data on EthR complexes,
which are a valuable resource for further study.19 Moving
forward, because of the hydrophobicity of the EthR binding
channel it will be all the more important to exploit
unconventional binding modes and chemistries to optimize
hits toward active cell-penetrant lead compounds, and
inclusion of MD−LIE in this pipeline will ensure the best
candidates are prioritized.
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